TABLE 7 DISSOLVED METALS

Dissolved Metals

			CCME										Sample Statio	ons								
Dissolved Metals	Units	D.L.	FAL	BC CSR AW	L08	-124		MW08-127					MW08-128				MW08-130			MW09-152		
					08-OCT-08	08-OCT-09	09-OCT-08	08-OCT-09	14-Oct-10	08-OCT-08	08-OCT-09	11-Jul-10	3-Sep-10	Dup	14-Oct-10	Dup	07-OCT-08	26-JUN-09	Dup	08-OCT-09	Dup	14-Oct-10
Aluminum (Al)	mg/L	0.005*	0.1 ₆	-	0.0065	0.0037	15.3	0.0108	0.0116	0.0338	0.0084	0.0504	0.0335	0.0344	0.0279	0.0276	0.0077	0.0178	0.0181	0.0066	0.0245	0.0132
Antimony (Sb)	mg/L	0.0005*	-	0.20	< 0.00050	<0.00010	<0.0025	0.00013	<0.00010	< 0.00050	0.00011	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00050	0.00032	0.00029	0.00011	0.00012	0.00046
Arsenic (As)	mg/L	0.0005*	0.005	0.05	< 0.00050	0.00038	0.0027	0.00066	0.00079	0.00233	0.00404	0.00469	0.00944	0.00905	0.00813	0.00856	0.00065	0.0018	0.00174	0.00084	0.00090	0.00030
Barium (Ba)	mg/L	0.02	-	10	0.084	0.0874	0.257	0.0496	0.117	0.143	0.107	0.204	0.195	0.199	0.185	0.187	0.401	0.016	0.0164	0.0212	0.0217	0.0463
Beryllium (Be)	mg/L	0.001*	-	0.053	<0.0010	<0.00050	< 0.0050	<0.00050	<0.00050	<0.0010	< 0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.0010	<0.0010	<0.0010	< 0.00050	< 0.00050	< 0.00050
Boron (B)	mg/L	0.1	-	50	<0.10	0.050	0.31	0.067	0.017	<0.10	0.021	0.024	0.017	0.018	0.017	0.017	<0.10	0.806	0.817	0.690	0.725	< 0.00050
Cadmium (Cd)	mg/L	0.000017*	0.000017	0.00001 - 0.000067	<0.000017	<0.00080	0.000206	<0.000080	< 0.000017	0.000249	<0.00020	0.000041	0.000208	0.000209	0.000187	0.000193	0.000018	<0.00020	<0.0020	<0.00010	<0.00020	0.000018
Calcium (Ca)	mg/L	0.1	-	-	29.5	26.7	14.9	17.1	44.2	29.3	29.8	46.8	55.2	55.2	54.8	54.0	50.4	15.7	15.6	20.4	20.5	12.8
Chromium (Cr)	mg/L	0.001*	-	-	0.0013	< 0.0030	0.0179	< 0.0060	<0.00050	<0.0010	< 0.0030	<0.0015	<0.0010	<0.0010	<0.0010	<0.0020	<0.0010	< 0.003	<0.0030	<0.0020	< 0.0030	< 0.00050
Cobalt (Co)	mg/L	0.003*	-	0.04	0.00178	0.00138	0.0057	0.00045	0.00025	0.00126	0.00043	0.00017	0.00014	0.00016	0.00017	0.00016	0.00328	<0.00020	<0.00020	0.00017	0.00017	< 0.00010
Copper (Cu)	mg/L	0.001*	0.002-0.004,	0.002 - 0.009 ₈	0.0046	0.00408	0.0474	0.00102	0.00059	<0.0010	0.00046	0.00025	0.00024	0.00031	< 0.00050	<0.00050	0.0182	<0.00020	0.00021	0.00040	0.00062	0.01440
ron (Fe)	mg/L	0.03	0.3	-	0.133	0.324	8.85	1.09	2.27	10.8	5.96	15.4	9.0	8.96	10.1	9.15	< 0.030	0.083	0.093	0.098	0.094	0.040
ead (Pb)	mg/L	0.0005*	0.001 - 0.00711	0.004 - 0.01610	< 0.00050	<0.000050	0.0066	0.000141	< 0.000050	<0.00050	<0.000050	<0.000050	< 0.000050	0.000335	< 0.000050	<0.000050	<0.00050	<0.00010	<0.00010	<0.000050	0.000052	0.000162
ithium (Li)	mg/L	0.005	-	-	0.0194	0.0189	0.043	0.0188	0.0057	0.0152	0.0139	0.0070	0.0077	0.0074	0.0078	0.0080	0.0127	0.063	<0.061	0.0580	0.0586	0.0189
Aagnesium (Mg)	mg/L	0.1	-	-	96.1	72.6	8.59	7.73	31.2	22.5	17.5	33.0	40.0	39.8	39.8	40.0	43.3	7.79	7.83	10.9	11.0	3.74
Manganese (Mn)	mg/L	0.0003*	-	-	0.0506	0.0508	0.260	0.222	0.797	0.544	0.336	0.485	0.392	0.389	0.368	0.362	0.0888	0.0255	0.0254	0.0294	0.0304	0.00075
Aercury (Hg)	mg/L	0.00002	-	0.001	<0.000020		<0.00010		<0.000010	<0.000020		<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000020	<0.000050	< 0.000050			<0.000010
Aolybdenum (Mo)	mg/L	0.001*	0.073	10	0.0119	0.0281	0.0345	0.0230	0.00388	0.0194	0.0627	0.00663	0.015	0.0152	0.015	0.0157	0.0466	0.0497	0.0497	0.0382	0.0403	0.0119
Nickel (Ni)	mg/L	0.001*	0.025 - 0.1513	0.025 - 0.15 ₁₃	0.0024	0.00208	0.0151	0.00663	0.00102	0.0027	0.00371	< 0.00050	<0.00050	<0.00050	0.00057	0.00051	0.0108	<0.0010	<0.0010	0.00054	0.00071	0.00124
Potassium (K)	mg/L	2	-	-	3.4	3.5	6.6	2.7	3.6	4.2	3.0	4.3	<0.30	< 0.30	4.2	4.0	3.0	3.2	3.2	3.2	3.2	<2.0
Selenium (Se)	mg/L	0.001*	0.001	0.01	<0.0010	<0.0010	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010	<0.0010
Silver (Ag)	mg/L	0.00002*	0.0001	0.0005 - 0.01514	<0.000020	0.000010	0.00133	<0.000010	0.000012	0.000031	0.000013	0.000039	0.000031	0.000037	0.000032	0.000029	<0.000020	<0.000020	< 0.000020	<0.000010	< 0.000010	<0.000010
Sodium (Na)	mg/L	2	-	-	10.5	8.1	72.9	58.8	6.8	23.3	36.0	0.114	4.4	4.4	4.9	4.9	13.9	147	148	112	112	36.0
Thallium (TI)	mg/L	0.002*	0.0008	0.003	<0.00020	<0.00010	<0.0010	<0.00010	<0.00010	<0.00020	<0.00010	<0.00010	< 0.00010	<0.00010	< 0.00010	<0.00010	<0.00020	<0.00020	<0.00020	<0.00010	<0.00010	<0.00010
Tin (Sn)	mg/L	0.0005*	-	-	<0.00050	0.00014	0.0027	0.00036	<0.00010	0.00071	0.00048	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00333	<0.00020	<0.00020	0.00022	0.00022	0.00023
Titanium (Ti)	mg/L	0.01	-	1	<0.010	<0.010	0.354	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Jranium (U)	mg/L	0.0002*	-	0.30	0.0199	0.0175	0.0027	0.000918	0.00688	0.00324	0.00428	0.00470	0.0114	0.0114	0.0104	0.0113	0.00230	0.00662	0.00658	0.00764	0.00765	0.00258
/anadium (V)	mg/L	0.001*	-	-	<0.0010	<0.0010	0.0229	<0.0010	<0.0010	<0.0010	<0.0010	0.0023	0.0011	0.0011	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010	< 0.0010
Zinc (Zn)	mg/L	0.005	0.03	0.075 - 2.415	< 0.0050	0.0022	0.0327	0.0076	< 0.0030	0.0090	0.0063	0.0045	<0.0010	0.0014	<0.0030	<0.0030	0.0061	<0.0020	<0.0020	0.0018	0.0031	0.0246
Chromium (VI)	mg/L	0.001	-	-		<0.0010		<0.0010			<0.0010							0.0032	0.0015	<0.0010	<0.0010	

1. **Bolded** and/or <u>Underlined</u> result implies a guideline exceedance, **Blue** indicates guidelines less than detection limits available 2. D.L. = laboratory detection limit

** implies detection limit varied - '<' (less than) value implies detection limit
 CCME FAL - Canadian Council of Ministers of the Environment Freshwater Aquatic Life

<u>BC CSR AW</u> - British Columbia Contaminated Sites Regulation Aquatic Life Guidelines;

provided for comparison only 6. Aluminum guideline is 100 μ g/L when pH \geq 6.5

7. Cadmium guideline:

0.1 µg/L when [CaCO3] is 0 - 30 mg/L 0.3 μg/L when [CaCO3] is 30 - 90 mg/L 0.5 μg/L when [CaCO3] is 90 - 150 mg/L 0.6 µg/L when [CaCO3] is > 150 mg/L

8. Copper guideline:

2 µg/L when [CaCO3] is 0 - 50 mg/L 3 µg/L when [CaCO3] is 50 - 75 mg/L 4 µg/L when [CaCO3] is 75 - 100 mg/L 5 µg/L when [CaCO3] is 100 - 125 mg/L 6 µg/L when [CaCO3] is 125 - 150 mg/L 7 µg/L when [CaCO3] is 150 - 175 mg/L 8 μg/L when [CaCO3] is 175 - 200 mg/L <u>9 µg/L when [CaCO3] is > 200 mg/L</u>

9. Copper guideline:

<u>2 μg/L when [CaCO3] is 0 - 120 mg/L</u> <u>3 μg/L when [CaCO3] is 120 - 180 mg/L</u> 4 µg/L when [CaCO3] is > 180 mg/L

10. Lead guideline: <u>4 μg/L when [CaCO3] is 0 - 50 mg/L</u>

5 µg/L when [CaCO3] is 50 - 100 mg/L 6 µg/L when [CaCO3] is 100 - 200 mg/L 110 µg/L when [CaCO3] is 200 - 300 mg/L 160 µg/L when [CaCO3] is > 300 mg/L

11. Lead guideline:

<u>1 μg/L when [CaCO3] is 0 - 60 mg/L</u> 2 µg/L when [CaCO3] is 60 - 120 mg/L 4 µg/L when [CaCO3] is 120 - 180 mg/L

7 µg/L when [CaCO3] is > 180 mg/L 12 Manganese guideline:

<u>1 μg/L when [CaCO3] is 0 - 60 mg/L</u> 2 µg/L when [CaCO3] is 60 - 120 mg/L 4 µg/L when [CaCO3] is 120 - 180 mg/L 7 µg/L when [CaCO3] is > 180 mg/L

13 Nickel guideline: 25 µg/L when [CaCO3] is 0 - 60 mg/L 65 µg/L when [CaCO3] is 60 - 120 mg/L 110 µg/L when [CaCO3] is 120 - 180 mg/L

150 μg/L when [CaCO3] is > 180 mg/L Silver guidline:

14

15

0.5 μg/L when [CaCO3] < 100 mg/L 15 µg/L when [CaCO3] > 100 mg/L

Zinc guideline:

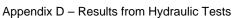
7.5 µg/L when [CaCO3] is 0 - 90 mg/L <u>15 µg/L when [CaCO3] is 90 - 100 mg/L</u> 90 µg/L when [CaCO3] is 100 - 200 mg/L 165 µg/L when [CaCO3] is 200 - 300 mg/L 240 µg/L when [CaCO3] is > 300 mg/L

TABLE 8: SUMMARY OF GROUNDWATER PARAMETERS

Monitoring Well	TDS (mg/L)	EC (µS/cm)	рН	Hydrogeochemical Facies	Exceeds CSR and/ or CCME Guidelines
L08-124	274 – 422	460 – 738	8.10 – 8.25	Magnesium-Calcium-Carbonate	Aluminum, Cadmium, Copper, Iron, Silver
MW08-127	240 – 487	404 - 878	6.86 - 8.16	Sodium -Calcium-Carbonate-Sulphate	Aluminum, Cadmium, Copper, Iron, Lead, Silver
MW08-128	230 – 335	367 – 482	7.41 – 7.90	Sodium/Magnesium-Calcium- Magnesium/Sodium-Carbonate	Aluminum, Arsenic, Cadmium, Iron, Silver
MW08-130	331 – 335	557 – 558	8.10 - 8.21	Magnesium-Calcium-Carbonate	Aluminum, Cadmium, Copper, Iron, Silver
MW09-152	388 – 464	587 – 721	8.17 – 8.56	Sodium -Calcium-Carbonate-Chlorate	n.a.

