

Technical Session Undertakings

UNDERTAKING RESPONSE

EA No: 0809-001

Undertaking No: 11

Date Received

Transcript: Day 4, pg. 178

Undertaking:

The Giant Mine Project Team to resubmit section 2.1.2 of the Failure Modes report (attachment to Review Board Information Request #12) clarifying definition of "long term".

Response:

Revision on page 11 – removed sentence at the end of paragraph 3 under risk evaluation heading.

Please see attached IR Response, Information Request No: MVEIRB 12 (Qu 1, 2, 3, 4 & 5), June, 2011.

Giant Mine Environmental Assessment

IR Response Template

Round One: Information Request MVEIRB #12 (Qu1, 2, 3, 4 & 5)

1	INFORMATIC	ON REQUEST RESPONSE
2		
3	54 No. 0000 001	
4 5	EA NO: 0809-001	Information Request No: MVEIRB 12 (Qu 1, 2, 3, 4 & 5)
6	Date Received: February 21, 2011	
7		
8	Linkage to Other IRs: MVEIRB IR 8, 13, 14, 15 a	nd YKDFN IR 5, 10
9		
10	Date of this Draft: June 17, 2011	* Draft No: 2
11		
12	Preamble	
13	The DAR section on accidents and malfunctions	only examines failures of individual elements of the
14 1 F	project in isolation. It describes what would ha	open assuming all design features, mitigation measures
15	and emergency response plans are functioning	ideally. It does not address likelihoods and severity of
17	elements or consequences of domino effects v	within overall systems. This includes the larger events
18	described in section 9.	within overall systems. This includes the larger events
19		
20	The risk assessment defines "credible" events a	s those that have a reasonable probability of occurring
21	within the first 25 years, based on the tempora	l scope of the EA. However, the temporal scope defines
22	the activities assessed, not the duration of effe	cts of the project to be considered. The Board assesses
23	what happens because of development activitie	es occurring within that time, not only the effects that
24	happen during that time. The developer's defin	ition of "credible" appears to exclude all long-term risks
25	and low probability events.	
26		
27	Question 1: Please identify risks for the life of	the project, beyond those occurring during initial
28	development activities.	
29	Question 2. Places identify scenarios for event	s in chart and long term which could cause multiple
3U 21	failures of components of the project	s in short and long-term which could cause multiple
32	Tandres of components of the project	
32	Question 3: Please evaluate probabilities and	everities and consequences (including costs) resulting
34	from those scenarios	
35		
36	Question 4: Please describe how failures of inc	lividual components would affect the larger systems they
37	are a part of	
38		
39	Question 5: Please describe probabilities, seve	rities and consequences (including costs) for the events
40	discussed in section 19 plus any additional long	-term risks identified (see point 1, above).
41		
42		

Giant Mine Environmental Assessment

IR Response Template

43 44	Reference to DAR (relevant DAR Sections): DAR s. 9, DAR s. 10
45	Reference to the EA Terms of Reference: ToR 2.3, ToR 3.2.5
46 47	* Is Issue within the scone of Terms of Reference? Yes
48	is issue within the scope of remis of herefence. Tes
49	Question 1: Please identify risks for the life of the project, beyond those occurring during initial
50	development activities
51	
52	Question 1 Response:
53	Three risk workshops were arranged and at the first session, Failure Scenario Analysis (FSA) Trees were
54	developed which summarizes failure scenarios relevant to this project. These failure trees identify the
55	initiating events for the overall project, as well as the impact a component failure has on an overall
56	system. Appendix A of the attached report, "Failure Mode Effects Criticality Analysis (FMECA) - Giant
57	Mine Remediation - Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board –
58	Information Request 12 Response," presents these failure trees for the various systems and evaluates
59	risk in both the short and long term.
60	
61	Question 2: Please identify scenarios for events in short and long-term which could cause multiple
62 62	ranures of components of the project
67 67	Question 2 Response:
65	Cascading Event Scenarios and Multiple Cause Scenarios were developed to assess how multiple failures
66	of components would affect the Giant Mine project in both the short and long term. A cascading event
67	scenario refers to a series of accidents and malfunctions occurring because of one initiating event; which
68	may cause another malfunction to lead to a series of other multiple malfunctions. The cascading event
69	scenarios developed for both the short and long term of the project are presented in Appendix B of the
70	attached report. Multiple cause scenarios were also examined in preparing the response for question 2.
71	A multiple cause scenario is a specific fault scenario which includes two or more initiating events
72	occurring simultaneously. These types of scenarios generally have a lower likelihood as they require two
73	unrelated causes to happen simultaneously. In the evaluation of multiple cause scenarios, focus was
74	placed on evaluating multiple cause scenarios for the freeze and water management systems. The
75	multiple cause scenarios developed for both the short and long term are presented in Appendix C.
/6 77	
// 70	Question 3: Please evaluate probabilities and severities and consequences (including costs) resulting
78 70	from those scenarios
79 80	To evaluate the probabilities, severities and consequences, experienced workshop participants reviewed
80 81	the hazards and risks from the ESA Trees and further examined consequences, probabilities and
82	severities through Failure Modes Effects Criticality Analysis (EMECA). The risks were broken down into
83	detail and were given a rating for the likelihood of occurring, and a risk rating for public safety.
84	environment and cost consequences. If the scenario posed risks at a level of moderate to high.
85	mitigating measures / design elements were applied and the risk rating was re-evaluated. The FMECA

tables for the major systems are presented in Appendix D of the attached report.

IR Response Template

Round One: Information Request MVEIRB #12 (Qu1, 2, 3, 4 & 5)

87

88 **Question 4:** Please describe how failures of individual components would affect the larger systems they 89 are a part of

90

91 The first of three risk workshops arranged developed Component FSA Trees which summarizes how a

92 component failure can affect an overall system of the Giant Mine project. Appendix A of the attached

93 report presents these component FSA trees for the various systems and looks at risk in both the short 94 and long term.

95

96 Question 5: Please describe probabilities, severities and consequences (including costs) for the events 97 discussed in section 10 plus any additional long-term risks identified (see point 1, above).

98

99 To evaluate the probabilities, severities and consequences discussed in section 10, the workshop

100 participants reviewed the risks from the FSA Trees and further examined consequences, probabilities

101 and severities through FMECA. The risks were broken down into detail and were given a rating for the 102 likelihood of occurrence, and a risk rating for public safety, environment and cost consequences. If the

103 scenario posed risks at a level of moderate to high, mitigating measures / design elements were applied

104 and the risk rating was re-evaluated. The FMECA tables for the major systems are presented in 105 Appendix D of the attached report.

- 106
- 107 * Prepared By: 108 109 Rudy Schmidtke, M.Sc., P.Eng. 110 AECOM
- 111 * Reviewed and/or Edited By: 112
- 113
- 114
- Name 115 Agency or Organization
- 116
- 117

Public Works and Government Services Canada

Failure Mode Effects Criticality Analysis (FMECA) - Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

Prepared by:		
AECOM		
17007 – 107th Avenue	780 486 7000	tel
Edmonton, AB, Canada T5S 1G3	780 486 7070	fax
www.aecom.com		
Golder Associates Ltd.		
500, 4260 Still Creek Drive	604 296 4200	tel
Burnaby, BC, Canada V5C 6C6	604 298 5253	fax
www.golder.com		
Project Number:		
60198153		

Date: November, 2011

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations")
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports
- may be based on information provided to Consultant which has not been independently verified
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued
- must be read as a whole and sections thereof should not be read out of such context
- was prepared for the specific purposes described in the Report and the Agreement
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

The Report is to be treated as confidential and may not be used or relied upon by third parties, except:

- as agreed in writing by Consultant and Client
- as required by law
- for use by governmental reviewing agencies

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any damages arising from improper use of the Report or parts thereof shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

Distribution List

# of Hard Copies	PDF Required	Association / Company Name						
0	1	Public Works and Government Services Canada						

Revision Log

Revision #	Revised By	Date	Issue / Revision Description
0		June 8, 2011	DRAFT Report
1	Jennifer Singbeil	June 16, 2011	FINAL DRAFT Report
2	Larissa Wall	June 17, 2011	FINAL Report
3	Michelle Wainwright	November 8, 2011	FINAL Report

AECOM Signatures

Report Prepared By:

Jennifer Singbeil, P.Eng.

Environmental Engineer

Jillian Roth, E.I.T.

Environmental Engineer

Report Reviewed By:

an

Rudy Schmidtke, M.Sc., P.Eng. Associate Vice President, Environment

Failure Mode Effects Criticality Analysis (FMECA)-Giant Mine Remediation - Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

Table of Contents

Statement of Qualifications and Limitations Distribution List

n	2	α	0
	~		-
~	u	ч	~

1.	Intro	duction	1
	11	Scope	1
	12	Information Request (IR)	1
	1.2	Workshops.	
2	Dick	Assessment Framowork	3
۷.			3
	2.1		3
		2.1.1 Short Term	3
		2.1.2 Long Term	3
	2.2	Assumptions	3
		2.2.1 Permits	3
		2.2.2 Funding	3
		2.2.3 Care and Maintenance	3
		2.2.4 Worker Health and Safety	4
	2.3	Definitions	4
		2.3.1 Initializing Event / Cause	4
		2.3.2 Accident	4
		2.3.3 Malfunction	4
		2.3.4 Credible Event	4
		2.3.5 Failure Scenario	4
		2.3.6 Cascading Events Scenario	4
		2.3.7 Multiple Cause Scenario	5
		2.3.8 System Failure	5
		2.3.9 Component Failure	5
		2.3.10 Mine Water Treatment Plant (Mine WTP) and Effluent Treatment Plant (ETP)	5
	2.4	Initiating Events at Giant Mine	5
	2.5	Systems and Components at Giant Mine	5
	2.6	Risk Assessment Methods	6
		2.6.1 Failure Scenario Analysis (FSA)	7
		2.6.1.1 Description of FSA	7
		2.6.1.2 Process	/
			/
		2.6.2 Failure Mode Effects Criticality Analysis (FMECA)	8
		2.6.2.1 Description of FMECA	ð
			9
			11
3.	Risk	Assessment Results	13
	3.1	Identified Risks for the Giant Mine Remediation Project	13
		3.1.1 Short and Long Term FSA	13
	3.2	Cascading Events Scenarios	13
	3.3	Multiple Cause Scenarios	13
	3.4	Likelihood and Consequence Severity of Identified Failure Scenarios	14
		3.4.1 Short and Long Term FMECA	14

Failure Mode Effects Criticality Analysis (FMECA)-Giant Mine Remediation - Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

4.	Refere	ences	.16
	3.5	Summary	14

List of Figures

Figure 1: Initiating Event Failure Tree	7
Figure 2: Component Failure Tree	8
Figure 3: Risk Matrix Format	10
Figure 4: FMECA Table Format	12

Appendices

Appendix A – Failure Scenario Analysis (FSA) Appendix B – Failure Mode Effects Criticality Analysis (FMECA) Appendix C – Cascading Event Scenarios Appendix D – Multiple Cause Scenarios Appendix E – List of Participants for Workshops

1. Introduction

Giant Mine is an abandoned gold mine which is currently under the care and maintenance of Indian and Northern Affairs Canada (INAC) while preparations are made to implement the long term remediation plan for the site. The Giant Mine Remediation project Developer's Assessment Report (DAR) (SRK, 2010) is currently under review by the Mackenzie Valley Environmental Impact Review Board (MVEIRB). The DAR outlines the overall remediation plan for all aspects of the site. In addition, the preliminary design is currently being developed to expand on the overall plan outlined in the DAR. The DAR includes Section 10 which assesses risks associated with the remedial plan outlined in the DAR for the first 25 years of implementation.

1.1 Scope

The scope of this report is to address requests for information which were raised during the MVEIRB review of the Giant Mine Remediation plan outlined in the DAR. The purpose of this report is to address the Information Requests (IR) on the subject of risk by expanding on the risk assessment completed as part of the DAR development and completing a Failure Mode Effects Criticality Analysis (FMECA). AECOM Canada Ltd. (AECOM) and Golder Associates Ltd. (Golder) developed this report, which is a summary and compilation of risks identified and assessed in workshops by a number of participants.

1.2 Information Request (IR)

Information Request #12 was developed by the MVEIRB Review Board and includes 5 questions which are listed below.

- 1. Please identify risks for the life of the project, beyond those occurring during initial development activities.
- 2. Please identify scenarios for events in short and long-term which could cause multiple failures of components of the project.
- 3. Please evaluate probabilities and severities and consequences (including costs) resulting from those scenarios.
- 4. Please describe how failures of individual components would affect the larger system they are part of.
- 5. Please describe probabilities, severities and consequences (including costs) for the events discussed in section 10 (of the DAR) plus any additional long term risks identified (see point 1 above).

This report supports responses to the above questions.

