Insert Title of Presentation

Name of Presenter EVS Environment Consultants

SNAP LAKE WATER QUALITY

SOURCES, EFFECTS AND IMPACTS

BASELINE DATA

DeBeers

Baseline data (water and sediment quality, biota) considered sufficient to support the EA

Major Concerns:

 Current baseline insufficient to characterize temporal and spatial variability (water, biota – e.g., zooplankton)

Implications:

 Current baseline insufficient for assessing effects during and post-development (need to be able to detect an effect if one exists)

METALS

DeBeers

• Metals will not adversely affect aquatic organisms *Major Concerns*:

- Many metals effects concentrations lower than predicted based on Canadian Council of Ministers of the Environment (CCME) calculation procedures
- Concentrations of some metals in Snap Lake could exceed toxicity thresholds for sensitive species (e.g., zooplankton)

Implications:

Adverse effects (mortality, impairment) could occur to sensitive species

[All values in micro-g/L and apply at a water hardness of 180 mg/L CaCo.]

Metal	DeBeers HC ₅ Concentration	CCME Chronic Threshold
Copper	7.9	1.5
Cadmium	0.36	0.039
Chromium (III)	46.8	32
Chromium (VI)	2.1	<2.5

TDS (TOTAL DISSOLVED SOLIDS)

DeBeers:

- TDS will increase from 15 mg/L to a maximum average of 330 mg/L for the whole lake and up to 444 mg/L for 1% of lake
- Ca (major TDS ion) will increase from 1.34 mg/L to a range of 88 to 133 mg/L
- CI (major TDS ion) will increase from <0.2 mg/L to a range of 137 to 177 mg/L
- Cl more toxic in combination with Ca [Concentrations likely to be 2-3x higher]

	De Beers Values	2X	3X	Lowest Toxicity Thresholds
TDS	330-444	660-888	990-1332	500 Alaska (Red Dog)
Ca	88- <u>133</u>	<u>176-256</u>	<u> 264-399</u>	116 for Daphnia
CI	137-177	274-354	411-531	372 US EPA

TDS (continued)

Major Concerns:

- DeBeers maximum projections close to effects levels
- If DeBeers are wrong and concentrations are higher, as indicated, adverse effects will occur
- Potential major effects to the whole of Snap Lake will probably include:
 - loss of species
 - changes in food chains
 - energetic effects (e.g., reductions in growth and reproduction) to remaining species

PHOSPHORUS (P) AND DISSOLVED OXYGEN (DO)

DeBeers:

- Bioavailable P will not significantly affect this oligo-mesotrophic lake
- No significant eutrophication, but algal concentrations could increase up to 40%
- Reduced DO concentrations occur naturally in some parts of the lake; avoidance and adaptation have occurred

PHOSPHORUS (P) AND DISSOLVED OXYGEN (DO) (continued)

DeBeers (continued):

- Winter DO reductions (1 to 2.2 mg/L) may be low enough to limit habitat in <10% of lake with associated decreased species richness of benthic invertebrates
- Additional nutrient modeling suggests changes in primary productivity could be greater than predicted in EA (more than 2x baseline conditions if dissolved P is bioavailable)

PHOSPHORUS (P) AND DISSOLVED OXYGEN (DO) (continued)

Major Concerns:

- Increased eutrophication beyond that predicted by the EA, with associated species changes
- The <10% of the lake affected by low DO in winter may well be significant

Implications:

- · Greater DO depressions than predicted
- Associated greater loss of habitat and species changes (magnitude and areal extent)
- Changes will occur in the aquatic community structure of Snap Lake

AQUATIC COMMUNITY CHANGES

<u>DeBeers:</u>

- · Functional redundancy exists
- No energetic or other costs from species loss *Major Concerns:*
- Simpler food chains exist in North; less functional redundancy
- "Energetic bottlenecks" possible (e.g., yellow perch in Ontario lakes stunted due to need to eat smaller prey resulting in more energy expenditure
 related to metals pollution in these lakes)

TYPES OF AQUATIC COMMUNITY CHANGES

Effects on organisms, populations and communities:

- Direct toxicity (death and/or impairment)
- Toxicity affecting food (death and/or impairment)
- Toxicity affecting interactions among species (impairment)

Insert Title of Presentation

Name of Presenter
EVS Environment Consultants

INTERACTIVE EFFECTS OF CONTAMINANTS

DeBeers:

Not addressed

Major Concerns:

 Exposure to multiple stressors: increased TDS, increased productivity, decreased DO, increased metals in Snap Lake

Implications:

Greater than predicted effects on aquatic organisms over a longer period of time

INTERACTIVE EFFECTS OF CONTAMINANTS (continued)

Implications (continued):

- Potential major effects to the whole of Snap Lake will probably include:
 - loss of species
 - changes in food chains
 - energetic effects (e.g., reductions in growth, reproduction) to remaining species

SCOPE OF EFFECTS ON SNAP LAKE

DeBeers:

- Major effects limited to <1% of Snap

 Lake
- Subtle effects could occur on a lakewide basis

Major Concerns:

Likely substantially increased stresses compared to EA predictions

SCOPE OF EFFECTS ON SNAP LAKE (continued)

Implications:

- Substantial adverse effects to the whole lake for an extended period of time (decades beyond mine closure)
- Biota not totally eliminated from the lake
- Effects likely reversible, but almost certainly not to the same community as exists currently

Í				à
f				
		; ;		
		*		
		4	4.	
			· .	
	·			