Notes:

TDS – Total Dissolved Solids

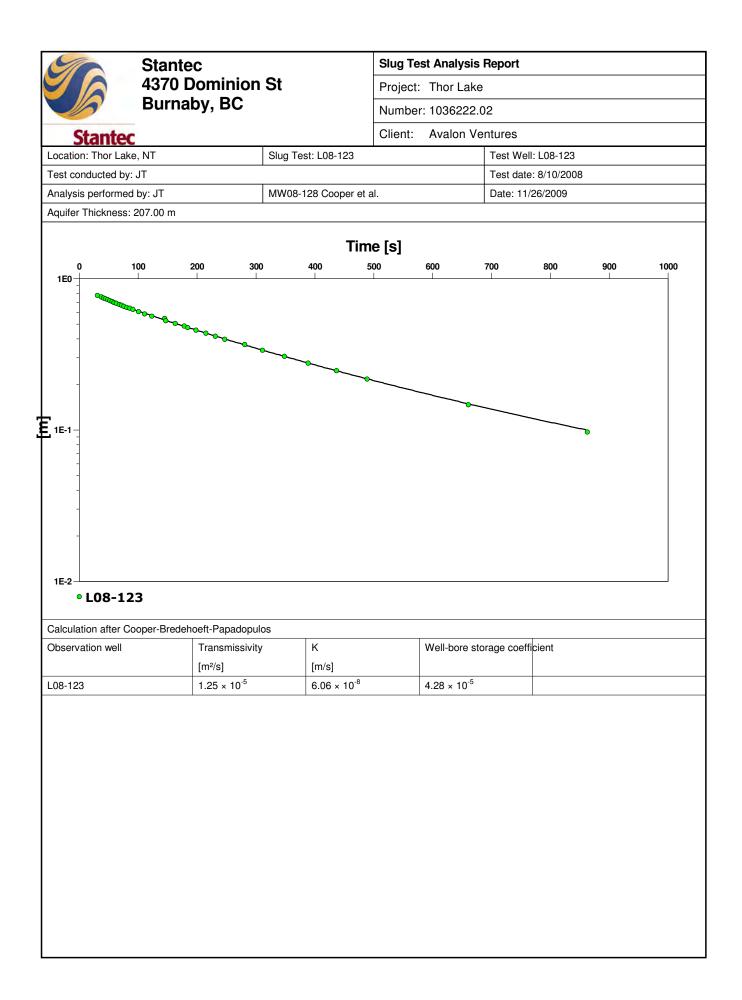

EC – Electrical Conductivity

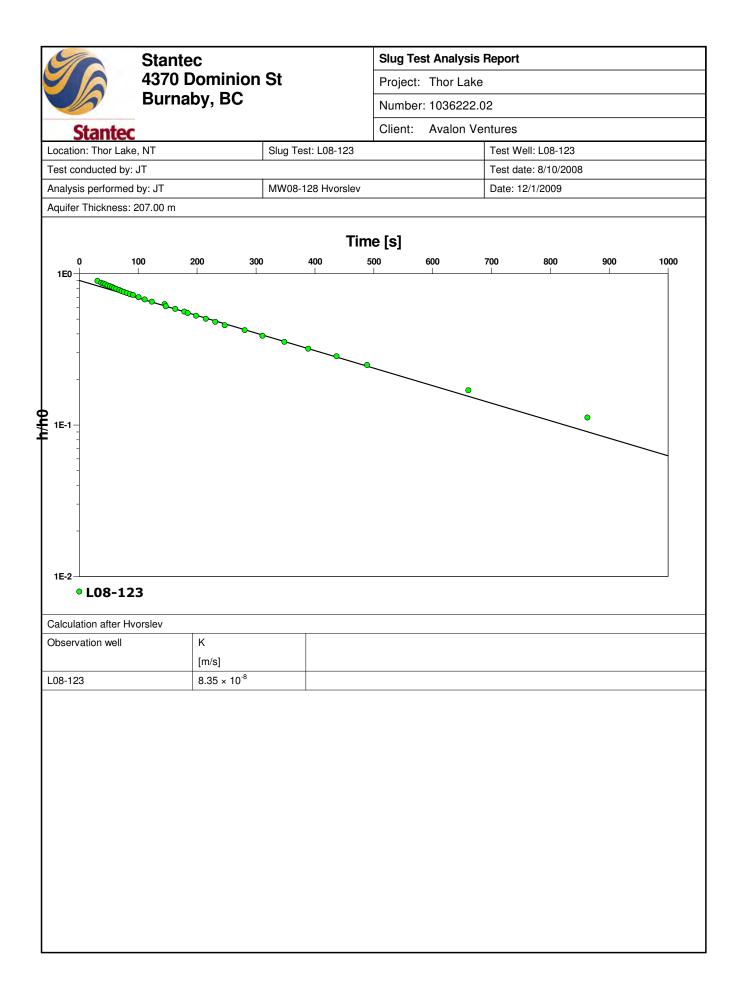
mg/L – milligram per liter

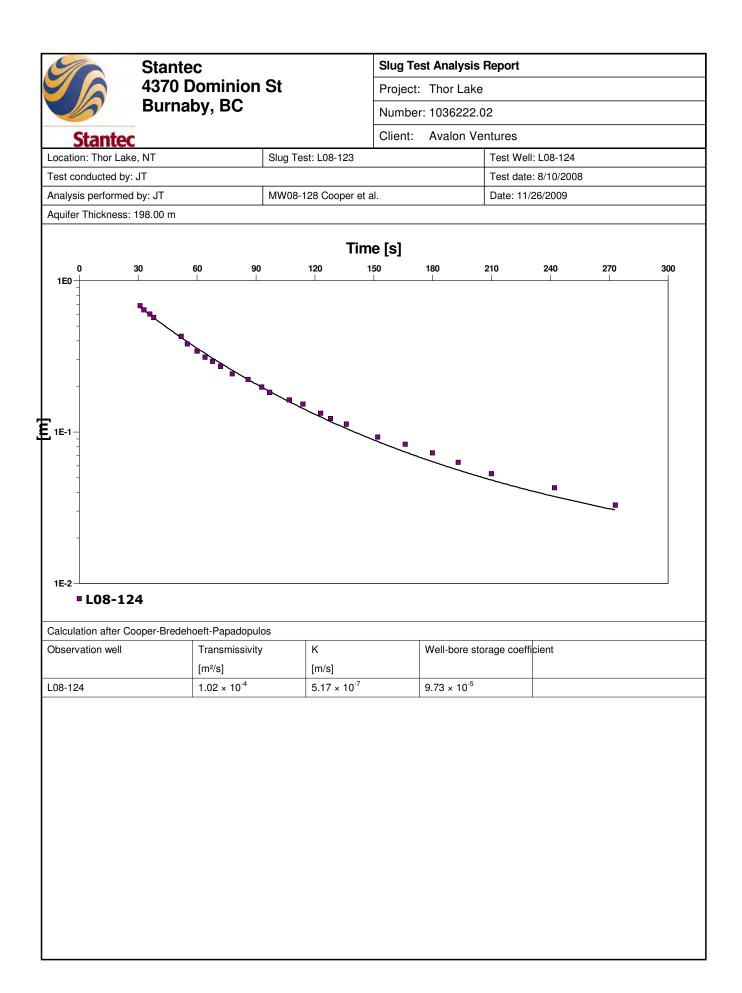
µS/cm – microsiemen pre centimetre

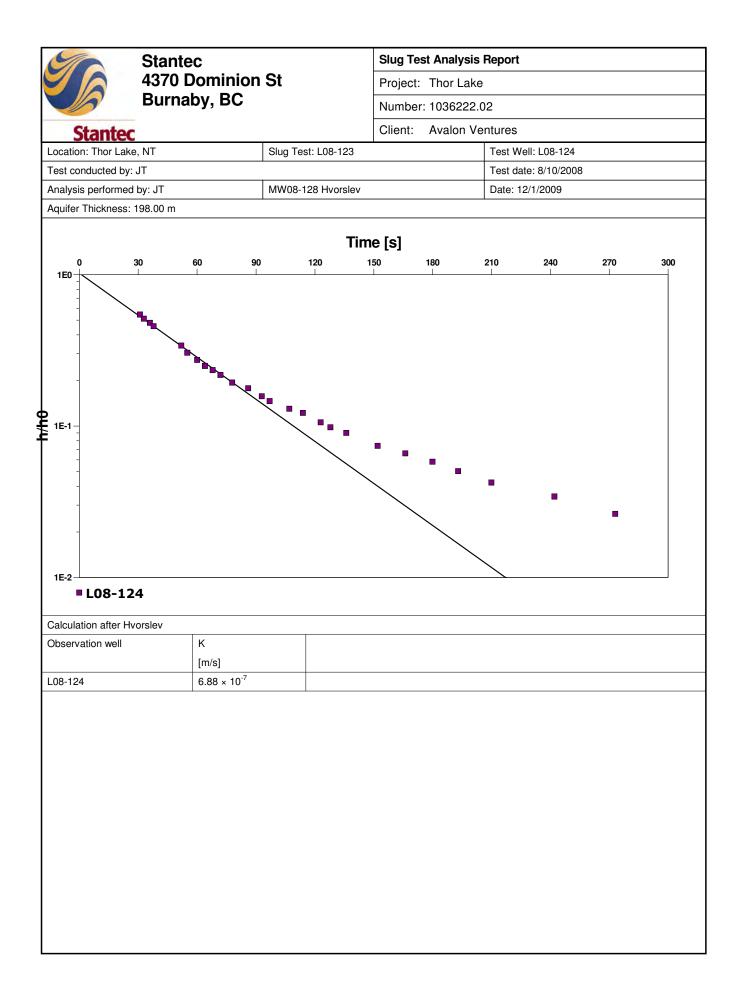
n.a. -data not available (total metals not collected)

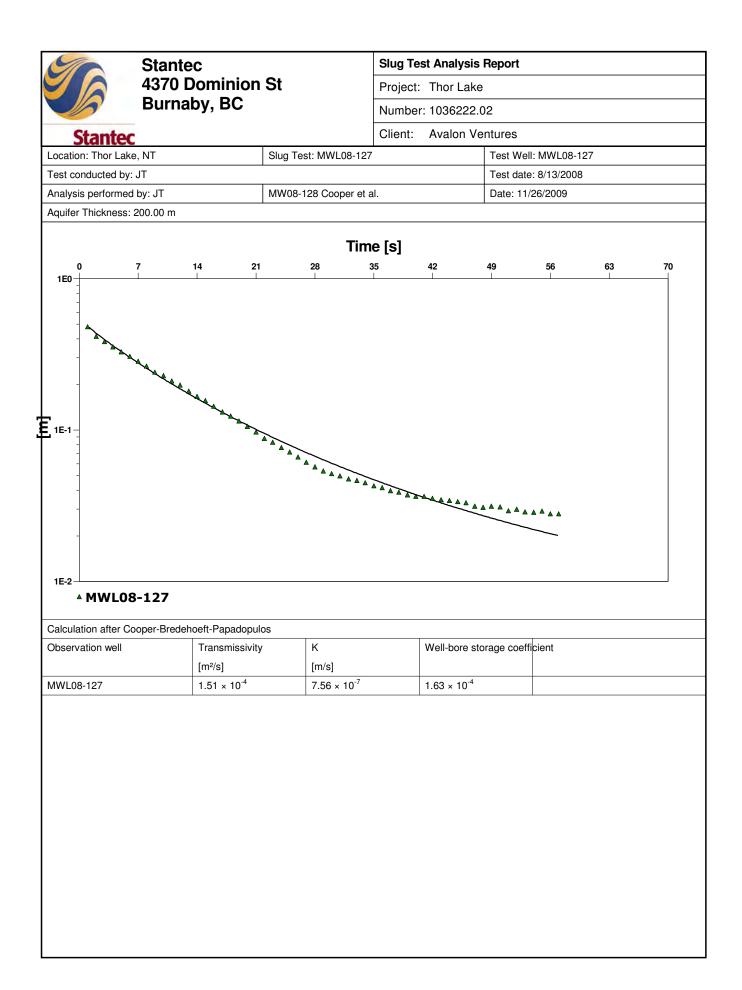
Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