1.3 Workshops

Three workshops were held for the purpose of identifying and assessing risks. The following was the overall purpose of the workshops.

Develop sequences of events over the short and long term that may lead to component failures and consequential losses. Identify the causes of key component failure. Describe or develop mitigation measures or safeguards included in the remedial design and management system to manage, mitigate or prevent these failures.

There were three workshops held to achieve the overall purpose. The workshop details are listed below including a list of participating agencies. A detailed list of those that attended on behalf of each agency is attached in Appendix E.

Workshop 1:

- March 22 to 24, 2011 in Vancouver
- Participants: INAC, PWGSC, Department of Justice (DOJ), Golder, and AECOM.

Workshop 2:

- April 4 to 6, 2011 in Vancouver
- Participants: INAC, PWGSC, DOJ, Golder, AECOM, and SRK Consulting (SRK).

Workshop 3:

- May 30 and 31, 2011 in Edmonton
- Participants: INAC (including technical advisor, Brodie Consulting), PWGSC, Golder, and AECOM

The first workshop included a brainstorming session to identify events and major component failures. Participants expanded on the consequences of each of the events identified and developed the first draft of the Failure Scenario Analysis (FSA). Components which could result in major system failure were also identified in the FSA format. Failure scenarios were developed through trees indentifying the sequence of events in the scenario. These failure scenarios were used in the second workshop to analyze the risk associated with these scenarios. The third workshop reviewed these risks as it applied to the short term and long term scope of the Giant Mine Project. Risk mitigating measures were included in the risk estimates, and where appropriate, additional measures were recommended and the risk was re-assessed.

Failure Mode Effects Criticality Analysis (FMECA)-Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

2. Risk Assessment Framework

2.1 Risk Timeline

2.1.1 Short Term

Short term risks, as defined for the purpose of this risk assessment, are risks which occur during the implementation of the Giant Mine Remediation project. This timeline begins on day one of the remediation contract for that specific system or component and ends when steady state has been achieved, for an approximate duration of 25 years. The Giant Mine Remediation project will involve a series of remediation contracts which may not occur simultaneously, therefore the short term risk timeline may vary from one system or component to another.

For example, the short term timeline for the existing structure demolition would begin on day one of the demolition contract and would be complete once all the existing structures are decontaminated, demolished and the waste sorted, transported and disposed of. The short term timeline for structural demolition may be less than the general 25 year timeline, depending on the sequencing of demolition.

2.1.2 Long Term

The risk of events which could occur after steady state is achieved is defined as long term for the purpose of this assessment. This timeline begins after steady state is achieved and continues in perpetuity. However, the identification and assessment of these risks is limited to what the assessment team can envision for the next 100 years based on the current remediation plan. This 100 year period is the time in which the remedial components are expected to function within specified parameters with ongoing maintenance. This time frame does include low probability events, such as a 1 in 500 year rainfall event. If the remediation plan is changed, or at some future point a new remediation technology is implemented, the long term risks would require reassessment.

2.2 Assumptions

Risks were identified and assessed within the scope of this report in the context of the following general assumptions. Any specific assumptions for a particular failure mode or scenario are included in Section 3.4 of this report.

2.2.1 Permits

All required permits or other approvals are assumed to have been attained prior to the start of project implementation. Delays as a result of permit or approval application have not been included into the short term timeline for the risks identified and assessed. Risks associated with permits and approvals have not been included in the scope of this assessment.

2.2.2 Funding

Funding for the remediation is assumed to be in place prior to project implementation. Delays in the project and the risks to the project as a result of funding delays have not been assessed, except as a total project failure scenario in the assessment of institutional failures.

2.2.3 Care and Maintenance

The scope of this risk assessment does not include the care and maintenance period and the risks which could occur before the start of the short term risk timeline. It is assumed that care and maintenance will continue until

project implementation and that the remediation contracts will overlap with the care and maintenance contract and all systems would be maintained as per current standards until the implementation starts.

2.2.4 Worker Health and Safety

Worker health and safety is not included in this assessment. Worker health and safety will change based on the methods for completing the work, which the remediation contractor will decide. The assumption is that worker health and safety will be assessed once the detailed remediation design is completed and all tasks would be performed with appropriate health and safety plans by staff with appropriate training, in compliance with the applicable regulations (eg. NWT Mine Health & Safety Act).

2.3 Definitions

The following terms are defined to closely align with the Developer's Assessment Report (DAR) (SRK, 2010) and to remain consistent with language used in the IR. These definitions will be used to describe the possible risks to maintain consistency throughout this assessment.

2.3.1 Initializing Event / Cause

An initializing event or cause is the root of all failure scenarios and is the cause of system or component failure. An initiating event can lead to either an accident or malfunction and includes natural events, technological causes, or human error. A list of major initiating events or causes assessed for the Giant Mine Remediation project is included in Section 2.4 of this report.

2.3.2 Accident

An accident is an unplanned event which leads to system or component failure. An accident could be a result of a specific initiating event or cause. Examples of accidents include extreme weather, human error and traffic accidents. Prevention measures could be implemented to decrease the likelihood of an accident and mitigating measures could be implemented to reduce the effects of an accident.

2.3.3 Malfunction

A malfunction is the failure of a system, component or sub-component (eg. equipment) to function in a manner for which it was intended. A malfunction can result from an initiating event or cause as defined above.

2.3.4 Credible Event

A reasonable probability of occurrence based on professional judgement in the context of project-specific conditions.

2.3.5 Failure Scenario

A failure scenario is a specific sequence of events starting with an initiating event or cause which leads to system or component failure and corresponding impacts from that failure.

2.3.6 Cascading Events Scenario

A cascading events scenario starts with one initiating event or cause which causes the failure of multiple systems or components.

2.3.7 Multiple Cause Scenario

A multiple cause scenario starts with two or more unrelated initiating events or causes which occur simultaneously and cause the failure of systems or components.

2.3.8 System Failure

A system failure within the Giant Mine Remediation project is a major design or operating system that can no longer perform its function as required. System failures have the largest impact on the integrity of the project and are major remediation design elements. Each system has the potential to fail through a variety of initiating events or causes. A list of systems assessed for the Giant Mine Project is included in Section 2.5 of this report.

2.3.9 Component Failure

A component failure within the Giant Mine Remediation project occurs when one or more parts or components of a system can no longer perform its function as required. A list of all components assessed for the Giant Mine Project is included in Section 2.5 of this report.

2.3.10 Mine Water Treatment Plant (Mine WTP) and Effluent Treatment Plant (ETP)

The Effluent Treatment Plant (ETP) is the current treatment plant at the Giant Mine Site. This treatment plant is operational only seasonally. In the short term the ETP will be operational while the new Mine Water Treatment Plant (Mine WTP) is being constructed. The Mine WTP will be operational on a full time basis in the long term as part of the Water Management System.

2.4 Initiating Events at Giant Mine

The following have been identified as the major initiating events (accidents) or causes of failure scenarios at the Giant Mine Remediation project. These initiating events may cause other accidents or malfunctions, which in turn impact systems and components of the project.

- 1. Environment (Extreme Weather)
- 2. Flood
- 3. Forest Fire
- 4. Power Failure
- 5. Seismic
- 6. Climate Change

2.5 Systems and Components at Giant Mine

The following have been identified as the seven major systems and associated components/subcomponents of the Giant Mine Remediation project.

- 1. Water Management System
 - A. Water Storage
 - B. Piping
 - C. Existing Effluent Treatment Plant (ETP)
 - i. Settling/Polishing Pond
 - D. Mine Water Treatment Plant (eg. Chemical supply for operation)

- E. Diffuser
- F. Pumps
- G. Bay Assimilation Capacity (eg. Loss of capacity in receiving environment)
- 2. Underground System
 - A. Arsenic Chambers/Stopes
 - B. Non-arsenic Chambers/Stopes
 - C. Crown Pillars/Sills
 - D. Backfill
- 3. Baker Creek System
 - A. Banks
 - B. Creek Beds (Stability)
 - C. Stream Channel
 - i. Ice damming
 - ii. Blockages (Beaver Dams)
- 4. Freeze System
 - A. Freeze Implementation
 - i. Freeze Plant
 - ii. Passive Cooling Infrastructure Component
 - B. Drill Holes
 - C. Frozen Shell
 - D. Frozen Block
 - i. Passive Freezing (Monitoring System)
 - E. Intentional Thaw
- 5. Surface System
 - A. Tailings
 - i. Cover
 - ii. Dam
 - iii. Spillways
 - B. Open Pits/ Surface Openings
 - i. Site Security
 - C. Highway
- 6. Buildings (Short Term Only)
 - A. Roaster
 - B. Mill
 - C. Stack
- 7. Institutional System (Management of the Project)

2.6 Risk Assessment Methods

The following sections describe the methods used to assess risk over the short and long term that have the potential to lead to system failure, component failures and consequential losses. These methods identify key initiating events or causes and identify the potential impacts of system or component failures. Failure scenarios for each system are then assessed for likelihood and severity of impact to public health, the environment and cost. A combination of the

likelihood and severity of impact is used to categorize the risk associated with that particular failure scenario. Where appropriate, a description of possible mitigation measures is included and a reassessment of the risk is completed.

2.6.1 Failure Scenario Analysis (FSA)

2.6.1.1 Description of FSA

As described in Canadian Standards Association's Risk Analysis Requirements and Guidelines (CSA, 1991), Failure Scenario Analysis (FSA) is a method of identifying and organizing conditions and/or factors that can contribute to a specific undesired event. In this method, there is one initiating event (the root) with connecting accidents or malfunctions that lead to system or component failures that are caused by the root event. Failure Scenario Analysis (FSA) allows for a systematic analysis of how a variety of factors relate directly to the initiating event.

2.6.1.2 Process

The following steps outline the process of the FSA method.

- 1. Defining the undesired event to study;
- 2. Obtaining an understanding of the system;
- 3. Constructing a tree linking the scenario events;
- 4. Evaluating the tree; and
- 5. Identifying failure scenario controls (prevention and/or mitigating controls)...

The FSA process was completed at the first risk workshop, as described in Section 1.3. Participants of this workshop identified the initiating events as well as the major systems and components failures of the Giant Mine Remediation project.

2.6.1.3 Failure Scenario Tree

One of the advantages of using an FSA approach is the ability to clearly illustrate the sequence of events that can take place or are required to take place for a failure to occur. This method effectively illustrates how resistant a system is to single or multiple initiating events. Figure 1 displays an example of the layout of an initiating event failure tree.

Figure 1: Initiating Event Failure Tree

This method distinguishes time frames of the malfunction/accident being analyzed. The same malfunction can have different results depending on whether it has occurred in the short term period of the project or the long term. To decipher between these, pink events occur in the short term, blue events occur in the long term, and orange events occur in both short and long term.

This method of analysis was also used to identify various credible initiating events and malfunctions/accidents that can lead to one of the components of the Giant Mine to fail. Figure 2 illustrates this layout of a component failure tree. The advantage to using this layout is it provides insight to all the different ways the major components can fail.

Figure 2: Component Failure Tree

2.6.2 Failure Mode Effects Criticality Analysis (FMECA)

This section is an adaptation of Golder Associates, Introduction to the Systems FMECA Method for Risk Assessment. (Golder, 2011)

2.6.2.1 Description of FMECA

Overview

The Systems Failure Modes and Effects Criticality Analysis (FMECA) method is an adaptation of the FMEA method originally developed to assess the detailed risk associated with parts and components of equipment. This adaptation includes studying large systems, rather than small components, identifying risk mitigation measures, estimating and ranking the risk using the risk matrix and documenting the results in the FMECA tables. The Systems FMECA method covers all of the standard risk assessment steps.

The Systems FMECA method allows teams of experienced personnel to evaluate large systems by identifying analysis objectives, analysis processes, and failure modes. Credible failure modes and their associated consequences were first identified using an assessment protocol and the knowledge base of the risk assessment team. Controls and/or design elements to mitigate risk were also identified. Public safety, environment, and cost risk (as defined in the objectives) was estimated for each failure mode and associated consequence using a risk matrix approach.

Failure Mode Effects Criticality Analysis (FMECA)-Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

Team Workshop

The Systems FMECA method was based on a team of experienced personnel assessing risks in a systematic workshop process. The team for Giant Mine included AECOM, Golder, SRK, PWGSC, INAC, and DOJ representatives as detailed in Section 1.3 of this report. The experience of team members, along with key documents, provided the knowledge base and the workshop format provided a method to build synergies given the wide range of experience and knowledge.

<u>Analysis</u>

The first step in risk analysis involved defining the objectives and context for the assessment. Objectives focused on the assessment of specific impacts that may include any number of risks to the public, the environment, or cost. The scope of the analysis defined the system and how it can be divided into principal units to be analyzed separately (and then as a complete system).

A Systems FMECA is a comprehensive process designed to identify potential significant and credible "failure modes" associated with the system being assessed (e.g., an operating facility assessed unit by unit). The "failure mode" describes how a system may fail and includes all possible causes ranging from natural events, such as earthquakes to equipment failures, operator errors, and management system deficiencies. Potential public safety, environment, or cost "effects", as defined in the study objectives, are also identified for each failure mode. For example, environmental "effects" may be measured in terms of environmental clean-up costs following a release from a facility. A series of events usually needs to occur before a "failure mode" results in an "effect," and therefore the complete series of events or failure scenario is assessed. Following the identification of this series of events, the risk or "criticality" is estimated using a Risk Matrix approach described in Section 2.6.2.2.

2.6.2.2 Risk Matrix

For each of the significant failure modes and corresponding consequences (failure scenarios) identified in the Systems FMECA, a measure of the associated risk was estimated using risk matrix methodology. A risk matrix is comprised of one index representing the measure of frequency and another index representing the measure of consequence severity. When a failure mode and consequence scenario was identified, the associated risk was estimated by locating it within the risk matrix.

Failure Mode Effects Criticality Analysis (FMECA)-Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

A number of attributes of the risk matrix are illustrated in Figure 3.

Figure 3: Risk Matrix Format

	0.4750.00	CONSEQUENCE SEVERITY								
	CATEGORY	A) Low	B) Minor	C) Moderate	D) Major	E) Critical				
	I) Public Safety	Low-level short- term subjective symptoms/ No measurable physical effect/ No medical treatment	Objective but reversible disability/impairment and/or medical treatment injuries requiring hospitalization	Moderate irreversible disability or impairment to one or more people	Single fatality and /or severe irreversible disability or impairment to one or more people	Multiple fatalities				
	II) Environment	No impact	Minor localized or short-term impacts	Impact on valued ecosystem component	Impact on valued ecosystem component and medium-term impairment of ecosystem function	Serious long term impairment of ecosystem function				
	III) Cost (\$)	<100,000	100,000-1M	1.0M-10M	10M-50M	>50M				
L	IKELIHOOD									
Index	Event/Years									
1	More than once every 5 years									
2	Once every 15 years									
3	Once every 30 years		Increa	Increasing Risk						
4	Once every 100 years									
5	Once every 1000 years									

Likelihood Index

As shown in Figure 3, the likelihood or frequency index on the left of the matrix ranges from a "1" (Frequent) to a "5" (Infrequent) event and is more formally defined in terms of frequency with an events/year value. The index is divided into orders of magnitude with the expectation that the knowledge base of the team and the historical industry performance record will be sufficient to estimate the level of risk to this accuracy.

Consequence Categories

In this matrix, 3 categories of consequences have been assessed for the Giant Mine Remediation project; public safety, environment, and cost.

The severity of effects for each category of consequence is defined by an index ranging from "Low" to "Critical." These indices are detailed with the definitions used for this risk assessment workshop. In total, there are three separate risk matrices shown in Figure 3 (one for each consequence category), and each failure scenario would be located in one or more of these three matrices as appropriate.

Risk Evaluation

Risk evaluations were completed following the identification of risk scenarios and measurement of consequences. The evaluation of risk requires determining the acceptability of risk as defined through the different locations (or risk values) within the risk matrix developed for the risk assessment.

The criteria for evaluating risks were developed for the risk management program and were useful for comparing risks, such as those among different operations, or for prioritizing risks. The risk matrix shown in Figure 3 was divided into five groups representing the criteria for managing risks. These groups were color-coded from Green (lowest risk) to Yellow to Orange to Red to Dark Red (highest risk).

The high priority risk level (color-coded dark red and red) may be associated with a management action to "Reduce Risk." Action steps may involve more detailed study to improve the risk estimate and determine if it is actually lower than estimated.

The intermediate risk levels (color-coded orange and yellow) may be associated with various management actions to "Reduce Risk as Appropriate" and involve balancing the cost of mitigating risk with the benefits received. Action steps may again involve further study to improve the risk estimate. They may also include prioritizing the application of resources according to the identified risks and implementing measures to decrease risk either by decreasing frequency, consequences, or a combination of the two. The risk matrix illustrates this concept of reducing risk. Different cost implications are often associated with the choice of decreasing frequency, consequences, or a combination of the two.

The lowest risk level (color-coded green) may be associated with the management action to "Monitor and Control Risk" and involve accepting the risk as long as it is both monitored and controlled to ensure it does not creep up to the next level.

2.6.2.3 FMECA Table

Results from the Systems FMECA are documented in an FMECA Table that includes the following information:

- System, unit description
- Component / Subcomponent
- Risk Issue / Failure
- Event / Causes
- Potential Consequences (one or more for each failure mode)
- Risk Estimate
- Planned Mitigation / Controls / Management Measures
- Evaluation
- Residual Risk Estimate according to frequency and consequence location in each risk matrix

A schematic of the FMECA Table format used, with an example for one failure scenario, is presented in Figure 4 below.

Figure 4: FMECA Table Format

ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	ГКЕГНООD	Public Safety 3	NSEQUE SEVERIT teo uso i.Xu	Sost Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	ПКЕЦНООD	Public Safety	ISEQUE EVERIT	Solution C Cost	Confidence Estimate
Short Te	erm			•												
SS-4	Ditches		Accident: Flooding	Extreme rainfall	Sediment discharge, erosion and sediment release to Baker Creek.	3	A	С	В	Ditches will be upgraded to final design standard including rip-rap cover treatment on erodible fine material.	Erosion and sediment control during construction will reduce the risk of sediment releases.	4	A	С	В	High

As shown, the above table documents a description of the failure scenario including existing safeguards, an estimate of the residual risk for all relevant categories, and any further comments or background on uncertainty associated with the assessment. Where appropriate, a follow up risk rating classification was completed after mitigating measures were assessed. Uncertainty in the assessment (or risk rating) as a result of knowledge base, random process, etc., are described qualitatively through the confidence index column (high, medium, or low).

3. Risk Assessment Results

3.1 Identified Risks for the Giant Mine Remediation Project

3.1.1 Short and Long Term FSA

The Failure Scenario Trees developed in the first workshop are included in Appendix A. These trees summarize credible failure scenarios relevant to the Giant Mine Remediation project. They identify both the effects of initiating events on the overall project as well as the impact component failure has on overall systems of Giant Mine.

These Failure Scenario Trees address Question 1 of IR 12, as they identify the risk events for this project in both the short and long term. The component failure trees address Question 4 of IR 12, as they identify how a component failure can affect an overall system of the Giant Mine project.

These trees were used as a basis to develop the failure scenarios, cascading event scenarios, and multiple cause scenarios assessed in the FMECA tables.

3.2 Cascading Events Scenarios

Cascading events refer to the series of accidents and malfunctions that may occur because of one initiating event. One malfunction may cause another series of malfunctions which in turn can cause other undesirable results. The time period of occurrence (during the short or long term) also has an influence on end results.

These cascading events scenarios for both the short and long term time frames are summarized in the tables included in Appendix C.

The information in the tables addresses Question 2 of IR 12, as they identify multiple failure scenarios for both system and components at Giant Mine in both the short and long term.

3.3 Multiple Cause Scenarios

Multiple cause scenarios are specific fault scenarios which include two or more initiating events occurring simultaneously. These fault scenarios have a low likelihood of occurring because the likelihood of two unrelated causes happening simultaneously is lower than that of the causes happening separately.

The identified multiple cause scenarios, included in Appendix D, focus on the freeze system and the water management system. These are generally the systems which are associated with higher ratings for risk and will continue to operate in the long term.

The information in these tables addresses Question 2 of IR 12, as they identify additional multiple failure scenarios in the short and long term for both system and components.

The cascading events and multiple cause scenarios include a link in the tables to the appropriate FMECA risk assessment for that scenario.

3.4 Likelihood and Consequence Severity of Identified Failure Scenarios

3.4.1 Short and Long Term FMECA

The information in the FMECA tables addresses Questions 3 and 5 of IR 12. This assessment was completed for the failure scenarios identified by the following methods:

- 1. The FSA;
- 2. The cascading event scenarios; and
- 3. The multiple cause scenarios.

The FMECA tables are included in Appendix B of this report. These tables are organized by major project system and the short and long term risks for that system are included in the same table.

In failure scenarios where risks were moderate to high, additional mitigating measures were recommended and the risk estimate was re-evaluated. If the risk estimate for a fault scenario was low to moderate mitigating measures may have been recommended but a re-evaluation of the risk rating was not completed.

3.5 Summary

The assessment of risk for the Giant Mine Remediation project was completed by utilizing a Failure Scenario Analysis (FSA) and a Failure Modes and Effects Criticality Analysis (FMECA) which follow the reference Canadian Standards Association Risk Analysis Requirements and Guidelines (CSA, 1991). Workshops were held to carry out this risk assessment be identifying the major systems and components for the Giant Mine Remediation project, developing associated failure scenarios and assessing the associated risks.

The FSA method identified failure scenarios for specific initiating events and failure scenarios for specific components, which effectively identifies risks in the short and long term for the Giant Mine Remediation Project. The FSA method was used to develop failure scenarios, cascading event scenarios, and multiple cause scenarios. These scenarios were then assessed using the FMECA method. The FMECA tables are organized according to the major project systems identified in this assessment, listed below.

- Underground System
- Freeze System
- Baker Creek System
- Surface System
- Water Management System
- Institutional System (Management of the project)
- Buildings (Short Term Only)

If the FMECA tables assigned risk levels as moderate to high, additional mitigating measures were recommended and the risk estimate was re-evaluated. As a result of applying the mitigation, the re-evaluated risk generally decreased, either through a decrease in the likelihood of the failure or a decrease in impacts to the public, environment and/or cost. The purpose of this assessment was to identify risks which impact the overall objective of the Giant Mine Remediation Project, which include:

- Manage the underground arsenic trioxide in a manner that will minimize the release of arsenic to the surrounding environment, minimize public and worker health and safety risks during implementation, and be cost effective and robust over the long term;
- Remediate the surface of the site to the industrial use guidelines under the NWT *Environmental Protection Act*, recognizing that portions of the site will be suitable for other land uses with appropriate restrictions;
- Minimize public and worker health and safety risks associated with buildings, mine openings, and other physical hazards at the site; and
- Restore Baker Creek to a condition that is productive as possible, given the constraints of hydrology and climate.

4. References

SRK Consulting (SRK), 2010. Giant Mine Remediation Project Developer's Assessment Report, EA0809-001, October 2010.

Canadian Standards Association (CSA), 1991. Risk Analysis Requirements and Guidelines. CAN/CSA-Q634-91. November 1991.

Golder Associates Ltd. (Golder), 2011. Introduction to the Systems FMECA Method for Risk Assessment.

Failure Mode Effects Criticality Analysis (FMECA)-Giant Mine Remediation – Mackenzie Valley Environmental Impact Review Board – Information Request 12 Response

Appendix A Failure Scenario Analysis (FSA)

Appendix B Failure Mode Effects Criticality Analysis (FMECA)

Risk Matrix

	CATECODY		C	ONSEQUENCE SEVERIT	Y	
	CATEGORT	A) Low	B) Minor	C) Moderate	D) Major	
	I) Public Safety	Low-level short-term subjective symptoms/ No measurable physical effect/ No medical treatment	Objective but reversible disability/impairment and/or medical treatment injuries requiring hospitalization	Moderate irreversible disability or impairment to one or more people	Single fatality and /or severe irreversible disability or impairment to one or more people	
	II) Environment	No impact	Minor localized or short- term impacts	Impact on valued ecosystem component	Impact on valued ecosystem component and medium-term impairment of ecosystem function	e
	III) Cost	\$<100,000	\$100,000- 1 Million	\$1.0-10 Million	\$10-50Million	
LIKEL	IHOOD					
Index	Event/Years					
1)	More than once every 5 years					
2)	Once every 15 years					
3)	Once every 30 years					
4)	Once every 100 years					
5)	Once every 1000 years					