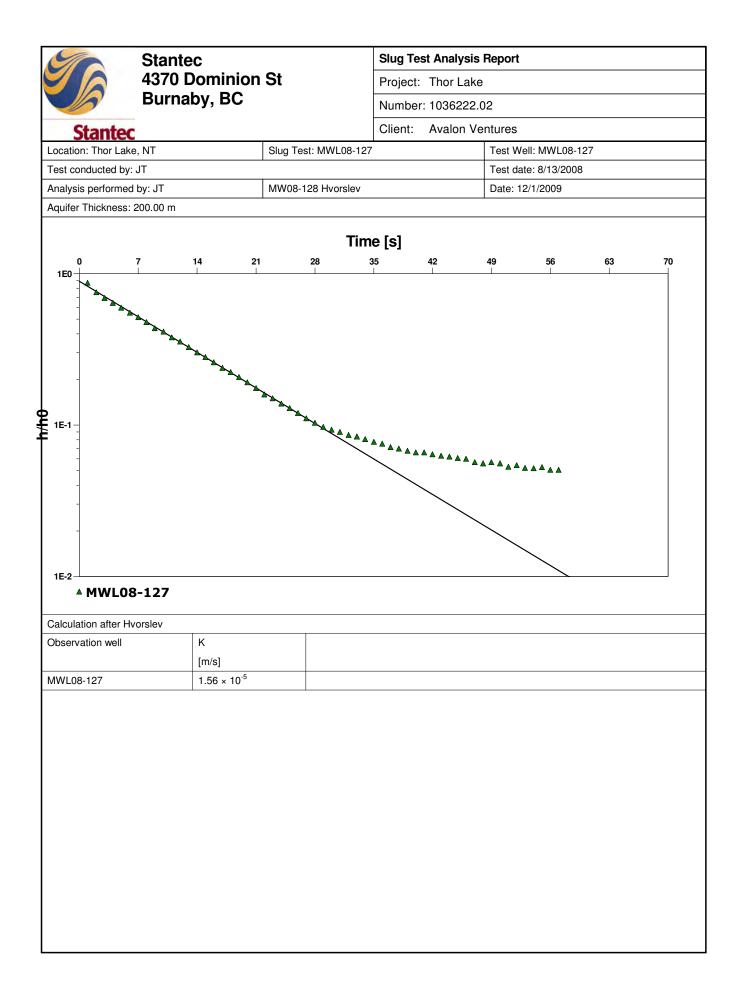


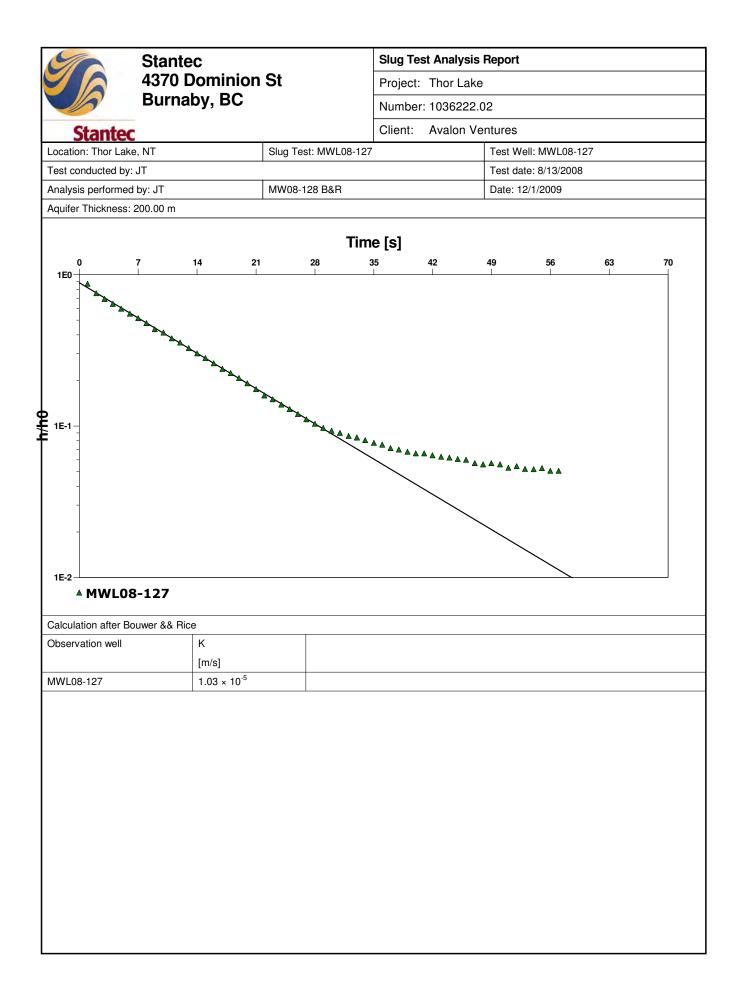


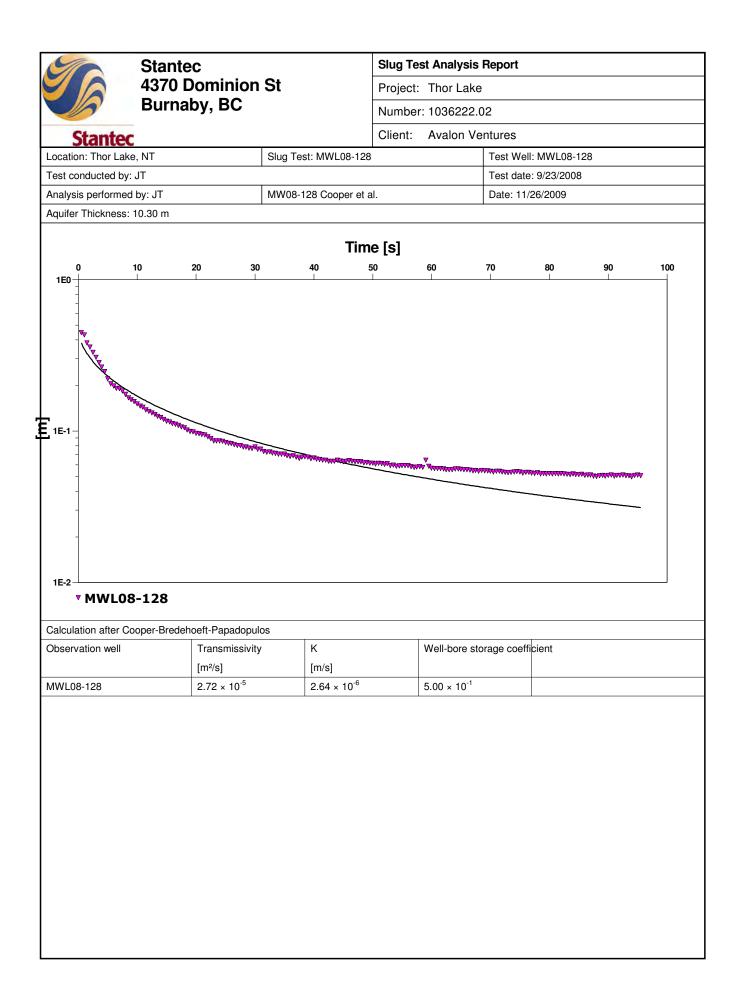

APPENDIX D

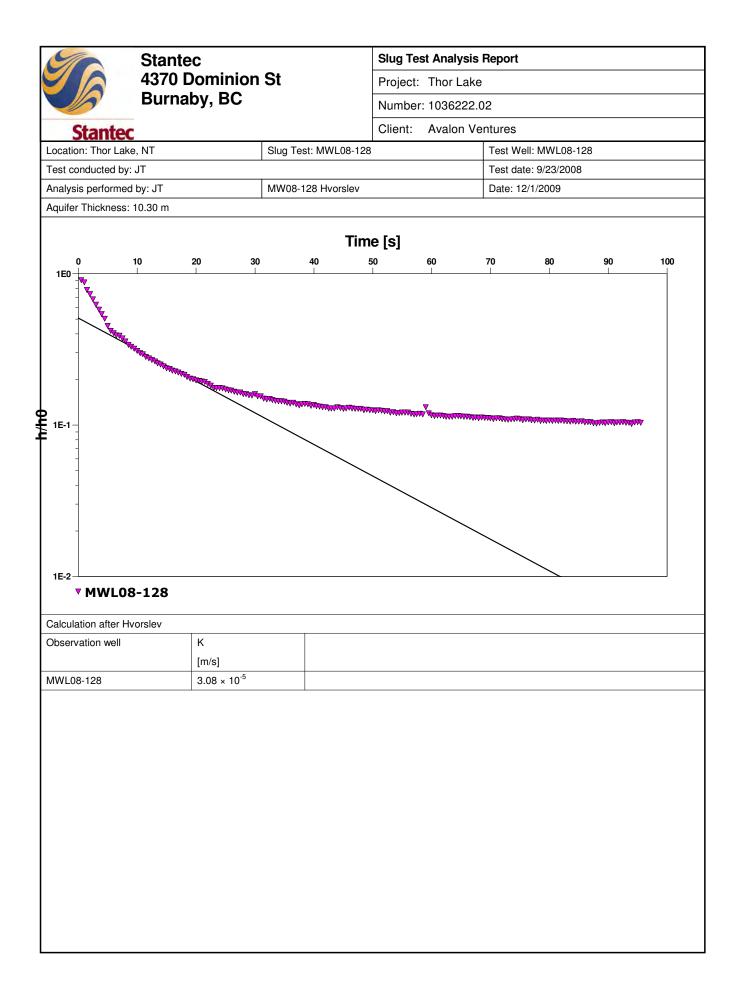

Results from Hydraulic Tests

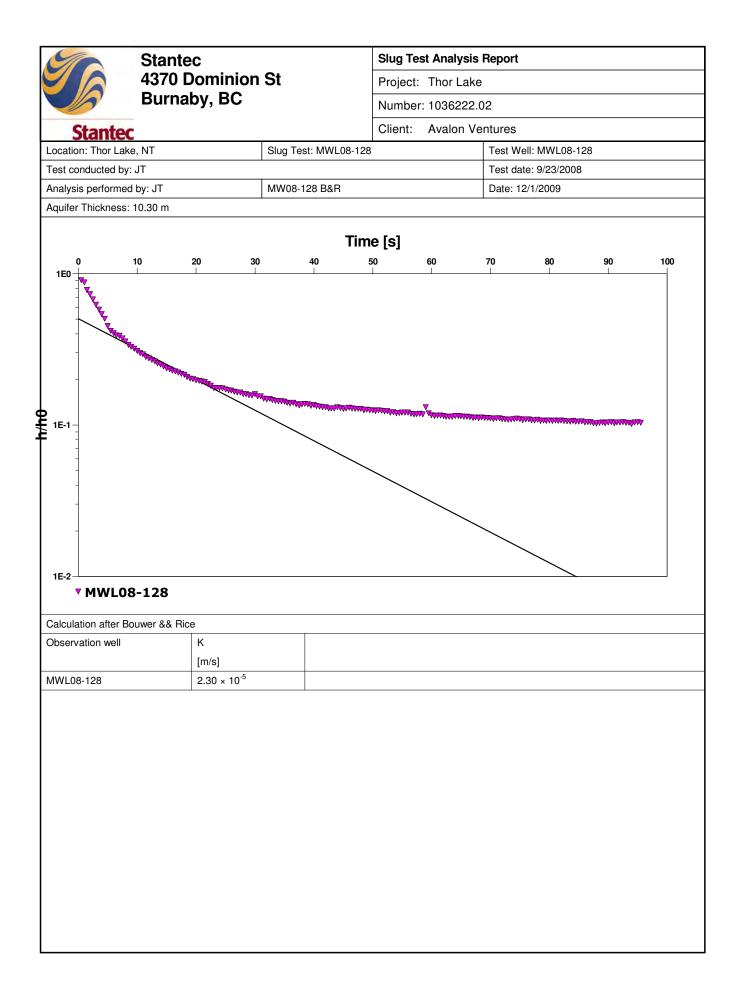

One Team. Infinite Solutions.