Risk Rating

Source: INAC NCSP Project Risk Management Guidance Document

					FMECA - Giant Mir	ne Ren	nediat	ion Pro	ogran	1						
					Risk Scenario Event Seque	nces C	Chart: l	Jnderg	ound	System						
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	LIKELIHOOD	ublic Safety	NSEQUE SEVERIT	POR Y Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	ГІКЕГІНООД	ublic Safety	SEQUEN EVERITY	Cost	Confidence Estimate
							đ	ū					đ	ū		
Short Te UGS-1	rm Bulkheads		Bulkhead and horizontal bulkhead failure during construction prior to freezing.	Accident and/or Malfunction: Accelerated deterioration or damage to bulkheads.	Damage or deterioration of bulkheads may allow arsenic to be released to main mine area. Potential exists for arsenic dust to be released into the mine pool with an increase in the amount of arsenic laden water that will require treatment.	4	A	A	С	The care and maintenance of the bulkheads and underground water management occurring prior to the start of the project will continue until al identified bulkheads are stabilised through priority sequencing. Bulkhead surveillance program will continue in the short term and emergency action will be taken where necessary to stabilise bulkheads. Construction activities will be coordinated to minimize risk to arsenic containment. Pressure relief will be installed as necessary during the construction phase. Should bulkhead failure or plug leakage occur the Water Treatment Plant is sized and operated to accommodate the additional arsenic concentration to prevent release of arsenic to the environment.	This risk is present with the current dry conditions of the arsenic dust contained behind bulkheads. Pressure relief is anticipated to be effective during construction phase. Measures will reduce risk, but likelihood is not materially changed before frozen conditions in the stopes/chambers are established. Plugs serve to reduce the risk of a failure scenario with water inflow from Baker Creek. (See Baker Creek System and Water Management System). It is anticipated that a new plug failure will only be a partial failure. Where exterior plugs are installed to contain arsenic dust, these will be designed to withstand not only dry conditions but for the fully saturated head of wetted, but not yet frozen dust.					High
UGS-2	Plugs		New plug failure during construction.	Malfunction: Improper hydration of concrete due to abnormal conditions, deterioration of concrete, rock fall, pressure exceeds design during stope/chamber wetting, ice pressure and ice damage during freezing resulting in partial plug failure.	Partial failure may allow arsenic to be released to unfracem mine areas. Potential exists for thousands of tonnes of arsenic dust released into the mine pool with a substantial increase in the amount of arsenic laden water that will require treatment.	5	A	A	С	The care and maintenance of the bulkheads and underground water management occurring prior to the start of the project will continue until all identified bulkheads are stabilised through priority sequencing. Bulkhead surveillance program will continue and emergency action will be taken where necessary to stabilise bulkheads. Construction activities will be coordinated to minimize risk to arsenic containment. Pressure relief will be installed as necessary during the construction phase. Should bulkhead failure or plug leakage occur the Water Treatment Plant is sized and operated to accommodate the additional arsenic concentration to prevent release of arsenic to the environment.	This risk is present with the current dry conditions of the arsenic dust contained behind bulkheads. Pressure relief is anticipated to be effective during construction phase. Measures will reduce risk, but likelihood is not materially changed before frozen conditions in stopes/chambers are established. Plugs serve to reduce the risk of a failure scenario with water inflow from Baker Creek. (See Baker Creek System and Water Management System). It is anticipated that a new plug failure will only be a partial failure. Where exterior plugs are installed to contain arsenic dust these will be designed to withstand not only dry conditions but for the fully saturated head of wetted, but not yet frozen dust.					High
UGS-3	Crown Pillar		Crown pillar failure at arsenic chambers during construction.	Accident: Collapse through to ground surface.	Release of arsenic dust to atmosphere.	3	В	С	С	Backfilling the void under the crown pillar. Maintenance of site accident controls. In the event of a substantial dust release, a community notification protocol will be followed.	Tight backfilling of voids is planned.	5	В	С	С	High
UGS-4	•		Non-arsenic crown pillar failure during construction	Accident: Collapse through to ground surface.	Potential for impact to highway, public areas and parking lot over unsupported voids, as well as damage to pit slopes and Baker Creek.	4	D	A	С	Void under crown pillars will be filled. Further site characterization will continue to identify all voids requiring backfilling. Where subsidence may occur, backfilling will be completed.	Backfilled voids will not present a risk of serious collapse.	5	В	A	С	Moderate

UGS-5 Sill Pillar	Sill pillar failure at arsenic chambers during construction	Accident: Collapse due to rock or ground support degradation	Loss of arsenic dust to mine pool and to the ventilation system. Potential exists for thousands of tonnes of arsenic dust released into the mine pool with a substantial increase in the amount of arsenic laden water that will require treatment.	3	В	В	D	Voids under sill pillars will be backfilled. This will include cementatious backfill in critical areas, and additional support for sill pillars where required. In the event of a sill pillar collapse that results in an increase in arsenic concentration in the mine water pool the Water Treatment Plant is sized and operated to accommodate the additional arsenic concentration to prevent release of arsenic to the environment. To minimize the release of arsenic dust to the atmosphere the mine ventilation system will be shut down following a sill pillar collapse. In the event of a substantial dust release a community notification protocol will be followed.	All still pillars are currently subject to long- term monitoring. This will continue during the remediation phase. Despite the loss of a sill pillar an attempt will be made to freeze the affected chamber. Stress increase to the sill pillars from wetting would not occur until after backfilling and frozen shell thus minimising the risk of a failure event.	5	A	A	С	Moderate
UGS-6 Sill Pillar	Sill pillar failure at arsenic chambers	Accident / Malfunction: Collapse due to rock or ground support degradation and water movement causing instability.	Loss of immediate support to backfill under arsenic chambers.	4	A	A	С	More backfill will be added.	Long-term monitoring will continue. All chambers will be frozen and voids backfilled minimizing the risk of occurrence and consequences.	5	A	A	С	Moderate
UGS-7	Movement of non-arsenic related backfill due to large fluctuations in minewater level.	Accident: Upset condition associated with Baker Creek (See Baker Creek System for Scenarios)	Such an event has the potential to affect both water storage and treatment. A flood event will increase the amount of water stored underground and subsequently treated.	5	A	A	С	The volume of water treated through the Water Treatment Plant may temporarily increase to draw down the mine pool water to the target level. Discharged water will remain compliant.	The length of time to reach mine storage capacity is uncertain.					Low
UGS-8 Crown Pillar	Non-arsenic Crown Pillar Failure.	Accident: Collapse through to ground surface.	Potential for impact to highway, public areas and parking lot through loss of immedate support to backfill under stopes.	5	С	A	С	More backfill will be added. Where subsidence may occur post-backfilling will be completed.	Backfilled voids will not present a risk of serious collapse.					Moderate

					FMECA - Giant Mi	ne Re	media	ation I	Prog	gram							
					Risk Scenario Event Se	quenc	es Ch	art: Fr	eeze	e Syste	m						
						goo	co	NSEQU SEVERI	ENCE	E			doo	co	SEVERI	INCE IY	
ID	COMPONENT	SUBCOMPONENT	FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	гиегин	Public Safety	Environment	Cost	Cost	MANAGEMENT MEASURES	EVALUATION	Пикели	Public Safety	Environment	Cost	Confidence Estimate
Short T ES-1	erm Drill Holes	1	Drilling Failure (Single Drill	Malfunction: Inaccuracy of existing mine	Drilling circulation may be lost. Arsenic dust	1	A	A	В	BW	ere a drill hole intersects the freeze	Failures will be single events and will not	4	A	A	В	Moderate
			Hole)	plans may mean that some holes are initially drilled too close or too far from chambers. Unexpected drilling conditions such as discontinuities in the rock or intersecting an existing drill hole or shear zone may be encountered.	may be released to surface, if there is drilling into a chamber or stope.					hol red cha pro rele rele will	e, layout will be refined and the hole inilied. Where a drill hole enters a amber, shut-down and control icedures will be followed to minimise the pase of dust. In the event of a dust pase, a community notification protocol be followed.	substantially affect the timing or ability to establish a frozen block.					
FS-2			Drilling Failure (Entire Freeze Program)	Matfunction: Inaccuracy of existing mine plans, unexpected drilling conditions, find existing drill hole or shear zone.	Failure of a substantial number of drill holes has the potential to delay the establishment of the frozen blocks. Multiple failures present the same risks as single hole failures.	1	A	A	С	C The free red am ent pro rele will	drilling results would be used to refine aze hole layout. Holes would be infled and the project schedule ended accordingly. Where a drill hole ers a chamber, shut-down and control occdures will be followed to minimise the asse of dust. In the event of a dust asse, a community notification protocol be followed.	Failures will be single events. While timing will be affected, drill failures will not impact the ability to establish frozen block. Up to 5% of holes are anticipated to be redifiled to account for unexpected conditions.	3	A	A	С	Moderate
FS-3	Active Freeze System		Extended time to establish a frozen shell	Malfunction and/or Accident: Vibration from quarrying operation or earthquake leading to damage of the active freeze system.	Delay in establishing frozen block and increase in cost.	5	A	A	С	C Tin and act be	he to freeze the shell will be recalculated the project schedule amended sordingly. Grouting of rock fractures will completed.	While timing will be affected, only the length of time and potentially an increase in the energy required to freeze the shell will be required. No resulting consequences.					High
FS-4	Frozen Shell		Extended time to establish a frozen shell	Accident: Water in the rock higher than predicted.	The latent heat and flow of this water causes an extension in the freeze time.	4	A	A	В	B Tin and acc flow	he to freeze the shell will be recalculated d the project schedule amended cordingly. Grouting of high groundwater w will be completed.	While timing will be affected, only the length of time and potentially an increase in the energy required to freeze the shell will be required. No resulting consequences.					Moderate
Long Te	erm Frozen Block		Planned Thaw Causes Failure	Natural thaw the application of heat by	Degraded rock quality, crown pillar and sill	5	Δ	Δ.		C Ws	ster Treatment Plant is sized and	As this would be a planned, engineered	r				High
			(Engineered)	reversing the cooling system or other '	pillar failure fractured during freezing causes increased permeability of rock mass increasing groundwater capture, allowing high concentration arsenic contaminated water to reach mine pool. Additional water from thawing puts stress on plugs.					opi ars adu cor wa wa	erated to accommodate the additional enic concentration to prevent release or enic to the environment. Until fitional plant components are structed that can process contaminated ter to achieve compliant discharge ter will be stored underground.	event, it is anticipated that the risks of such an undertaking would undergo a separate full review and assessment. A thaw would be very slow, taking decades.					· · · · · ·
FS-6			Unplanned Thaw Causes Failure	Accident: Climate Warming	Degraded rock quality, crown pillar and sill pillar failure fractured during freezing causes increased permeability of rock mass increasing groundwater capture, allowing high concentration assenic contaminated water to reach mine pool.	5	A	A	С	C Thi exc In t exc free opt	current freeze system is designed to ceed the prediction for climate change. The event that local climate varming far zeeds modeled predictions the passive ze system would be expanded with the ion of supplementing the passive pling with active cooling.	Ground and air temperature and mine water monitoring would detect early signs of change to the frozen block, before actual melting would start to occur. Remedial action could be taken for one or all of the blocks before any thaw. A thaw would be very slow, taking decades.					High
FS-7			Unplanned Thaw Causes Failure	Malfunction: Failure of freeze system	Degraded rock quality, crown pillar and sill pillar failure fractured during freezing causes increased permeability of rock mass increasing groundwater capture, allowing high concentration arsenic contaminated water to reach mine pool.	5	A	A	С	C Th up est siz add rele	a freeze system will be repaired or graded as necessary and re- ablished. The Water Treatment Plant is ed and operated to accommodate the disonal arsenic concentration to prevent asse of arsenic to the environment.	Ground and air temperature and mine water monitoring would detect early signs of change to the frozen block, before actual melting would start to occur. Remedial action could be taken for one or all of the blocks before any thaw. A thaw would be very slow, taking decades.					High
FS-8			Unplanned Thaw Causes Failure	Matlunction: Long-term loss of power and passive cooling ineffective	Degraded rock quality, crown pillar and sill pillar failure, fracturing due to freezing, increased permeability of rock mass, increased arsenic load to water, increased groundwater capture, release of arsenic contaminated water to mine pool.	5	A	A	D	D Thuy effi Wa opu ars	freeze system will be repaired or yraded as necessary to maintain active cooling and re-established. The ter Treatmert Plant is sized and yrated to accommodate the additional enic concentration to prevent release of enic to the environment.	Ground and air temperature and mine water monitoring would detect early signs of change to the frozen block, before actual melting would start to occur. Remedial action could be taken for one or all of the blocks before any melting would start to occur. A thaw would be very slow, taking decades and would not impact restoration of power or the frozen block.					High
FS-9	Passive Cooling Infrastructure		Wildfire damages the passive cooling system	Accident: Wildfire	Repairs to the cooling and monitoring systems are required.	5	A	A	С	C Ve pas	getation will be controlled around the ssive cooling piping.	Repairs would easily be made before any frozen block thaw. Thaw would be very slow, taking decades. No resulting consequences.					High
FS-10			Warming from climate change exceeds cooling capacity of existing passive cooling infrastructure	Accident: Global warming vastly greater than maximum predictions. Reduced efficiency of passive freezing system.	Upgrade to current freeze infrastructure.	5	A	A	D	D Thine	e freeze infrastructure will upgraded as zessary to maintain effective cooling and established.	Ground and air temperature and mine water monitoring would detect early signs of change to the frozen block, before actual melting would start to occur. Remedial action could be taken for one or all of the blocks before any melling. Thaw would be very slow, taking decades and would not impact restoration of the frozen block.					High

FMECA - Giant Mine - Risk Assessment of Remediation Program																
					Risk Scenario Event Sequences Ch	art: Ba	ker Cre	ek Sys	stem							
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	ГІКЕГІНООД	Public Safety	NSEQUE Severit unicoument Euri	Sost Cost Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	ГІКЕГІНООР	Public Safety 35 300 35 300 35 300 35 300 35 300 35 300 35 300 35 300 35 300 35 300 35 300 300	EQUEN VERITY tuoument Euvricoument	Cost	Confidence Estimate
Short T BCS-1	erm Baker Creek Channel		Baker Creek overflows during	Accident: Channel partially or	Water would overflow into pits, spill into the	4	А	D	C	Ice build-up in the channel will continue to	Channel wall failure occurs during	5	A	D	C	High
	Integrity		construction.	completely blocked with ice, rock and / or beaver dams.	underground and flood the underground workings. Mine water arsenic concentration would potentially reach levels 100 times current values. Erosion off tailings in Baker Pond impacts water quality in the creek.					be monitored and cleared as possible. Damage to dykes will be repaired. Supplies of emergency response materials will continue to be maintained on-site, such as aquadams, liners, and equipment. See Water Management System table for measures related to mine inundation.	freshet; Impractical to mediate during flow; Pumping system is overwhelmed; Current channel capacity is a 1:200 year event with no ice dam or other blockage. Adding 1m of fill over 100m length at C1, capacity moves close to 1:500 year storm. Good information base.					
BCS-2			Bank damage during construction	Accident and/or Malfunction: Machine damage or other mechanism resulting in sediment being released into environment.	Impact to fish or fish habitat.	1	A	С	В	Construction will be scheduled to occur outside of restricted periods. Erosion control measures will be in place for all works in and around the creek. Construction monitoring will address deficiencies. An emergency response plan will be in place.	It is typically difficult to prevent all sediment release during proposed local re-alignment. All construction impacts around Baker Creek are anticipated to be short-term.	3	A	В	B	High
BCS-3	Creek Bed		Ground vibration from quarrying operation or earthquake leading to the collapse of a crown pillar compromising pit wall stability leading to a compromise of pillars under creek which results in the loss of containment of Baker Creek which now flows into the underground mine during construction.	Malfunction and/or Accident: Vibration from quarrying operation or earthquake.	Water would overflow into pits, spill into the underground and flood underground workings. Mine water arsenic concentration would potentially reach levels 100 times current values.	5	A	D	C	Should mine inundation occur the new Water Treatment Plant will be sized and operated to accommodate the additional arsenic concentration to prevent the continued long-term release of arsenic to the environment. Emergency pumping capacity would be sourced and installed.	There is a short period of exposure to this risk: 2 years for the construction for Baker Creek local re- alignment. Risk rating does not change with mitigation as they are responses not preventions.				I	High
BCS-4			Baker Creek loses channel containment during Freshet resulting in large inflows to the mine underground workings.	Accident: Loss of ground support a C1 Pit and A2 Pit Raise	t Water would spill into the underground and flood underground workings. Mine water arsenic concentration would potentially reach levels 100 times current values and flood to surface in open pits with potential release to the environment. Loss of current mine dewatering system. Initiation of backfil instability.	3	В	D	E	Conduct additional investigations to confirm stability assessments (previous and current) and implement monitoring program. Consider alternative creek alignment options to those in remedial plan that minimizes risk, balances restoration and fisheries objectives with site and project cost restraints. Emergency upstream flow diversion to prevent from continuous inflow.	Based on delayed care and maintenance cost and increased water treatment cost. Potential significant underground instability issues that require mitigation. Likely suspended sediment discharge into watercourse with emergency stream diversion. This assumes that underground backfilling has not taken place yet at A2 Pit Raise.	3	В	С	D	Low
BCS-5			Seepage from Baker Creek floods Stope C212 and/or Chamber 14 during construction.	Accident: A new seepage pathway develops, through a mechanism such as an existing drill hole or subsidence near pit crest that is connected to the underground.	y Bulkhead failure (plug construction in progress) with arsenic dust lost into lower portion of mine. Water from Baker Creek flows into the mine resulting in major addition of water to the mine. Arsenic concentration could potentially be 1000 times higher than current levels. However, water is contained within the mine and does not overflow to the environment. Chamber cannot be frozen as planned. Major cost consequence as chamber cannot be frozen and therefore there is a significant increase in water treatment costs. Water stored underground until water treatment capacity is increased, consequently there is no release to the environment.	4	A	A	D	Ongoing seepage monitoring at bulkheads. Where monitoring results indicate pressure build up, relief valves could be installed. Plugs will be installed in C212, B208 and Chamber 14 with pressure release valves.	This scenario results in less water entering the mine due to the limited flow from seepage vs. a freshet flooding event. There is a short period of exposure to this risk: 2 years for construction of plugs in C212, B208 and Chamber 14 drifts. No malfunction scenario anticipated as the result of Baker Creek local re- alignment.	5	A	A	D	High
BCS-6	Bank		Bank Overflow	Accident: Stable channel overflows during large flow greater than the design flows.	s No inflow to the mine up to nominal 1:500 year flood event. Accumulation of additional water in mine pool. No release to the environment.	4	A	A	В	Long-term maintenance of Baker Creek to maintain flood design capacity. Surplus volume above the 1:500 flood can be stored in the mine and can be treated in the water treatment system. No impact to frozen stopes/chambers.					1	High

ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	ГІКЕГІНООД	Public Safety	EQUENC VERITY	Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	LIKELIHOOD Public Safety C	SEVE		Confidence Estimate
BCS-7		В	Bank Overflow	Accident: Glaciation of channel through mine site area.	Overflow into mine at various points. Accumulation of additional water is contained in mine pool. No release to the environment.	3	A	A	В	Long-term maintenance of Baker Creek to maintain channel integrity during winter months. Tailings covered in Baker Pond.	Likelihood reflects observation of recent events.			Hi	μ
BCS-8	Creek Bed	S	Ground Collapse Breaks Through to Surface Under Baker Creek	Accident: Earthquake.	No mechanism leading to collapse as backfilling of critical mine openings completed.	5	A	A	A	All critical mine openings are backfilled and / or stabilized; Backfill designed against liquifaction; Consider alternative creek alignment options to those in remedial plan that minimizes risk, balances restoration and fisheries objectives with site and project cost restraints; Long-term maintenance as necessary.	All critical mine openings are identified through historical search and review of current data and/or investigation.			Hi	jh
BCS-9		C	Channel Deterioration	Accident: Permafrost thawing and erosion.	Sediment release, loss of rip-rap, channel configuration (loss of flood plain and risk of overflow into mine).	4	A	A	В	Long-term maintenance of Baker Creek to maintain channel integrity.	Ground ice to be addressed during construction if encountered.			Hi	μ
BCS-10		B c re u	Baker Creek loses channel ontainment during Freshet esulting in large inflows to the mine inderground workings.	Accident: Loss of ground support at C1 Pit and B2 Pit	Water would spill into the underground and flood underground workings. Loss of mine dewatering system. Water floods frozen stopes, chambers and workings and to surface via pits. Non-compliant discharge from Water Treatment Plant and potential release to the environment via pits.	3	В	с	С	Consider alternative creek alignment options to those in remedial plan that minimizes risk, balances restoration and fisheries objectives with site and project cost restraints.		5 B	C	C Mo	derate

				FMECA -	Giant Mine - Risk Assessment of	of Re	media	ation P	rogra	ım						
		1		Ris	sk Scenario Event Sequences Cha	rt: Su	rface	System	n		1					
						OOD	co	NSEQUE SEVERIT	ENCE IY	PLANNED		000	coi t	NSEQUE SEVERI	ENCE FY	
ID	COMPONENT	SUBCOMPONENT	FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	LIKELIF	Public Safety	Environment	Cost	MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	пикелн	Public Safety	Environment	Cost	Confidence Estimate
Short Te	rm IDama	Dem 4. Dem 04 and 00	Assident (Malfursting Dalasse of	Malian and initialize	Deleges of university description	Ē	•			Decide maintained with a 4 meter	The 4 meter freehound allows for	1				1.0
55-1	Dams	Dam 1, Dam 21 and 22	Accident / Malfunction: Kelease of ponded water by overtopping.	Major precipitation.	Release of Untreated water from tailings ponds. Short term water treatment failure and reduced capacity to store water underground.	5	A	C	U	Ponds maintained with a 1 meter free board that allows for major storm events.	The 1 meter freeboard allows for substantial storage for a major rainfall event. In the event of the freeboard being exceeded, water will be discharged into the underground. Implications to underground water storage and water treatment addressed on the Water Management System sheet No resulting consequences.					Hign
SS-2			Accident / Malfunction: Ground vibrations.	Earthquake or quarrying operations.	Accelerated settlement and potential overtopping.	5	A	С	С	Monitored blasts at quarry as part of quarry operations.	The dams are stable structures. In the event of overtopping, water will be discharged into the underground. Implications to underground water storage and water treatment addressed on the Water Management System sheet No resulting consequences.					High
SS-3		Dam 21B and Dam 1	Accident: Flooding	Major storm causing flood.	Damage to Dam 21B and Dam 1, local flooding and minor loss of tailings downstream and into surrounding environment.	5	A	С	С	Ponds maintained with 1 meter free board that allows for major storm events. In the event of serious damage, water retained by Dam 1 would be discharged to underground	Unlikely event for rainfall not exceeding the 24-hour, 100 year storm event. No resulting consequences.					High
SS-4	Ditches		Accident: Flooding	Extreme rainfall	Sediment discharge, erosion and sediment release to Baker Creek.	3	A	С	В	Ditches will be upgraded to final design standard including rip-rap cover treatment on erodible fine material.	Erosion and sediment control during construction will reduce the risk of sediment releases.	4	A	С	В	High
SS-5	Tailings Covers (including spillway)		Accident: Consolidation / Settlement	Permafrost melting, consolidation, or geotextile failure.	Potential for localized disruption of surface water drainage, minor exposed tailings, localized increased infiltration.	3	A	A	С	Monitoring during construction and reconstruction as necessary. Construction sequencing.	No off-site sediment or tailings transport. No resulting consequences.	4	A	A	С	High
SS-6			Accident: Development of Boils	Frost jacking.	Potential for localized failure and minor tailings exposure.	2	A	A	С	Monitoring during construction and reconstruction as necessary. Construction sequencing.	No off-site sediment or tailings transport. No resulting consequences.	4	A	A	С	High
SS-7			Accident: Erosion	Extreme rainfall on recently completed cover or on cover during construction.	Potential for erosion creating run-off channels, sediment release and tailings exposure.	2	A	A	В	Monitoring during construction and reconstruction as necessary. Construction sequencing.	Impacts will be limited by the selection of tailings cover material and revegetation plan.					High
SS-8	Dams	Dam 1, Dam 21 and 22 Failure	No Long Term Ponds so risk eliminated. Ponds are covered.							Risk eliminated	No resulting consequences.					High
SS-9	Ditches		Accident: Flooding	Extreme rainfall	Sediment discharge, erosion and sediment release to Baker Creek.	4	A	С	В	Long term configuration constructed. Long term erosion maintenance as necessary.	Final erosion protection measures will reduce the risk of sediment releases. No resulting consequences.					High
SS-10	Public Safety	Public Access	Accident: Injury or fatality	Unauthorized public access to site hazards such as open pits.	Injury or fatality.	5	D	В	В	Site security and additional physical measures such as fencing, capping and berms will be maintained around hazards such as steep slopes and open pits.	Measures will limit the risk of an incident.	5	В	A	A	Moderate
SS-11	Tailings Covers		Accident: Consolidation / Settlement	Permafrost melting, consolidation, geotextile failure	Surface water drainage, exposed tailings, localized increased infiltration.	4	A	A	С	Long term maintenance as necessary.	No off-site sediment or tailings transport. No resulting consequences.					High
SS-12			Accident: Development of Boils	Frost jacking, deep rooted plants	Localized failure and minor tailings exposure.	4	А	А	С	Long term maintenance as necessary.	No off-site sediment or tailings transport.					High
SS-13			Accident: Erosion	Water and wind	Erosion of run-off channels and sediment release.	4	A	A	В	Long term maintenance as necessary.	Impacts will be limited by tailings cover material and revegetation plan.					High
SS-14			Accident and/or Malfunction: Limited vegetation success	No maintenance / poor vegetation design (local plants and vegetation), drought, mechanical erosion, fire, burrowing animals.	Erosion creating run-off channels, sediment release and tailings exposure.	3	A	A	В	Long term maintenance as necessary.	No resulting consequences.					High