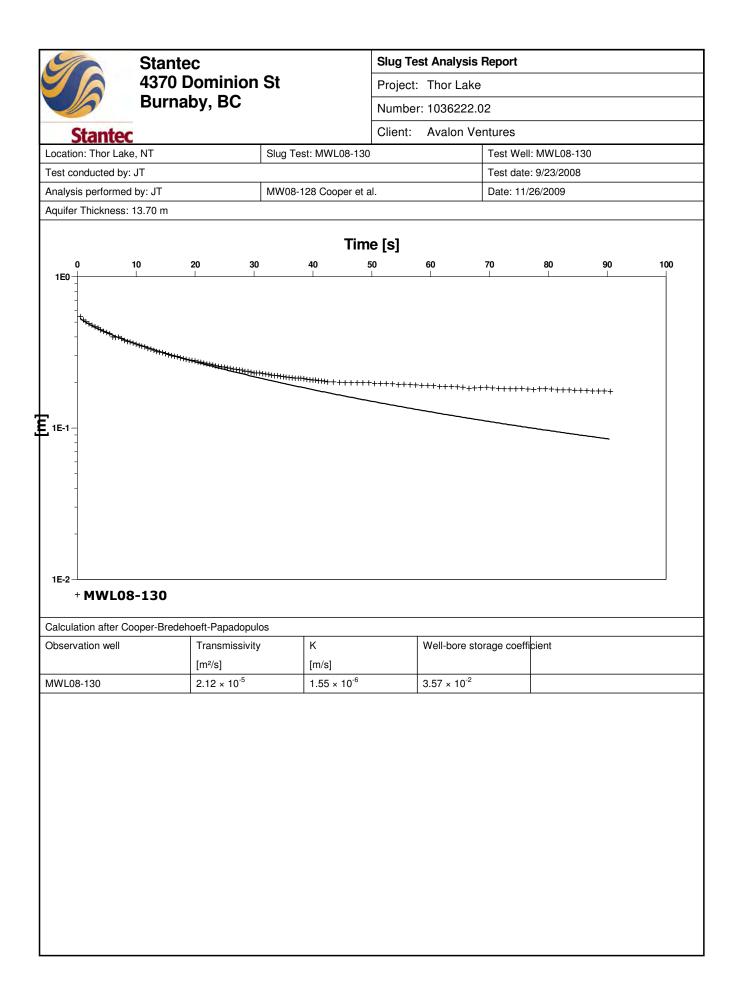


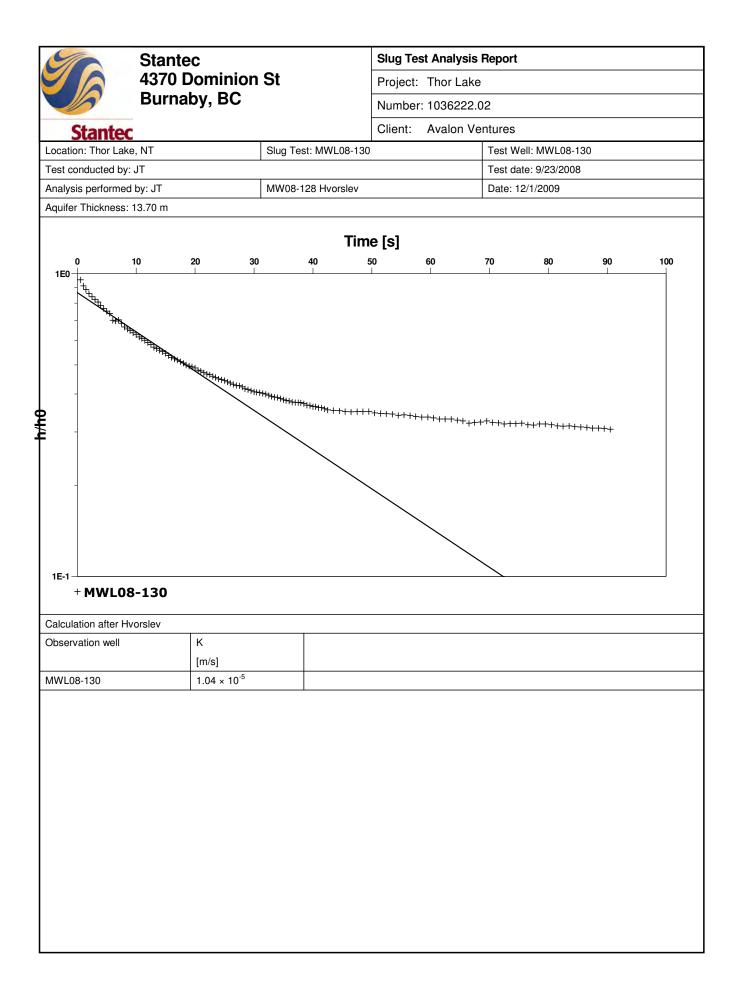


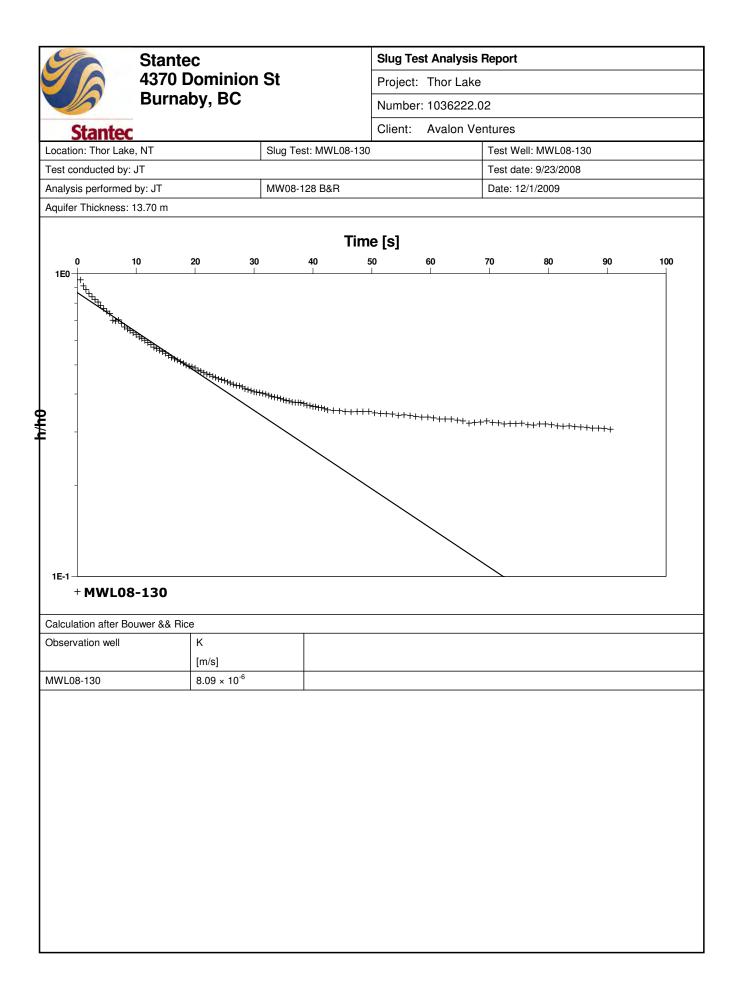












Client:	Avalon
Project:	Thor Lake
Project #:	1036222
Personnel:	TL

Pressure Interval					
Minutes	Pressure	Volume	∆ Volume		
0	25	0	-		
1	25	3.1	3.1		
2	25	5.3	2.2		
3	25	7.1	1.8		
4	25	9	1.9		
5	25	10.9	1.9		
6	25				
7	25	14.3	3.4		
8	25	15.9	1.6		
9	25	17.4	1.5		
10	25	19	1.6		

Pressure Interval

Minutes	Pressure	Volume	∆ Volume
0	50	0	-
1	50	2.8	2.8
2	50	5.3	2.5
3	50	7.9	2.6
4	50	10.4	2.5
5	50	12.9	2.5
6	50	15.2	2.3
7	50	17.7	2.5
8	50	20	2.3
9	50	22.4	2.4
10	50	24.7	2.3

Pressure Interval

Minutes	Pressure	Volume	∆ Volume
winnutes	FIESSULE	volume	Δ volume
0	75	0	-
1	75	3.2	3.2
2	75	6.3	3.1
3	75	9.3	3
4	75	12.3	3
5	75	15.4	3.1
6	75		
7	75	21.4	6
8	75	24.4	3
9	75	27.4	3
10	75	30.4	3

Collar E.I. <u>1.06 m</u> Trend:

Trend:		
Plunge:		
Date:	25-Mar-09	

Pressure Interval				
Minutes	Pressure	Volume	∆ Volume	
0	95	0	-	
1	95	3.6	3.6	
2	95	7.1	3.5	
3	95	10.6	3.5	
4	95	14.8	4.2	
5	95	17.5	2.7	
6	95	21	3.5	
7	95	24.3	3.3	
8	95	27.6	3.3	
9	95	30.9	3.3	
10	95	34.3	3.4	

Pressure Interval

Minutes	Pressure	Volume	∆ Volume
0	75	0	-
1	75	2.6	2.6
2	75	5.1	2.5
3	75	7.7	2.6
4	75	10.2	2.5
5	75	12.6	2.4
6	75	15.2	2.6
7	75	17.6	2.4
8	75	20.1	2.5
9	75	22.5	2.4
10	75	25	2.5

Pressure Interval

TTESSATE INTELVAL					
Minutes	Pressure	Volume	∆ Volume		
0	50	0	-		
1	50	1.6	1.6		
2	50	3.2	1.6		
3	50	4.8	1.6		
4	50	6.5	1.7		
5	50	8.1	1.6		
6	50	9.7	1.6		
7	50	11.3	1.6		
8	50	13	1.7		
9	50	14.6	1.6		
10	50	16.2	1.6		

Hole # L09-152 Design Test Interval: 410' - 636' = 225' Test #: 1 Measurements: Depth to WT: 3.5 m b T.O.P Top of Packer Interval: 411' Bottom of Packer Interval (or Bottom of hole): 636' Packer Int. Midpoint (double packer): // Water Flushed: (Vol./Time/Until Clean): Packer Inflation Pressure: 500 psi Stickup Height: Borehole Outside Diametric: NQ 3" Packer Pipe ID / or Drill Rod ID:

Measurement Units

Volume:	gal
Pressure:	psi
Length:	ft

Time

Start Packer Testing:	1230pm
Start Flushing:	7am
End Flushing:	1230pm
End Packer Testing:	1430am

Calculations

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

hg = height of gauge obove ground level (m)

hs = depth to pre-test water level (m)

hf = frictional losses (m)

										K = T/b
Step	P (psi)		Pi (m)	gal/min	Q (m3/s)	R (m)		rb (m)	T (m2/d)	68.5
	1	25	18.635	1.6	0.000101		5	0.038	4.21E-06	6.15E-08 m/s
	2	50	36.21	2.4	0.000151		5	0.038	3.25E-06	4.74E-08 m/s
	3	75	53.785	3	0.000189		5	0.038	2.73E-06	3.99E-08 m/s
	4	100	71.36	3.3	0.000208		5	0.038	2.27E-06	3.31E-08 m/s
	3b	75	53.785	2.4	0.000151		5	0.038	2.19E-06	3.19E-08 m/s
	2b	50	36.21	1.6	0.000101		5	0.038	2.17E-06	3.16E-08 m/s