				FMECA -	Giant Mine - Risk Assessment	of Re	media	tion F	Progra	am						
				Ri	sk Scenario Event Sequences Cha	rt: Su	rface \$	Systen	n							
	COMPONENT	SURCOMPONENT	RISK ISSUE /	EVENT/CALIFER		НООР	COI	NSEQUI SEVERI	ENCE TY	PLANNED	EVALUATION	ноор	со	NSEQUI SEVERI	ENCE TY	
ID SS-15	COMPONENT	SUBCOMPONENT	FAILURE	EVENI/CAUSES	PUTENTIAL CONSEQUENCES	רואפרו	Public Safety	Environment	Cost	MANAGEMENT MEASURES	EVALUATION	רואברו	Public Safety	Environment	Cost	Confidence Estimate
SS-15			Malfunction: Incompatible land-use	Change in land-use damages cover.	Exposure of tailings.	3	A	A	В	Restrict land use to compatible uses. Where an incompatible use is proposed undertake necessary site measures to protect the tailings cover.	Preventing the development of incompatible land uses depends on continued governance of the site. No resulting consequences.					High
SS-16			Accident and/or Malfunction: Cover penetration	Deep-rooted invasive species.	Increased water infiltration and metal uptake in plants.	4	A	A	В	Removal of deep rooted plants as necessary.	Monitoring and maintenance is anticipated to minimise invasive deep rooted plants in damaging tailings covers. No resulting consequences.					High

	FMECA - Giant Mine - Risk Assessment of Remediation Program Risk Scenario Event Sequences Chart: Water Management System															
	T	Kisk Scenario Event Sequences Chart: water management system														
						doc	co	NSEQUE SEVERIT	NCE Y			doc	COM S	ISEQUE! SEVERITY	ICE	
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	гікегінс	Public Safety	Environment	Cost	PLANED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	гикегин	Public Safety	Environment	Cost	Confidence Estimate
Short Tern WMS-1	n Existing Plant	Treatment Capacity	Inability to treat water	Accident: Existing plant is substantially	No water treatment in the year of the fire;	4	Α	A	С	The construction of the planned news water treatment	A short-term replacement plant will likely be	5	A	A	С	High
				destroyed by fire, either by forest fire or other causes.	Contaminated water remains in the underground water pool.					plant would be accelerated. Temporary water treatment system established as required. Contaminated water would remain in the mine pool until a new plant is constructed.	unnecessary given that water can be stored underground for this time period.					
WMS-2				Malfunction: Mechanical failure	No water treatment for two months.	3	A	A	В	Ongoing maintenance of the existing plant will continue until the new plant is operational.	Past maintenance has been effective in maintaining plant operations.					High
WMS-3				Malfunction: Plant deterioration		3	А	A	В	Mechanical systems will be repaired or replaced as necessary to maintain treatment functions.	This is consistent with current practice and will continue.					High
WMS-4				Accident: Freeze up		3	A	A	В	In the event of loss of heating at the plant, systems would be drained to prevent damage. In the event of a freeze event damaging plant components these would be rebuilt to restore plant function. Contaminated water would remain in the mine pool until the plant is operational.	Specific procedures will be developed as part of the Water Treatment Plant operating system, including emergency response and recovery actions.					High
WMS-5				Malfunction: Current re-agent supplier unable to meet demand.		3	A	A	В	Reagents would be sourced from several suppliers. Reagents inventory held onsite. Contaminated water would remain in the mine pool until the plant is again operational.	More than one supplier of the reagent is available. Cost to change is unknown, but is conservatively estimated.					High
WMS-6	Existing Plant	Power Supply	Loss of power supply to the plant	Accident and/or Malfunction: Loss of the power line to the plant causing a disruption in the power supply to the plant for one month.	No water treatment for one month requiring storage of untreated water underground in the mine.	3	A	A	В	Contaminated water would remain in the mine pool until power is restored.	A short-term replacement plant will likely be unnecessary given that water can be stored underground for this time period.					High
WMS-7	Settling/ Polishing	Polishing Pond	Suspended solids are not effectively removed in the settling and polishing ponds	Malfunction: Upset in settling system	Discharge to the environment would not be possible. Possible to re-suspend sediment in Spring.	3	A	A	В	Monitoring of suspended solids will be maintained to ensure flocculent levels are adequate. Equipment will be maintained to limit risk of an upset. If TSS in exceedance of discharge standards are encountered the water in the ponds will be recirculated for treatment before discharge.	Regular monitoring is a built in mitigation to limit the likelihood of discharging poor quality water.					High
WMS-8	Underground storage	Concentration of arsenic in mine water pool.	Buikhead Failure and/or leaking from plug failure during construction prior to freezing.	Accident and/or Malfunction: Accelerated deterioration or damage to builkheads or partial plug failure.	Partial failure may allow arsenic to be released to main mire area. Potential exists for thousands of tonnes of arsenic dust released into the mine pool with a substantial increase in the amount of arsenic laden water that will required treatment through the Water Treatment Plant.	4	A	A	С	The care and maintenance of the bulkheads and underground water management occurring prior to the start of the project will continue until all identified bulkheads are stabilized or pluges constructed through priority sequencing. Bulkhead surveillance program will remain ongoing and emergency action will be taken where necessary to stabilize bulkheads. Construction activities will coordinated to minimize risi to arsenic containment. Pressure relief will be instaled as necessary during the construction phase. Should bulkhead failure or plug leakage occur the Water Treatment Plant will be sized and operated to accommodate the additional arsenic concentration to prevent release of arsenic to the environment.	This risk is present with the current dry conditions of the arsenic dust contained behind buikheads. Where exterior plugs are installed to contain arsenic dust these will be designed to withstand not only dry conditions but for the fully saturated head of wetted, but not yet frozen dust. In the short-term risk is reduced but likelihood is not materially changed because frozen conditions have not been testablished. Scenarios involving mechanisms of water inflow are covered in the Baker Creek System.					(High
WMS-9			New Plug Failure During Construction	Malfunction: Improper hydration of concrete due to abnormal conditions, deterioration of concrete, rock fall, pressure exceeds design during fill, ice pressure and ice damage during freezing resulting in partial plug failure.		5	A	A	С	Plug design will take into account hydration factors. Ico pressure impact and deterioration factors. Design of plugs will be such that they will not be able to completely laid. Should plug deskage occur the Water Treatment Plant will be sized and operated to accommodate the additional assenic concentration to prevent release of arsenic to the environment.	Where exterior plugs are installed to contain arsenic dust these will be designed to withstand not only dry conditions but for the fully saturated head of wetted, but not yet frozen dust.					High
WMS-10			Sill Pillar Failure at Arsenic Chambers/Slopes During Construction	Accident: Collapse due to rock or ground support degradation.	Loss of arsenic dust to mine pool and to the vertilation system. Potential values for thousands of tonnes of arsenic dust released into the mine pool with a substantial increase in the amount of arsenic ladow water that will required treatment through the Water Treatment Plant.	3	В	В	D	Voids under sill pillers will be backfilled. This will include cemerations backfill or citical areas, and additional support for sill pillars where required. In the event of a sill pillar collapse that treastls in an increase in arranic concentration in the mine water pool the Water Treatment Plant will be sized and operated to accommodate the additional arsenic concentration to prevent release of arsenic to the environment. To minimize the release of arsenic dust to the atmosphere the mine ventilation system will be shut down following a sill pillar collapse. In the event of a substantial dust release, a community notification protocol will be followed.	All still pillars are currently subject to long-term monitorion; This will continue during the remediation phase. Despite the loss of a sill pillar an attempt will be made to freeze the affected chamber. Stress increase to the sill pillars from vetting would not occur until affect backfilling and forzen shell have been completed, thus minimizing the risk of a failure event. A visible dust release may result in a perception that impacts are higher than actual.	5	A	A	С	Moderate

	FMECA - Giant Mine - Risk Assessment of Remediation Program															
					Risk Scenario Event Sequences C	hart:	Water	Manag	jemei	nt System						
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	- ПКЕЦНООВ	fiety 00		NCE Y	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	гікегіноор	fiety		ICE	Confidence Estimate
WMS-11	Linderground	Concentration of areanic in	Similicant increase in mine water	Arcident: Seenage from Baker Creek floods	Hudrostatic pressure in a flooded chamber	4	Public Sa	Environn	Cost	Water Treatment Plant is sized and operated to	Accelerated construction of a new plant will take six	5	Public Sa	Environn	Cost	High
	storage	oonernaad o aacard in	arsanic concentration from the failure of an arsenic chamber/stope.	C212 and/or B208 and/or Chamber 14 during construction	causes a bulkhasa failure before or during logu construction resulting in the loss of arsenic dust as a slurry into the lower portion or mine. Arsenic concentrations in the mine water pool have the potential to reach 1000 mines higher than current concentration. Chamber cannot be frozen, highor cost consequence as chamber cannot be frozen and therefore there is a significant increase in water treatment costs. Water stored underground until water treatment capacity is increased, consequently there is no release to the environment.	-	î			accommodate the additional arcenic concentration to prevent release of arsenic to the environment. Until a plant is constructed that can process contaminated water to achieve compliant discharge, water will be stored underground.	months. Water can be stored underground for this time period.	5		c	0	n nga
WMS-12			Vibration from quarrying operation or earthquake.	Malfunction and/or Accident: Collapse of a crown pillar compromising pit wall stability or pil slope stability leading to a compromise of pillars under creek which results in the loss of containment of Baker Creek which now flows into the underground mine during construction.	Potential release to the environment. Mine water arsenic concentration potentially reaching levels 100 times current values.	5	A	D	С	Should mine flooding occur the new Water Treatment Plant will be sized and operated to accommodate the additional arsenic concentration to prevent the release of arsenic to the environment. Emergency pumping capacity would be sourced and installed while new permanent pumping capacity is built.	There is a short period of exposure to this hazard as the re-alignment of Baker Creek is anticipated to be complete within two years of the start of the project.					High
WMS-13	Pumps		Overflow of pump back at 22B	Accident: Local power failure, site power failure	Overflow into environment affecting Trapper Lake.	5	A	В	A	Local diesel backup generators will be used.	Seep will dry up in the long-term after tailings are covered.					Moderate
Long Tern	n New WTP		Inability to produce compliant	Malfunction: Plant under designed for the	Inderground storage in the mine will be	4	Δ	Δ	C	Robustness will be built into the system limitations will	With the creation of the frozen block flows will be	1	r –			Low
11110-14			level in the mine	menuration - rear and assigned on the treatment volumes and arsenic concentrations.	used up over time as the plant will not used up over time as the plant will not have the capacity to process all of the contaminated water for release as compliant effluent.	-	Ŷ		Ū	the relevant around capacity. The plant will be be relevant around capacity. The plant will be designed for flow and concentration at the beginning of the remediation phase, when inflow is the highest. If the plant is found to be undersized additional treatment capability will be added to the plant. The plant will be modified as necessary during the periodic recapitalization of the facility (every 25 years).	min une cleanard of direct rocan back now winder further reduced. Additional studies are planned to improve on current mine storage calculations.					LOW
WMS-15		Power Supply	Main and Backup Power Loss	Accident: Forest fire	No water treatment for 3 months.	5	A	A	В	Fuel management will occur around the plant and power line to minimize the change of impact from a forest fire.	Fuel management and a fire suppression plan will maintain the risk as low over the very long term.					High
WMS-16				Malfunction: Maintenance failure		5	А	A	в	A maintenance management program and a recapitalization plan will be established for the plant. Mechanical systems will be repaired or replaced as necessary to maintain treatment functions.	Recapitalization is expected to occur every 25 years.					High
WMS-17				Malfunction: No generator fuel	•	5	А	А	В	Back-up generation capacity will be standard for all key components of the project.	In the event of a prolonged power outage water will remain underground. With the creation of the frozen block contact water will be eliminated.					Moderate
WMS-18				Malfunction: Lack of grid power		5	A	A	В	Back-up generation capacity will be standard for all key components of the project.	In the event of a prolonged power outage water will remain underground. With the creation of the frozen block contact water will be eliminated.					Moderate
WMS-19			Major Water Treatment Outage	Malfunction: Failure of mechanical systems	No water treatment for 3 months	4	A	A	С	A maintenance management program and a recapitalization plan will be established for the plant. Mechanical systems will be repaired or replaced as necessary to maintain treatment functions.	Recapitalization is expected to occur every 25 years.					High
WMS-20]			Malfunction: Plant freeze up		4	A	A	С	In the event of loss of heating to the plant, systems would be drained to prevent damage. In the event of a freeze event damaging plant components these would be rebuilt to restore plant function. Contaminated water would remain in the mine pool until the plant is again operational.	The operating plan for the plant will include an emergency and recovery component to limit the down time of the plant in the event of an accident. In the event of a prolonged plant outage water will remain underground. With the creation of the frozen block contact water will be eliminated.					High
WMS-21]			Malfunction: Reagent supplier unable to meet demand		4	A	A	С	Reagents would be sourced from a new supplier. Contaminated water would remain in the mine pool until the plant is again operational.	More than one supplier of the reagent is available. Cost to change is unknown, but is conservatively estimated					High
WMS-22				Malfunction: Lack of maintenance.		4	A	A	С	A maintenance management program and a recapitalization plan will be established for the plant. Mechanical systems will be repaired or replaced as necessary to maintain treatment functions.	Recapitalization is expected to occur every 25 years.					High
WMS-23	Underground Storage	Concentration of arsenic in mine water pool.	Movement of non-arsenic related backfill due to large fluctuations in minewater level	Accident: Upset condition associated with flooding from Baker Creek.	Such an event has the potential to affect both water storage and treatment. A flood event will increase the amount of water stored underground.	5	A	A	C	The volume of water treated through the water treatment plan may temporarily increase to draw down the mine pool water to the target level. Discharged water will remain compliant. Surface subsidence where it presents a hazard will be filled.	With the creation of the frozen block, contact water will be eliminated.					High

					FMECA - Giant Mine - Risk Asse	ssm	ent of	Reme	diatio	n Program						
					Risk Scenario Event Sequences	Chart	t: Water	Mana	gemer	nt System						
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	гікегіноор	Public Safety 00	ISEQUE SEVERIT	SOCE	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	гікегіноор	Public Safety	NSEQUEN SEVERITY Lugar	2 Cost	Confidence Estimate
WMS-24			Frozen Block Thawing climate change	Accident: Degraded rock quality, crown pillar and sill pillar failure fractured during freezing causes increased permeability of rock mass increasing ground water capture, allowing high concentration arsenic contaminated water to reach mine pool. Additional water from thawing puts stress on plugs.	Release of arsenic contaminated water to mine pool and ultimately to Water Treatment Plant.	5	A	A	С	Expansion of freeze system to overcome the warming. This work would be completed well in advance of chambers thawing out.	Natural thawing would affect all chambers. Freeze system is designed for consequences of climate change. Pasive cooling does not rely on long term power for continued function.					High
WMS-25			Frozen Block Thewing Malfunction: Failure of freeze system	Malfunction: Degraded nock quality, crown pillar and sill piller aliver fractured during freezing causes increased permeability of rock mass increasing ground vater capture, allowing high concentration arsenic contaminated water to reach mine pool. Additional water from thawing puts stress on plugs.	Release of arsenic contaminated water to mine pool and ultimately to water treatment plant	5	A	A	С	The freeze system will be repaired and ne-established. In the event hat this is not selected or is not possible, the Water Treatment Plant will be re-sized and operated to accommodate the additional arsenic concentration to prevent release of arsenic to the environment. Until additional plant components are constructed that can process contaminated water to achieve compliand discharge water will be stored underground.	A mathunction of the freeze system is likely only to affect a single block. Monitoring of the frozen block temperatures and mine water quality will allow for early detection and pinpointing of failure. It is assumed that thawing in such an event would be the result of natural thawing, not from the intentional application of heat to the frozen blocks.					High
WMS-26	Underground storage	Storage Volume	Mine inundation	Accident: Flood from Baker Creek	Accumulation of additional water in mine pool. No release to the environment	4	A	A	В	The volume of water treated through the water treatment plant may temporarily increase to draw down the mine pool water. Discharged water will remain compliant.	With the creation of the frozen block contact water will be eliminated.					High
WMS-27	Diffuser		Thinner ice cover around diffuser	Malfunction: Diffuser operation in a warmer winter. Modeling does not accurately predict the effect of discharge on ice cover	Safety issue for people utilizing area because ice is thinner than expected.	3	D	A	A	Ice thickness around the diffuser location will be monitored. The location of the diffuser will be marked to alert travelers of its location. If monitoring indicates that thinning of ics to unsafe levels is occurring from the diffuser discharge effluent will be cooled prior to discharge through longer retention in the settling and polishing system.	Modelling taking into account the depth of the diffuser and the anticipated temperature of the discharge water predicts that there will be no affect on ice thickness.	4	A	A	A	High
WMS-28	Receiving Environment	Assimilation Capacity	Detectable increase in arsenic the in receiving environment (Back Bay)	Matlunction: Long term changes in lake conditions and/or modeling inaccuracy.	Small incremental increase in arsenic concentration in Back Bay	5	A	В	A	No change in detectable arsenic levels in Back Bay area expected due to the large assimilation capacity, however, ongoing monitoring will allow early detection of any changes. Changes, if any would not show up for decades and action to address such would likely require a detailed level of assessment at that time to determine options.	The execution of the remediation plan will reduce the amount of arsenic entering the environment from current levels.					High
WM-29		Discharge Regulations	Water Remediation Criteria become more stringent	Malfunction: Regulatory changes, design criteria become more stringent	Re-design and construct new Water Treatment Plant.	3	A	A	С	In the event of more stringent discharge criteria, expand/redesign the Water Treatment Plant to meet the new criteria.	Design and operation of the plant will conform to changes in regulations to maintain compliant discharge as part of recapitalization.	4	A	A	В	High

				FI	MECA - Giant Mine - Risk As	sessm	ent of	Remed	liation	Program						
					Risk Scenario Event Seque	nces C	hart: In	stitutio	nal Sys	em						
						_	co	NSEQU SEVERI	ENCE TY				co	NSEQUE	NCE 1	
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	ГІКЕГІНОО	Public Safety	Environment	Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	ГІКЕГІНОО	Public Safety	Environment	Cost	Confidence Estimate
Short T	erm															
IS-1	Governance		Governance Failures	Malfunction: Competing mandates within INAC (regulatory and funding), between departments in GoC, territorial government (funding and regulatory)	Slow reaction time to situations consequence is a project delay (3 months)	3	A	В	c	Project management systems, contingency funding, risk management program, project structure, cooperation agreement b/w government, appropriate ERP, appropriate contracting, different contracting rules	Assumed that in the event of a significant risk to humans or the environment, rapid action by the government would take place. Also assumes contractor delay cost. The perceived impacts may be higher.	4	A	В	С	High
IS-2	Governance		Governance Failure	Malfunction: Lack of external communication	Loss of regulatory support; Loss of credibility	2	A	Α	Α	Additional activities and consultation would be conducted						Moderate
IS-3	Governance		Governance Failure	Malfunction: Lack of oversight and monitoring	Confused roles and responsibilities within the Remediation Team leads to the temporary discharge of inadequately treated water	4	A	В	В	INAC's project management quality control / quality assurance is in place; Independent engineer engaged	The scenario assumed is as worst case; The perceived impacts may be higher.					Moderate
IS-4	Governance		Governance Failure	Malfunction: Loss of political support for frozen block option	Lack of funding for freeze component requiring stabilization and pump and treat	3	A	A	A		Leads to substantial cost savings. The perceived impacts may be higher.					Moderate
IS-5	Governance		Governance Failure	Malfunction: Inadequate training and emergency response	Primary consequence is discharge of inadequately treated water into Back Bay	3	A	A	A	Ensure quality assurance program is in place (i.e. check training of staff and monitoring program)	Assumed short term perceived impacts on the recreational use of Back Bay was identified; No drinking water impacts. A Surveillance Network Program would be in place.					Moderate
IS-6	Governance		Governance Failure	Malfunction: Loss of continuity and coordination	Loss of project knowledge	2	A	A	В	Data control and mentoring of personnel. Governance structure firmly in place and is embedded in project delivery.		3	A	A	В	Moderate
IS-7	Regulatory		Water Remediation Criteria become more stringent	Malfunction: Regulatory changes	Plant expansion/redesign, additional parameters to treat	4	A	A	С	Ensure plant design is expandable and plant re-capitalization every 25 years (treatment technology improvements incorporated into future plants)	Assumed that an existing plant is in place, plant expansion / re-design required to meet new standards.					Moderate
Long To	erm	1	Couereen ee Feikure	Molfunation: Look of external	I ass of regulatory supports I ass of	2				Demiler consultation and engoing						Moderate
15-8	Governance		Governance Failure	communication	credibility	2	A	A	A	investment in communications						Moderate
IS-9	Governance		Governance Failure	Malfunction: Lack of oversight and monitoring	Confused roles and responsibilities within the lead agencies lead to the temporary discharge of inadequately treated water	4	A	в	в	Governance structure firmly in place. Ongoing monitoring and QA as per the Water License; Planned redundancy within the water treatment process; Year-round water treatment process; Year-round water flow rate						Moderate
IS-10	Governance		Governance Failure	Malfunction: Inappropriate funding model for multi-year project	Funding cycle leads to inability to develop long term contracts and high turnover of staff which results in upsets of treatment of non- compliant water	3	A	A	A	Governance structure firmly in place, Ongoing monitoring and QA as per the Water License; Planned redundancy within the water treatment process; Year-round water treatment reduces concentration and flow rate	Short term, localized impacts that are readily mitigated.					Moderate
IS-11	Governance			Malfunction: Loss of continuity and coordination by management	Operation and Maintenance and monitoring commitments can no longer be fulfilled; Leads to non- compliant discharge of a period of approximately 2 months	4	A	В	В	Governance structure firmly in place, Ongoing monitoring and QA as per the Water License; Planned redundancy within the water treatment process; Year-cound water treatment process; Year-cound water flow rate	Assumed discharge into Back Bay not caught due to monitoring no longer occurring; Reporting to authorities on a monthly basis is a requirement.					Moderate
IS-12	Governance		Remediated Mine Components	Malfunction: End land use changes	Additional remediation required	4	A	В	D	Governance structure firmly in place, Ongoing monitoring and QA as per the Water License	Assumed end change of land use requiring remediation causing localized site disturbance to establish ecosystem.	5	A	В	D	Moderate
IS-13	Regulatory		Water Remediation Criteria become more stringent	Malfunction: Regulatory changes	Plant expansion/redesign, additional parameters to treat	3	A	A	С	Ensure plant design is expandable and plant re-capitalization every 25 years (treatment technology improvements incorporated into future plants)	Assumed existing plant in place, plant expansion / re-design required to meet new standards.	4	A	A	С	Moderate

	FMECA - Giant Mine - Risk Assessment of Remediation Program Risk Scenario Event Sequences Chart: Infrastructure System															
KISK SCENARIO EVENT SEQUENCES CHAIT: INITASTRUCTUR										ystem		1	1			
						Q			ENCE TY			Q	CON	ISEQUEI EVERIT	NCE Y	
ID	COMPONENT	SUBCOMPONENT	RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	ГІКЕГІНО	Public Safety	Environment	Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	ГІКЕГІНО	Public Safety	Environment	Cost	Confidence Estimate
Short Ter	m Buildings	Roaster	Weather damage	Accident: Extreme weather/high	Strong wind exposes arsenic and friable	3	А	Α	Α	Care and maintenance will continue	l ong term - all buildings will be					Moderate
				winds	asbestos	-				for this structure until demolition. During demolition work areas will be contained or isolated.	demolished which will eliminate the risks associated with this structure. Impacts may be perceived as higher.					
INF-2			Weather damage	Accident: Extreme weather/high winds	Strong wind results in building debris blown towards highway with the potential to injure.	4	С	A	A	Care and maintenance will continue for this structure until demolition. Impacts may be perceived as high.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure. Impacts may be perceived as higher.					High
INF-3			Earthquake	Accident: Earthquake (max. 6.0 magnitude for the region)	Building damage that exposes contaminants and complicates demolition.	5	A	A	В	During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure. Impacts may be perceived as higher.					High
INF-4			Complications encountered during demolition	Malfunction: Building removal failure	Building damage	3	A	A	В	This structure will be decontamininated prior to demolition. Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-5		Stack	Earthquake	Accident: Earthquake (max. 6.0 magnitude for the region)	Collapses on Roaster	5	A	A	В	During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-6			Complcations encountered during demolition	Malfunction: Building removal failure	Building damage	3	A	A	В	During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-7		C-Shaft Headframe	Weather damage	Accident: Extreme weather/high winds	Strong wind results in building debris blown towards highway with the potential to injure.	4	С	A	A	This structure will be decontamininated prior to demolition. Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated. Cladding to be removed in 2011.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-8			Weather damage	Accident: Extreme weather/high winds	Asbestos cladding is disturbed and asbestos released into the air.	3	В	В	A	During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-9			Complcations encountered during demolition	Malfunction: Building removal failure	Building damage	3	A	A	A	During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-10		A-Shaft Headframe	Weather damage	Accident: Extreme weather/high winds	Strong wind exposes friable Asbestos	3	A	A	A	This structure will be decontamininated prior to demolition. Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-11			Complcations encountered during demolition	Malfunction: Building removal failure	Building damage	3	A	A	A	Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-12		Mill	Weather damage	Accident: Extreme weather/high winds	Strong wind results in building debris blown towards highway and injures a person	4	С	A	A	This structure will be decontarmininated prior to demolition. Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-13			Weather damage	Accident: Extreme weather/high winds	Asbestos cladding is disturbed and asbestos released into the air	3	В	В	A	Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High