Client:	Avalon	
Project:	Thor Lake	
Project #:	1036222	
Personnel:	TL	

Pressure Interval						
Minutes	Pressure	Volume	Δ Volume			
0	20	0	-			
1	20	2	2			
2	20	3	1			
3	20	4.8	1.8			
4	20	7.7	2.9			
5	20	9.5	1.8			
6	20	11.3	1.8			
7	20	13.1	1.8			
0	40	0	-			
1	40	2.9	2.9			
2	40	5.8	2.9			
3	40	8.7	2.9			
0	60	0	-			
1	60	3.7	3.7			
2	60	7.3	3.6			
3	60	10.9	3.6			
4	60	14.3	3.4			
5	60	17.8	3.5			
6	60	20.8	3			
7	60	23.8	3			
8	60	26.8	3			
0	80	0	-			
1	80	3.7	3.7			
2	80	7.3	3.6			
3	80	10.8	3.5			
4	80	14.3	3.5			
5	80	17.8	3.5			
0	100	0	-			
1	100	3.7	3.7			
2	100	7.5	3.8			
3	100	11	3.5			
4	100	14.7	3.7			
5	100	18.4	3.7			
6	100	22	3.6			
7	100	25.6	3.6			
8	100	29.2	3.6			

Collar E.I.:	1.06 m
Trend:	
Plunge:	
Date:	25-Mar-09

Pressure Interval						
Minutes	Pressure	Volume	∆ Volume			
0	120	0	-			
1	120	4	4			
2	120	7.9	3.9			
3	120	11.7	3.8			
4	120	15.2	3.5			
5	120	18.7	3.5			
6	120	22.2	3.5			
7	120					
8	120	29.1	6.9			
0	180	0	-			
1	180	5.3	5.3			
2	180	10.6	5.3			
3	180	15.9	5.3			
0	120	0	-			
1	120	4	4			
2	120	7.3	3.3			
3	120	10.6	3.3			
4	120	14.1	3.5			
5	5 120		3.2			
6	120	20.5	3.2			
7	120	23.7	3.2			
0	100	0	-			
1	100	2.9	2.9			
2	100	5.6	2.7			
3	100	8.4	2.8			
4	100	11.2	2.8			
5	100	14	2.8			
0	80	0	-			
1	80	2.5	2.5			
2	80	4.9	2.4			
3	80	7.4	2.5			
4	80	9.9	2.5			
5	80	12.4	2.5			
	1	1				

L09-152 Hole # Design Test Interval: 300' Test #: 3 Measurements: Depth to WT: 3.3 m.b. t.o.p Top of Packer Interval: 311' Bottom of Packer 626' Interval (or Bottom of hole): Packer Int. Midpoint (double packer): _// Water Flushed: (Vol./Time/Until Clean): clean Packer Inflation Pressure: 500 psi Stickup Height: Borehole Outside Diametric: NQ 3" Packer Pipe ID / or Drill Rod ID:

Measurement Units

gal
psi
ft

<u>Time</u>

Start Packer Testing:	
Start Flushing:	
End Flushing:	
End Packer Testing:	

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

hg = height of gauge obove ground level (m)

hs = depth to pre-test water level (m)

hf = frictional losses (m)

										K = T/b
Step	P (ps	i)	Pi (m)	gal/min	Q (m3/s)	R (m)	rb	o (m)	T (m2/d)	96
	1	20	15.12	1.8	0.000114		5	0.038	5.84E-06	6.08E-08
	2	40	29.18	2.9	0.000183		5	0.038	4.87E-06	5.08E-08
	3	60	43.24	3	0.000189		5	0.038	3.40E-06	3.54E-08
	4	80	57.3	3.5	0.000221		5	0.038	2.99E-06	3.12E-08
	5	100	71.36	3.6	0.000227		5	0.038	2.47E-06	2.58E-08
	6	120	85.42	3.5	0.000221		5	0.038	2.01E-06	2.09E-08
	7	180	127.6	5.3	0.000334		5	0.038	2.04E-06	2.12E-08
	6a	120	85.42	3.2	0.000202		5	0.038	1.84E-06	1.91E-08
	5a	100	71.36	2.8	0.000177		5	0.038	1.92E-06	2.00E-08
	4a	80	57.3	2.5	0.000158		5	0.038	2.14E-06	2.23E-08

Client:	Avalon
Project:	Thor Lake
Project #:	1036222
Crew:	JT

Pressure Interval						
Minutes	Pressure	Volume	∆ Volume			
0	20	0	-			
1	20	2.7	2.7			
2	20	5.3	2.6			
3	20	7.8	2.5			
4	20	10.2	2.4			
5	20	12.6	2.4			
6	20	14.9	2.3			
7	20	17.3	2.4			
0	40	0	-			
1	40	3.8	3.8			
2	40	7.5	3.7			
3	40	11.3	3.8			
4	40	15	3.7			
5	40	18.7	3.7			
6	40	22.4	3.7			
0	60	0	-			
1	1 60		4.8			
2	60	9.7	4.9			
3	60	14.6	4.9			
4	60	19.5	4.9			
0	80	0	-			
1	80	6.3	6.3			
2	80	12.5	6.2			
3	80	18.7	6.2			
4	80	24.9	6.2			
0	100	0	-			
1	100	8.4	8.4			
2	100	16.5	8.1			
3	100	24.6	8.1			
4	100	32.7	8.1			

Collar E.I.:	1.06 m
Date:	25-Mar-09

Pressure Interval						
Minutes	Pressure	Volume	∆ Volume			
0	120	0	-			
1	120	9.2	9.2			
2	120	18.3	9.1			
3	120	26.8	8.5			
4	120	34.9	8.1			
5	120	42.9	8			
6	120	50.9	8			
7	120	59	8.1			
0	100	0	-			
1	100	6.9	6.9			
2	100	13.8	6.9			
3	100	20.6	6.8			
4	100	27.5	6.9			
0	80	0	-			
1	80	5.3	5.3			
2	80	10.7	5.4			
3	80	16.1	5.4			
4	80	21.4	5.3			
0	60	0	-			
1	60	4.6	4.6			
2	60	9.2	4.6			
3	60	13.7	4.5			
4	60	18.3	4.6			

 ID
 L09-152

 Test Interval:
 415 ft

 Test #:
 4

Measurements:

Depth to WT:	3.3 m
Top of Packer Interval:	211'
Bottom of Packer	
Interval (or Bottom of hole):	626'
Packer Int. Midpoint	
(double packer): //	
Water Flushed:	
(Vol./Time/Until Clean):	clean
Borehole Outside Diametric:	NQ 3"

Measurement Units

Volume:	gal
Pressure:	psi
Length:	ft

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

hg = height of gauge obove ground level (m)

hs = depth to pre-test water level (m)

hf = frictional losses (m)

			0000 ()							K = T/b
										K = 1/D
Step	P (psi)	Pi (m)	gal/min	Q (m3/s)	R (m)	rb	(m)	T (m2/d)	126.5
	1	20	15.12	2.4	0.000151		5	0.038	7.78E-06	6.15E-08
	2	40	29.18	3.7	0.000233		5	0.038	6.22E-06	4.91E-08
	3	60	43.24	4.9	0.000309		5	0.038	5.56E-06	4.39E-08
	4	80	57.3	6.2	0.000391		5	0.038	5.31E-06	4.19E-08
	5	100	71.36	8.1	0.000511		5	0.038	5.57E-06	4.40E-08
	6	120	85.42	8	0.000505		5	0.038	4.59E-06	3.63E-08
	6a	100	71.36	6.9	0.000435		5	0.038	4.74E-06	3.75E-08
	5a	80	57.3	5.3	0.000334		5	0.038	4.53E-06	3.58E-08
	4a	60	43.24	4.6	0.00029		5	0.038	5.22E-06	4.12E-08

Client:	Avalon
Project:	Thor Lake
Project #:	1036222
Personnel:	Τι

Minutes Pressure Volume A Volume 0 20 0 1 1 20 0 1 2 20 0 1 0 40 0 1 1 40 0.7 1 2 40 1.2 1 3 40 1.8 1 4 40 2.3 1 5 40 3.1 1	
1 20 0 2 20 0 0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0
2 20 0 0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0
0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	-
1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	- 0.7
1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	- 0.7
2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0.7
3 40 1.8 4 40 2.3 5 40 2.7	
4 40 2.3 5 40 2.7	0.5
5 40 2.7	0.6
	0.5
6 10 21	0.4
	0.4
7 40 3.5	0.4
0 60 0	-
1 60 1.3	1.3
2 60 2.5	1.2
3 60 3.7	1.2
4 60 4.9	1.2
0 80 0	-
1 80 1.4	1.4
2 80 2.8	1.4
3 80 4.2	1.4
0 100 0	-
1 100 2	2
2 100 4	2
3 100 6	2

Collar E.I.:	1.06 m
Trend:	
Plunge:	
Date:	25-Mar-09

Pressure Interval						
Minutes	Pressure	Volume	∆ Volume			
0	80	0	-			
1	80	1.5	1.5			
2	80	2.9	1.4			
3	80	4.4	1.5			
4	80	5.8	1.4			
0	60	0	-			
1	60	1.2	1.2			
2	60	2.4	1.2			
3	60	3.6	1.2			
0	40	0	-			
1	40	0.7	0.7			
2	40	1.4	0.7			
3	40	2.2	0.8			
4	40	2.9	0.7			
	1	1	1			

Hole #	L09-152	
Design Tes	st Interval:	10 ft
Test #:		5
Measuren	nents:	
Depth to \	NT:	2.64
Top of Pac	ker Interval:	181'
Bottom of	Packer	
Interval (o	r Bottom of hole):	191'
Packer Int	. Midpoint	
(double pa	acker):	186'
Water Flu	shed:	
(Vol./Time	e/Until Clean):	clean
Packer Inf	lation Pressure:	
Stickup He	eight:	
Borehole (Outside Diametric:	NQ 3"
Packer Pip	e ID / or	
Drill Rod I	D:	
Measuren	nent Units	
Volume:	gal	
Pressure:	psi	
Length:	ft	
<u>Time</u>		

Start Packer Testing:	
Start Flushing:	
End Flushing:	
End Packer Testing:	

Pg + hg + hs - hf Pi =

- Pg =
- gauge pressure (m) height of gauge obove ground level (m) hg =

depth to pre-test water level (m) frictional losses (m) hs =

hf =

	metic	11033	ses (iii)						
									K = T/b
Step	P (psi) Р	i (m)	Q (gal/min)	Q (m3/s) R ((m)	rb (m)	T (m2/d)	3
	1	20	15.12	0	0	5	0.038	0	0.00E+00
	2	40	29.18	0.4	2.52E-05	5	0.038	6.72E-07	2.24E-07
	3	60	43.24	1.2	7.57E-05	5	0.038	1.36E-06	4.54E-07
	4	80	57.3	1.4	8.83E-05	5	0.038	1.2E-06	3.99E-07
	5	100	71.36	2	1.26E-04	5	0.038	1.37E-06	4.58E-07
	4a	80	57.3	1.4	8.83E-05	5	0.038	1.2E-06	3.99E-07
	3a	60	43.24	1.2	7.57E-05	5	0.038	1.36E-06	4.54E-07
	2a	40	29.18	0.7	4.42E-05	5	0.038	1.18E-06	3.92E-07

Client:	Avalon				
Project:	Thor Lake				
Project #:	1036222				
Personnel	JT				

Pressure I			
Minutes	Pressure	Volume	∆ Volume
0	20	0	-
1	20	1.4	1.4
2	20	2.6	1.2
3	20	3.7	1.1
4	20	4.9	1.2
5	20	6	1.1
0	40	0	
-	40	0	3.2
1	40	3.2	
2	40	6.3	3.1
3	40	9.4	3.1
4	40	12.3	2.9
5	40	15.1	2.8
6	40	18	2.9
7	40	20.8	2.8
0	60	0	-
1	60	5	5
2	60	9.6	4.6
3	60	13.3	3.7
4	60	13.5	3.7
5	60	20.7	3.7
,	00	20.7	5.7
0	80	0	-
1	80	6.5	6.5
2	80	13	6.5
3	80	19.4	6.4
4	80	25.8	6.4
0	100	0	-
1	100	8.7	8.7
2	100	16.5	7.8
3	100	24.7	8.2
4	100	32.7	8
5	100	40.8	8.1
6	100	48.8	8
7	100	56.8	8
		1	

Collar E.I.:	1.06 m				
Trend:					
Plunge:					
Date:	25-Mar-09				

MinutesPressureVolumeΔ Volume0800-1803.43.42808.75.338014.65.948020.25.658025.35.168033.45.188040.55.178035.45.188040.55.17600-1601.81.82605.63.83609.53.946013.43.956017.13.766020.83.776024.63.83111924.63.811111111111111113609.53.946013.43.956017.13.766020.83.77620.83.771111111111111111111111111111111111	Pressure I	Pressure Interval						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minutes	Pressure	Volume	∆ Volume				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	80	0	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	80	3.4	3.4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	80	8.7	5.3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	80	14.6	5.9				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	80	20.2	5.6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	80	25.3	5.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	80	30.3	5				
0 60 0 - 1 60 1.8 1.8 2 60 5.6 3.8 3 60 9.5 3.9 4 60 13.4 3.9 5 60 17.1 3.7 6 60 20.8 3.7	7	80	35.4	5.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	80	40.5	5.1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2 60 5.6 3.8 3 60 9.5 3.9 4 60 13.4 3.9 5 60 17.1 3.7 6 60 20.8 3.7	0	60	0	-				
3 60 9.5 3.9 4 60 13.4 3.9 5 60 17.1 3.7 6 60 20.8 3.7	1	60	1.8	1.8				
4 60 13.4 3.9 5 60 17.1 3.7 6 60 20.8 3.7	2	60	5.6	3.8				
5 60 17.1 3.7 6 60 20.8 3.7	3	60	9.5	3.9				
6 60 20.8 3.7	4	60	13.4	3.9				
	5	60	17.1	3.7				
	6	60	20.8	3.7				
Image: second	7	60	24.6	3.8				
Image: second								
Image: second								
Image: second								
Image: second								
Image: second								
Image: state								
Image: select								
Image: second								
Image: second								
Image: second								
Image: Constraint of the sector of								
Image: Constraint of the sector of		1						
Image: Constraint of the sector of		1						
Image: Constraint of the sector of		1	1					
		+						
		1						
		1						
		1	+					
		+						
		1						

Hole # L09-152	
Design Test Interval:	10 ft
Test #:	6
Measurements:	
Depth to WT:	3.3
Top of Packer Interval:	61'
Bottom of Packer	
Interval (or Bottom of hole):	71'
Packer Int. Midpoint	
(double packer):	66'
Water Flushed:	
(Vol./Time/Until Clean):	clean
Packer Inflation Pressure:	
Stickup Height:	
Borehole Outside Diametric:	NQ 3"
Packer Pipe ID / or	
Drill Rod ID:	

2.24

Measurement Units

Volume:	gal
Pressure:	psi
Length:	ft

<u>Time</u>

Start Packer Testing:	
Start Flushing:	
End Flushing:	
End Packer Testing:	

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

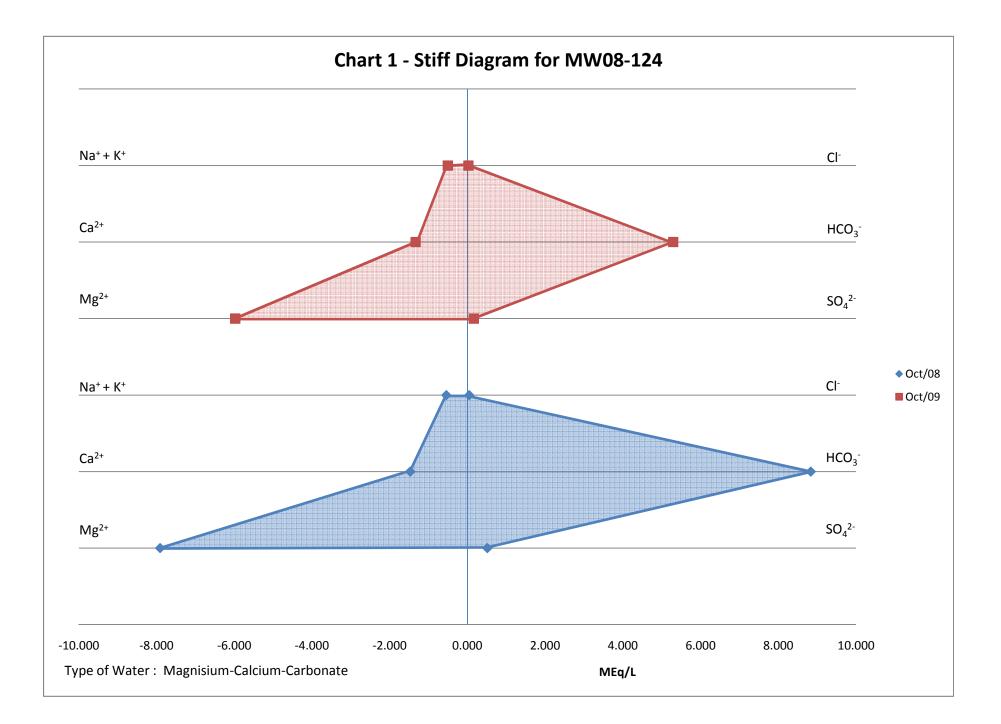
height of gauge above ground level (m) depth to pre-test water level (m) hg =

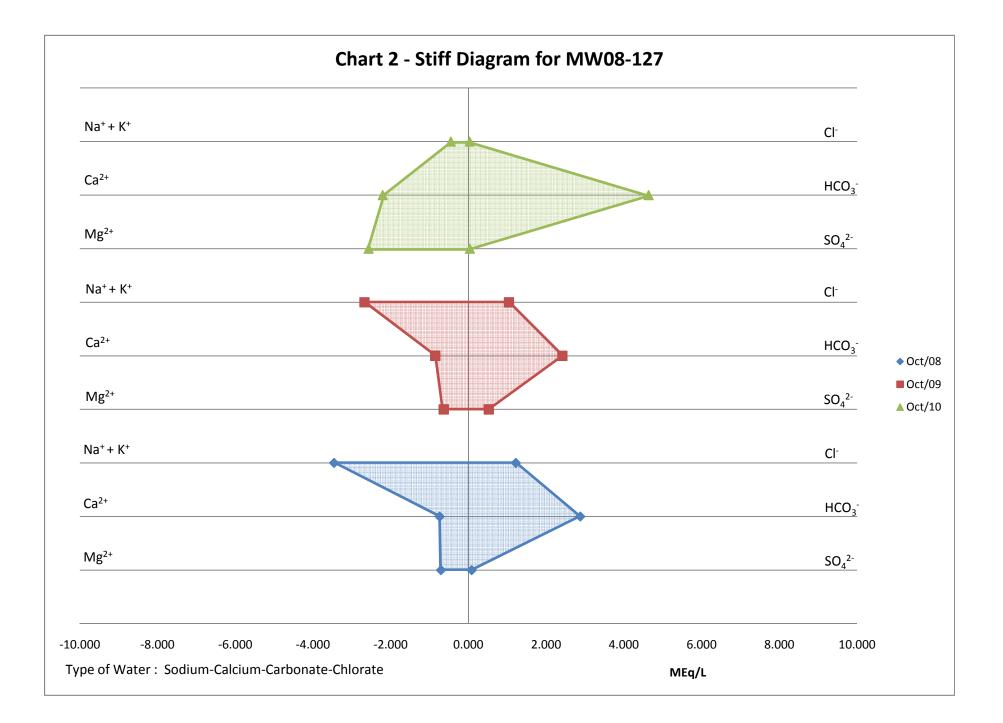
hs =

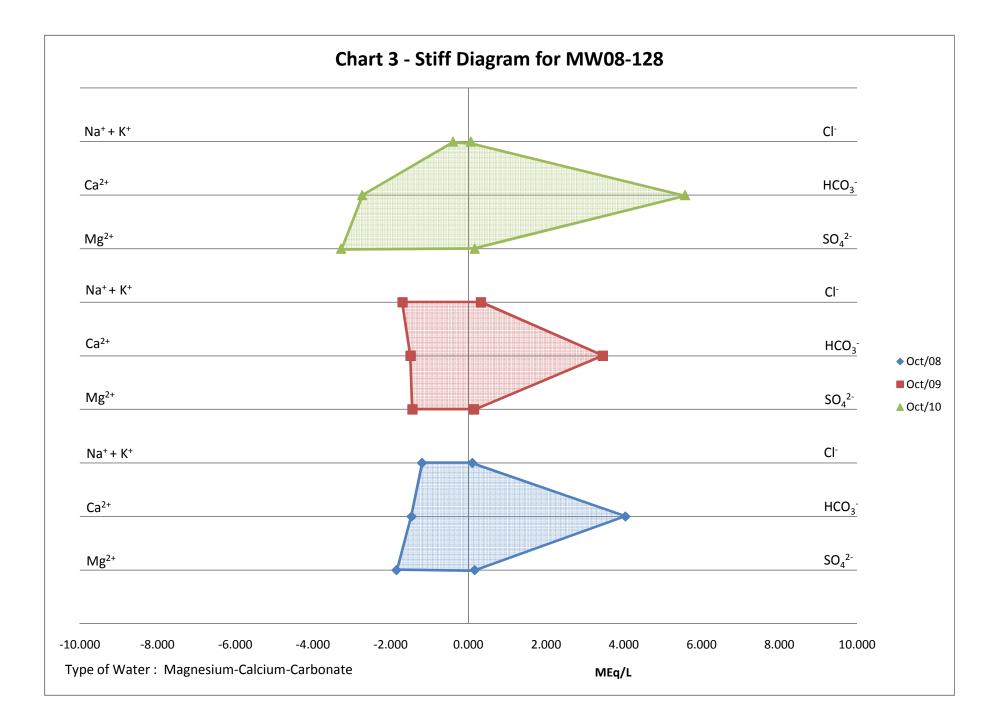
hf = frictional losses (m)

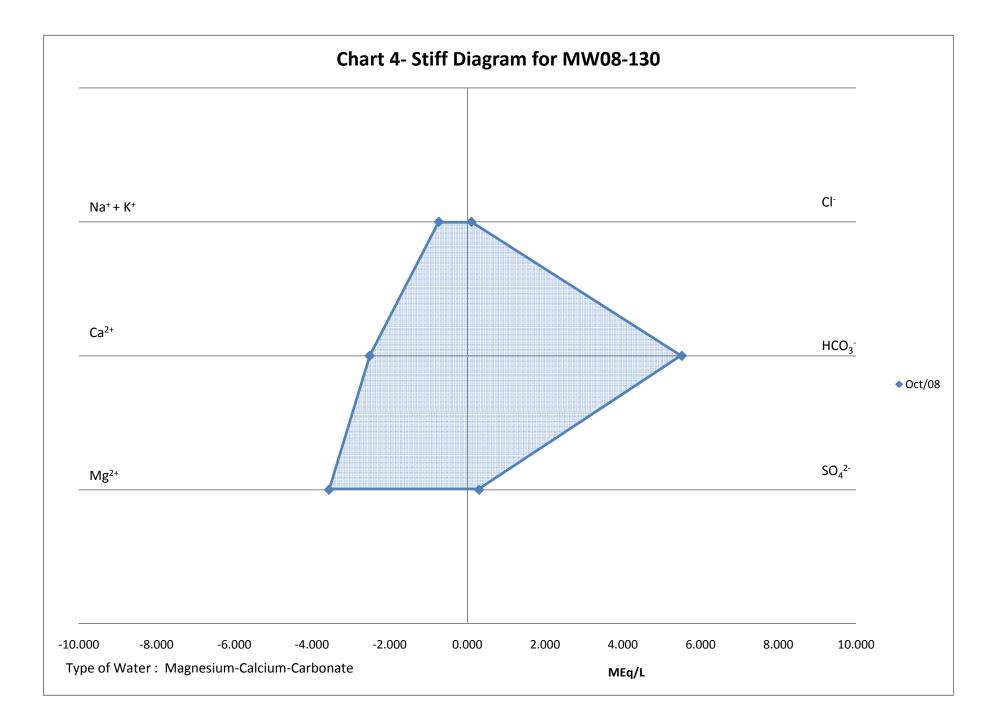
			,								
										K = T/b	b = length of test interval
Step	P (psi)	Pi (m)	Gal/Min	Q (m3/s)	R (m)	1	rb (m)	T (m2/d)	3	
	1	20	17.8	1.2	0.00007572		10	0.0379	3.78E-06	1.26E-06 m/s	
	2	40	31.86	2.9	0.00018299		10	0.0379	5.10E-06	1.70E-06 m/s	
	3	60	45.92	3.7	0.00023347		10	0.0379	4.51E-06	1.50E-06 m/s	
	4	80	59.98	6.4	0.00040384		10	0.0379	5.98E-06	1.99E-06 m/s	
	5	100	74.04	8	0.0005048		10	0.0379	6.05E-06	2.02E-06 m/s	
	4a	80	59.98	5.1	0.00032181		10	0.0379	4.76E-06	1.59E-06 m/s	
	3a	60	45.92	3.8	0.00023978		10	0.0379	4.64E-06	1.55E-06 m/s	