	FMECA - Giant Mine - Risk Assessment of Remediation Program Risk Scenario Event Sequences Chart: Infrastructure System															
						OD	CON	SEQUE EVERIT	ENCE IY			oD	CON	ISEQUE! EVERIT	NCE Y	
ID	COMPONENT	SUBCOMPONENT	BCOMPONENT RISK ISSUE / FAILURE	EVENT/CAUSES	POTENTIAL CONSEQUENCES	ГІКЕГІНО	Public Safety	Environment	Cost	PLANNED MITIGATION/CONTROLS/ MANAGEMENT MEASURES	EVALUATION	ГІКЕГІНО	Public Safety	Environment	Cost	Confidence Estimate
INF-14			Earthquake	Accident: Earthquake (max. 6.0 magnitude for the region)	Minor building damage	5	A	A	В	During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-15			Complcations encountered during demolition	Malfunction: Building removal failure	Building damage	3	A	A	В	Care and maintenance will continue for this structure until demolition. During demolition work areas will be contained or isolated.	Long term - all buildings will be demolished which will eliminate the risks associated with this structure.					High
INF-16		General Buildings	Forest fire, large grass fire or other large scale fire on site.	Accident: Lightning, human error	Loss of C dry, WTP, freeze system and other structures	5	В	В	С	Fire response plan for the site will be maintained. The loss of the WTP and freeze system are covered under failures on the Water Management and Freeze System Sheets.	Heat value of forest fire is low for area, reasonable fire breaks between structures currently existing except WTP. Arsene gas requires high temperatures to ignite and therefore presents little risk.					High
INF-17	Underground Equipment	Scoop Tram	Underground Fire	Accident: Accident leads to fire	Loss of scoop tram or electrical systems underground	4	A	A	В	Fire response plan for the site will be maintained. In the event of damage, critical components will be repaired/replaced.	Any impact to the freeze program will be short term.					High
INF-18	Fuel Storage	Tanks	Fuel tank rupture and fire	Malfunction and/or Accident: Collision	Accident leads to release and combustion of fuel	5	A	В	В	Fire response plan for the site will be maintained. Site controls such as speed limits and barriers to prevent vehicle accidents will be in place. Spills will be remediated.	Site controls and emergency planning are anticipated to minimise the occurrence and consequence of accidents.					High
INF-19		Transportation	Fuel spill on-site	Maturction: On-site accident involving the transportation of fuel.	Contaminated soil and contaminated water, potentially affecting Baker Creek	4	A	С	С	Site controls such as speed limits and barriers to prevent vehicle accidents will be in place. Spills will be remediated. A spill response emergency plan will be maintained and spill response supplies will be stored on site.	Site controls and emergency planning are anticipated to minimise the occurrence and consequence of accidents.					High
Long Ter	m															
INF-20	Mine Water Treatment Plant	Reagent Storage	On-site ferric sulphate spill	Malfunction: On-site accident	Contaminated soil and contaminated water, potentially affecting Baker Creek	4	A	C	С	Site controls such as speed limits and barriers to prevent vehicle accidents will be in place. Spills will be remediated. A spill response emergency plan will be maintained and spill response supplies will be stored on site.	Site controls and emergency planning are anticipated to minimise the occurrence and consequence of accidents.					High
INF-21	Buildings		Freeze up of infrastructure, which may include Water Treatment Plant, and office complex and interruption in freeze operations	Accident: Site power failure	Freeze up of infrastructure, which may include Water Treatment Plant, and Office Complex; Interruption in freeze operations. Details of consequences are addressed under the Water Management System Sheet and Freeze System.	3	A	Ā	В	Emergency response and recovery planning for key systems, including the installation of emergency generation capacity and protocols for Water Treatment Plant shut down and restart. Details of measures are addressed in the Water Management System and Freeze System.	Emergency response and recovery plans and the addition of emergency generation capacity for key systems will minimise the impacts of site power failure.					High

Giant Mine - Risk Assessment of Remediation Program Cascading Event Scenario - Short Term (Implementation) - Table 1

Initiating Event				F	ailure Sequence>					Result	FMECA Reference
Earthquake	Component Failure: Arsenic Crown Pillar Failure	Pressure shock to bulkheads	Component Failure: Bulkhead Failure	Arsenic solids released to mine pool	Increase in arsenic concentration in minewater	ETP and Mine WTP not design to high test water	Component Failure: ETP and Mine WTP Failure			Increase in cost. Release to the environment.	UGS-3 followed by UGS-1
Earthquake	Component Failure: Crown Pillar Failure	Crown pillar failure leads to pit slope or pit wall instability	Collapse under Baker Creek	Component Failure: Baker Creek Failure	Baker Creek flows into mine	Increase in arsenic concentration in minewater	ETP and Mine WTP not design to high test water	Component Failure: ETP and Mine WTP Failure		Release to the environment	WMS-12
Earthquake	Component Failure: Baker Creek Failure (base of creek collapses)	Baker Creek flows into mine	Increase in arsenic concentration in minewater	Minewater flood damages underground infrastructure	Component Failure: Mine dewatering pumps fail	Mine floods to surface				Release to the environment. Baker Creek Canal re-alignment required. Underground pumping system replacement required.	BCS-4
Flood	Component Failure: Baker Creek Bank Overflow	Flow into mine	Rise in minewater	Increase in arsenic concentration in minewater	Component Failure: Underground instability (wet conditions)	Release of arsenic to mine pool	ETP under designed to handle concentration levels	New Mine WTP not operational yet	Component Failure: ETP treatment not effective	Impact to environment.	BSC-1 followed by UGS-5

Giant Mine - Risk Assessment of Remediation Program
Cascading Event Scenario - Long Term (Post-Construction) Table 2

Initiating Event	ant Failure Sequence>							Result	FMECA Reference	
Extreme Weather (Global Warming above anticipated levels)	Component Failure: Passive Freeze System Failure	Thaw of frozen block	Underground Instability	Component Failure: Sill Pillar Failure	Release of arsenic contaminated water to mine pool	Minewater requires more treatment.	Mine WTP throughput decreases	Component Failure: Mine WTP requires upgrades	Increase cost	WMS-24
Earthquake	Component Failure: Baker Creek Failure (base of creek collapses)	Baker Creek flows into mine	Increase in arsenic concentration in minewater	Minewater flood damages underground infrastructure	Component Failure: Mine dewatering pumps fail	Mine floods to surface			Non-compliant discharge to the environment. Baker Creek Canal re- alignment required. Underground pumping system replacement required.	BCS-10

Appendix D Multiple Cause Scenarios

Giant Mine - Risk Assessment of Remediation Program Multiple Cause Scenario - Short Term (Implementation) - Table 3

Multiple Cause Scenario Number	Cause ario linitiating Events Failure Sequence>								FMECA Reference
	Effluent Treatment Plant (ETP) Supply of Chemicals Interrupted (2 months)			Flood up to underground pumping system	Component Failure: Underground Pump Failure	Replace pumping system			
MCS-1	Failure of Baker Creek base during freshet	Component Failure: Baker Creek Base Collapse	Flood into mine	Mine floods to surface	New Mine WTP not operational yet	Loss of arsenic into mine pool	Component Failure: ETP Treatment not Effective	Increase in cost Release to environment.	BCS-4
	Wetting Plan for Freeze System Not Effective. Saturated Unfrozen in Chambers	Wetting Plan for Freeze System Not Effective. Saturated Unfrozen in Chambers Component Failure: Underground Major loss of arsenic slury into mine Sill Pillar Failure Stability Failure Major loss of arsenic		Component Failure: ETP	Component Failure: Re-design of Underground Stability Program				
MCS-2	Sill Pillar Failure			additional temporary treatment would be required to treat the elevated arsenic in minewater.	Component Failure: Loss of arsenic into other portions of the mine (previously non- arsenic containing) would require a re-design of a portion of the freeze system			Increase in cost	UGS-5

Giant Mine - Risk Assessment of Remediation Program Multiple Cause Scenario - Long Term (Post-Construction) - Table 4

Multiple Cause Scenario Number	Initiating Events		F	Result	FMECA Reference				
	New Mine Water Treatment Plant (Mine WTP) is down for annual general maintenance (1 week)	Component Failure: Baker		Flood up to underground pumping system	Component Failure: Underground Pump Failure	Replace pumping system	Increase in cost		
MCS-3	Extreme weather causes a flood event over the designed capacity of Baker Creek and a power outage	Creek Bank Overflow	Flood into mine	Flood up to frozen arsenic chambers	Arsenic residue lost into minewater	Nominal increase concentration of arsenic in minewater	No impact to Mine WTP	BCS-6, WMS-23	
MCS 4	Snow and ice of tailings cover melts creating higher then normal run-off	Component Failure: Tailings	Run-off does not				No import	SS 11	
MC3-4	Greater than anticipated consolidation occurs on tailings cover	Cover (Geotextile) Fails	migrate off-site				No impact	33-11	
MCS-5	Loss of Long Term Power	Component		Crown and sill pillar	Increase arsenic loading	Mine WTP (on back-	-		
	Passive Freeze System Failure	Failure: Passive Freeze System	Degraded rock quality	failure	to minewater	up power) increases treatment rate	Increase in cost	FS-8	

Appendix E List of Participants for Workshops

Workshop 1:

- i. March 22 to 24, 2011 in Vancouver
- ii. Participants:

INAC

- INAC -Ben Nordahn
- Department of Justice Carla Conkin

PWGSC

- PWGSC Henry Westermann, P.Eng.
- PWGSC Corrine Stokowski
- PWGSC Norm Quail
- PWGSC David Abernathy
- PWGSC Desmond O'Connor
- PWGSC Doug Townson, NWTAA, B.Arch.
- PWGSC Lisa Dyer, P.Eng.
- PWGSC Mark Cronk, P.Eng.

DXB Projects

• DXB Projects - Dave Bynski, P.Eng, PMP

AECOM

- AECOM Robert Boon, P.Eng.
- AECOM David Knapik, P.Eng.
- AECOM Rudy Schmidtke, M.Sc, P.Eng.
- AECOM Jennifer Singbeil, P.Eng.

Golder

- Golder John Hull, P.Eng.
- Golder Cameron Clayton, M.Eng, P.Geo.
- Golder Darren Kennard, P.Eng.(BC)
- Golder David Caughill, P.Eng.
- Golder Katharine Harrison
- Golder Randa Salameh
- Golder Richard Beddoes, P.Eng.
- Golder Nathan Schmidt, Ph.D., P.Eng.

Workshop 2:

- i. April 4 to 6, 2011 in Vancouver
- ii. Participants:

INAC

- INAC Michael Nahir, M.Eng., P.Eng.
- INAC Martin Gavin, P.Eng.
- INAC Adrian Paradis
- Department of Justice Carla Conkin
- Government of the Northwest Territories (GNWT) Ken Hall
- Brodie Consultants Ltd. John Brodie, P.Eng.
- SRK Consulting (SRK) Daryl Hockley, P.Eng.; Peter Mikes, P.Eng.
- SENES Bruce Halbert

PWGSC

- PWGSC Henry Westermann, P.Eng.
- PWGSC Corrine Stokowski
- PWGSC Norm Quail
- PWGSC David Abernathy
- PWGSC Desmond O'Connor
- PWGSC Lisa Dyer, P.Eng.
- PWGSC Mark Cronk, P.Eng.
- PWGSC Chris Doupe
- PWGSC Sharon Nelson

DXB Projects

• DXB Project - Dave Bynski, P.Eng., PMP

AECOM

- AECOM David Knapik, P.Eng.
- AECOM Rudy Schmidtke, M.Sc, P.Eng.
- AECOM Gordon Woollett, P.Eng.
- AECOM Barry Williamson, P.Eng.

Golder

- Golder –.John Hull, P.Eng.
- Golder Ross Hammet, P.Eng.
- Golder Richard Beddoes, P.Eng.
- Golder David Caughill, P.Eng.
- Golder Katharine Harrison
- Golder Brian Griffin, B.A.Sc
- Golder Nathan Schmidt, Ph.D., P.Eng.

Workshop 3:

- i. May 30 and 31, 2011 in Edmonton
- ii. Participants:

INAC

- INAC Michael Nahir, M.Eng., P.Eng.
- Brodie Consultants Ltd. John Brodie, P.Eng.

PWGSC

- Norm Quail
- Mark Cronk, P.Eng.

DXB Projects

• DXB Projects - Dave Bynski, P.Eng., PMP

Golder

- Golder John Hull, P.Eng.
- Golder Darren Kennard, P.Eng. (BC)

AECOM

- AECOM Rudy Schmidtke, M.Sc, P.Eng.
- AECOM David Knapik, P.Eng.
- AECOM Jennifer Singbeil, P.Eng.
- AECOM Jillian Roth, EIT
- AECOM Larissa Wall