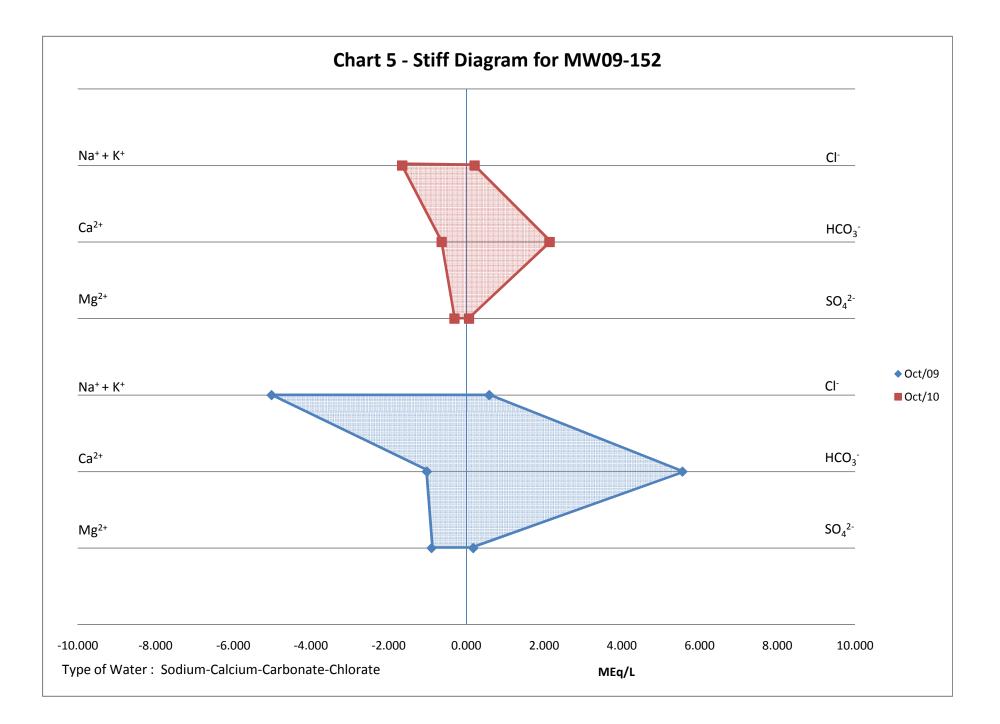
Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

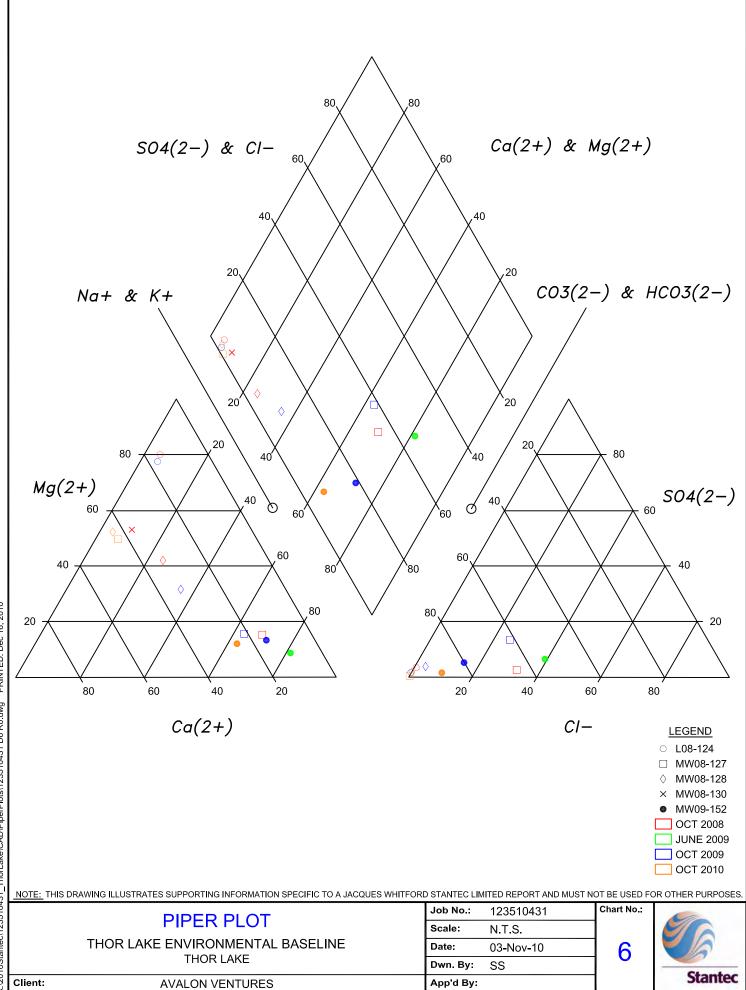

Appendix E – Hydrogeochemical Plots






Hydrogeochemical Plots


One Team. Infinite Solutions.



STANTEC © 2010

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

Appendix F – Laboratory Certificates

Laboratory Certificates

One Team. Infinite Solutions.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

10

	Contificate of Apolysia									
Certificate of Analysis JACQUES WHITFORD AXYS LTD. ATTN: JENNIFER TODD 4370 DOMINION ST 5TH FLOOR Reported On: 10-OCT-08 04:33 PM										
BURNABY BC V5G	G 4L7									
Lab Work Order #:	L688290	Date Receive	d: 26-SEP-08							
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers: Other Information:	1036222.OD / Z9100 1036222.OD / Z9100 AVALON VENTURES - THOR LAKE C048742									
	etection limits for some metals have been increased due to high levels of metals analysis.	s in the samples o	or interferences encountered							
	Bryan Mark Account Manager									

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L688290 CONTD Ρ

ALS LABORATORY GROUP ANALYTICAL REPORT

P	AGE	2	of	6	
1	0-00	CT-08	16:	32	

	Sample ID	L688290-1	L688290-2	L688290-3	
	Description Sampled Date				
	Sampled Time	20-SEP-08	20-SEP-08	21-SEP-08	
	Client ID	MWL08-127	MWL08-128	MWL08-130	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	878	482	557	
	Hardness (as CaCO3) (mg/L)	142	261	282	
	рН (рН)	8.15	7.59	8.10	
	Total Suspended Solids (mg/L)	33.0	49.5	14.5	
	Total Dissolved Solids (mg/L)	487	335	331	
	Turbidity (NTU)	13.0	79.3	4.05	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	287	251	266	
	Ammonia as N (mg/L)	<0.020	0.581	0.066	
	Bromide (Br) (mg/L)	0.358	<0.25	<0.050	
	Chloride (CI) (mg/L)	108	3.6	3.48	
	Fluoride (F) (mg/L)	2.54	1.29	1.05	
	Nitrate (as N) (mg/L)	<0.0050	<0.025	5.07	
	Nitrite (as N) (mg/L)	<0.0010	0.0137	0.227	
	Total Kjeldahl Nitrogen (mg/L)	0.477	1.88	0.813	
	Ortho Phosphate as P (mg/L)	<0.0010	0.0016	<0.0010	
	Total Phosphate as P (mg/L)	0.024	0.030	0.0062	
	Sulfate (SO4) (mg/L)	1.00	4.8	14.9	
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	10.4	30.9	16.0	
Total Metals	Aluminum (Al)-Total (mg/L)	0.566	0.552	0.811	
	Antimony (Sb)-Total (mg/L)	<0.0010	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	0.0017	0.0231	0.00102	
	Barium (Ba)-Total (mg/L)	0.044	0.179	0.440	
	Beryllium (Be)-Total (mg/L)	<0.0020	<0.0010	<0.0010	
	Boron (B)-Total (mg/L)	0.67	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.000316	0.000430	0.000156	
	Calcium (Ca)-Total (mg/L)	24.3	49.1	48.3	
	Chromium (Cr)-Total (mg/L)	<0.0020	0.0013	0.0071	
	Cobalt (Co)-Total (mg/L)	<0.00060	0.00146	0.00316	
	Copper (Cu)-Total (mg/L)	0.0276	0.0033	0.0402	
	Iron (Fe)-Total (mg/L)	0.837	8.89	2.69	
	Lead (Pb)-Total (mg/L)	<0.0010	0.00253	0.00360	
	Lithium (Li)-Total (mg/L)	0.051	0.0161	0.0154	
	Magnesium (Mg)-Total (mg/L)	19.8	33.6	39.1	
	Manganese (Mn)-Total (mg/L)	0.190	0.490	0.123	
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	
	Molybdenum (Mo)-Total (mg/L)	0.0286	0.0241	0.0559	
	Nickel (Ni)-Total (mg/L)	0.0020	0.0035	0.0108	
	Potassium (K)-Total (mg/L)	5.9	7.8	3.9	

L688290 CONTD.... PAGE 3 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT ^{10-OCT-08 16:32}

		1	1	1	1	1
	Sample ID Description	L688290-1	L688290-2	L688290-3		
	Sampled Date Sampled Time	20-SEP-08	20-SEP-08	21-SEP-08		
-	Client ID	MWL08-127	MWL08-128	MWL08-130		
Grouping	Analyte					
WATER						
Total Metals	Selenium (Se)-Total (mg/L)	<0.0020	<0.0010	0.0011		
	Silver (Ag)-Total (mg/L)	0.000396	0.000332	0.00351		
	Sodium (Na)-Total (mg/L)	131	11.8	16.6		
	Thallium (TI)-Total (mg/L)	<0.00040	<0.00020	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.0010	<0.00050	0.00053		
	Titanium (Ti)-Total (mg/L)	<0.010	0.010	0.016		
	Uranium (U)-Total (mg/L)	0.0132	0.0266	0.00273		
	Vanadium (V)-Total (mg/L)	<0.0020	0.0021	<0.0010		
	Zinc (Zn)-Total (mg/L)	0.0091	0.0140	0.0118		
Speciated Metals	Chromium, Hexavalent (mg/L)	<0.001	<0.001	<0.001		

Reference Information

Additional Comment	s for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if ap	plicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
LK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried colourimetric method.	out using pro	cedures adapted from EPA Method 310.2 "A	Ikalinity". Total Alkalinity is determined using the methyl orange
LK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
			Alkalinity". Total alkalinity is determined by potentiometric titration to from phenolphthalein alkalinity and total alkalinity values.
NIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		Determination of Anions by Ion Chromatography" and EPA Method aly determined by this method include: bromide, chloride, fluoride,
NIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		Determination of Anions by Ion Chromatography" and EPA Method aly determined by this method include: bromide, chloride, fluoride,
NIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		Determination of Anions by Ion Chromatography" and EPA Method aly determined by this method include: bromide, chloride, fluoride,
NIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		Determination of Anions by Ion Chromatography" and EPA Method aly determined by this method include: bromide, chloride, fluoride,
NIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		Determination of Anions by Ion Chromatography" and EPA Method aly determined by this method include: bromide, chloride, fluoride,
NIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		Determination of Anions by Ion Chromatography" and EPA Method aly determined by this method include: bromide, chloride, fluoride,
ARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using pro	cedures adapted from APHA Method 5310	Total Organic Carbon (TOC)".
R-CR6-ED	Water	Chromium, Hexavalent (Cr +6)	APHA 3500-Cr C (Ion Chromatography)
C-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried electrode.	out using pro	cedures adapted from APHA Method 2510 "(Conductivity". Conductivity is determined using a conductivity

Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents. HG-TOT-CCME-CVAFS- Water Total Mercurv in Water by CVAFS (CCME) EPA 245.7 VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7). Total Metals in Water by ICPOES (CCME) MET-TOT-CCME-ICP-VA Water EPA SW-846 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B). MET-TOT-CCME-MS-VA Water Total Metals in Water by ICPMS (CCME) EPA SW-846 3005A/6020A This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A). NH3-SIE-VA Water APHA 4500-NH3 "Nitrogen (Ammonia)" Ammonia by SIE This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value" This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode PO4-DO-COL-VA Water Dissolved ortho Phosphate by Color APHA 4500-P "Phosphorous" This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate. PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P "Phosphorous" This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate. **TDS-VA** Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-SIE-VA** Water Total Kjeldahl Nitrogen by SIE APHA 4500-Norg (TKN) This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode. **TSS-VA** Water Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

L688290 CONTD.... PAGE 5 of 6

Methods Listed (if applicable):

·	,		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 "Turbidity"

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

REFER TO BACK	RELINQUISHED BY	Ву	-						2	-	Sample #	(lab use only)	PHONE:		ADDRESS:	CONTACT:	COMPANY:	INVOICE TO:	PHONE:	Bunaby	ADDRESS:	CONTACT:	COMPANY:	REPORT TO:	Enviror	ALS
PAGE FOR REGIONAL	HED BY:	F se of this form the	CCHE	GUIDELINES / REGULATIONS	6			MW 1-00- 150	-	12	(This description will appear on the report)	#	FAX:				Y	SAME AS REPORT ?	04 436 3014 FAX: 604	-	ASTO DON	5	r: Jacques Whitfoud	10:	Environmental Division	
LOCATIONS AND SAM	DATE & TIME: R	ilure to complete user acknowledge		JLATIONS		1	* TKN				ppear on the report		0	E	P	L	0	ES INO II	436 3752	-	St. STITYLOON E	-	AXKS S	77	ALS	
MPLING INFORMATION	RECEIVED BY.	ailure to complete all portions of this form may delay analysis. user acknowledges and agrees with the Terms and Conditions	QAIQC				, Ampronia All	Xp 21,00	Sept 20.08	Sept 20,08) DATE		QUOTE #:	Legal Site Description: That	PO /AFE:	JOB# 1036222.02	CLIENT / PROJECT INFORMATION:	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)		EMAIL 2: 0	EMAIL 1: jenniler. to	PDF V EXCEL V CUS	STANDARD COTHER	REPORT FORMAT / DISTRIBUTION	www.a	CHAIN OF CUSTOD
WHITE - REPORT COPY, PIN	1 Pook Sot 26	may delay analysis. Ple erms and Conditions as s	- EDT.	SPECIAL INSTRUCTIONS /			sampled sept			Groundwater	TIME SAMPLE TYPE	(Initials): JT	Lake	low Ventures - That		00152/	FION:	RESERVED (F/P) $\rightarrow \rightarrow -$		0	todd @ lang wanhit	CUSTOM FAX	(R)	TION	www.alsenviro.com	CANADA TOUL EREF 1-800-668-9878
WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY	COND SAMPLE COND	 Please fill in this form LEGIBLY. as specified on the reverse page of the white report copy. 		HAZARDOUS			24.200	C C C C C C C C C C C C C C C C C C C	2 2 2	222	To Cr Anit TK	CV Drb TSS O-PC N	34	te CE	A	Plai It d,	r sthc)	NA AAAA	ANALYS		Or PRIORITY SERVICE (1 DAY or ASAP	RUSH SERVICE (2-3 DAYS)	REGULAR SERVICE (DEFAULT)	SERVICE REQUESTED	L 6883 J	
COPY GENF14.00	SAMPLES RECEIVED IN GOOD CONDITION YES	of the white report copy.		DETAILS						5		ARDC		2	ATE	=D 2			ANALYSIS REQUEST	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	л ASAP)	PACKS -	LT)		+ of 0	
00	ON /	2				1		U	nu			BER C								S	L				3	-

REFER TO BACK	RELINQUISHED BY	Ву	-						2	-	Sample #	(lab use only)	PHONE:		ADDRESS:	CONTACT:	COMPANY:	INVOICE TO:	PHONE:	Bunaby	ADDRESS:	CONTACT:	COMPANY:	REPORT TO:	Enviror	ALS
PAGE FOR REGIONAL	HED BY:	F se of this form the	CCHE	GUIDELINES / REGULATIONS	6			MW 1-00- 150	-	12	(This description will appear on the report)	#	FAX:				Y	SAME AS REPORT ?	04 436 3014 FAX: 604	-	ASTO DON	5	r: Jacques Whitfoud	10:	Environmental Division	
LOCATIONS AND SAM	DATE & TIME: R	ilure to complete user acknowledge		JLATIONS		1	* TKN				ppear on the report		0	E	P	L	0	ES INO II	436 3752	-	St. STITYLOON E	-	AXKS S	77	ALS	
MPLING INFORMATION	RECEIVED BY.	ailure to complete all portions of this form may delay analysis. user acknowledges and agrees with the Terms and Conditions	QAIQC				, Ampronia All	Xp 21,00	Sept 20.08	Sept 20,08) DATE		QUOTE #:	Legal Site Description: That	PO /AFE:	JOB# 1036222.02	CLIENT / PROJECT INFORMATION:	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)		EMAIL 2:	EMAIL 1: jenniler. to	PDF V EXCEL V CUS	STANDARD COTHER	REPORT FORMAT / DISTRIBUTION	www.a	CHAIN OF CUSTOD
WHITE - REPORT COPY, PIN	1 Pook Sot 26	may delay analysis. Ple erms and Conditions as s	- EDT.	SPECIAL INSTRUCTIONS /			sampled sept			Groundwater	TIME SAMPLE TYPE	(Initials): JT	Lake	low Ventures - That		00152/	FION:	RESERVED (F/P) $\rightarrow \rightarrow -$		0	todd @ lang wanhit	CUSTOM FAX	(R)	TION	www.alsenviro.com	CANADA TOUL EREF 1-800-668-9878
WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY	COND SAMPLE COND	 Please fill in this form LEGIBLY. as specified on the reverse page of the white report copy. 		HAZARDOUS			24.200	C C C C C C C C C C C C C C C C C C C	2 2 2	222	To Cr Anit TK	CV Drb TSS O-PC N	34	te CE	A	Plai It d,	r sthc)	NA AAAA	ANALYS		Or PRIORITY SERVICE (1 DAY or ASAP	RUSH SERVICE (2-3 DAYS)	REGULAR SERVICE (DEFAULT)	SERVICE REQUESTED	L 6883 J	
COPY GENF14.00	SAMPLES RECEIVED IN GOOD CONDITION YES	of the white report copy.		DETAILS						5		ARDC		2	ATE	=D 2			ANALYSIS REQUEST	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	л ASAP)	PACKS -	LT)		+ of 0	
00	ON /	2				1		U	nu			BER C								S	L				3	-

Part of the ALS Laboratory Group

Toll Free: 1-800-668-9878 Manitoba: 1-800-607-7555

1988 Triumph Street, Vancouver, BC V5L 1K5

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

ALS LABORATORY GROUP SAMPLE RECEIPT CONFIRMATION

Company:	JACQUES WHITF	ORD AXYS LTD.
ATTN:	JENNIFER TODD	
Fax Number: Account Manager:	604-436-3752 NATASHA MARKC	VIC-MIROVIC
Job Reference: Project P.O. #: Date Sampled: Date Received: Sampled By: Workorder #:	1036222.OD / Z91 1036222.OD / Z9100 20-SEP-08 26-SEP-08 JT L688290	
Chain of Custody #:	C048742	

Sample #/SampleID/DateSampled/DateDue: L688290-1/MWL08-127/20-SEP-08/09-OCT-08

Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	
Water	Anions by Ion Chromatography	
	Bromide by Ion Chromatography	
	Chloride by Ion Chromatography	
	Fluoride by Ion Chromatography	
	Nitrite by Ion Chromatography	
	Nitrate by Ion Chromatography	
	Sulfate by Ion Chromatography	
Water	Total organic carbon by combustion	
Water	Chromium, Hexavalent (Cr +6)	
Water	Conductivity (Automated)	
Water	Total Metals in Water (CCME/BCWQG)	
	Hardness	
	Total Mercury in Water by CVAFS (CCME)	
	Total Metals in Water by ICPOES (CCME)	
	Total Metals in Water by ICPMS (CCME)	
Water	Ammonia by SIE	
Water	pH by Meter (Automated)	
Water	Dissolved ortho Phosphate by Color	
Water	Total Phosphate P by Color	
Misc.	Handling/Disposal Fee	

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

Sample #	/SampleID/DateSampled/DateDue: L	688290-1/MWL08-127/20-SEP-08/09-OCT-08
Matrix	Product Description	Product Due*
Water	Total Dissolved Solids by Gravimetric	
Water	Total Kjeldahl Nitrogen by SIE	
Water	Solids by Gravimetric	
Water	Turbidity by Meter	
Sample #	/SampleID/DateSampled/DateDue: L	688290-2/MWL08-128/20-SEP-08/09-OCT-08
Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	
Water	Anions by Ion Chromatography	
	Bromide by Ion Chromatography	
	Chloride by Ion Chromatography	
	Fluoride by Ion Chromatography	
	Nitrite by Ion Chromatography	
	Nitrate by Ion Chromatography	
	Sulfate by Ion Chromatography	
Water	Total organic carbon by combustion	
Water	Chromium, Hexavalent (Cr +6)	
Water	Conductivity (Automated)	
Water	Total Metals in Water (CCME/BCWQG)	
	Hardness	
	Total Mercury in Water by CVAFS (CC	ME)
	Total Metals in Water by ICPOES (CC	ME)
	Total Metals in Water by ICPMS (CCM	IE)
Water	Ammonia by SIE	
Water	pH by Meter (Automated)	
Water	Dissolved ortho Phosphate by Color	
Water	Total Phosphate P by Color	
Misc.	Handling/Disposal Fee	
Water	Total Dissolved Solids by Gravimetric	
Water	Total Kjeldahl Nitrogen by SIE	
Water	Solids by Gravimetric	
Water	Turbidity by Meter	
Sample #	/SampleID/DateSampled/DateDue: L	688290-3/MWL08-130/21-SEP-08/09-OCT-08
Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	

Water Alkalinity by Colourimetric (Automated)

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

Sample #/SampleID/DateSampled/DateDue: L688290-3/MWL08-130/21-SEP-08/09-OCT-08

Matrix	Product Description Product Due*
Water	Anions by Ion Chromatography
Water	Bromide by Ion Chromatography
	Chloride by Ion Chromatography
	Fluoride by Ion Chromatography
	Nitrite by Ion Chromatography Nitrate by Ion Chromatography
	Sulfate by Ion Chromatography
Matan	
Water	Total organic carbon by combustion
Water	Chromium, Hexavalent (Cr +6)
Water	Conductivity (Automated)
Water	Total Metals in Water (CCME/BCWQG)
	Hardness
	Total Mercury in Water by CVAFS (CCME)
	Total Metals in Water by ICPOES (CCME)
	Total Metals in Water by ICPMS (CCME)
Water	Ammonia by SIE
Water	pH by Meter (Automated)
Water	Dissolved ortho Phosphate by Color
Water	Total Phosphate P by Color
Misc.	Handling/Disposal Fee
Water	Total Dissolved Solids by Gravimetric
Water	Total Kjeldahl Nitrogen by SIE
Water	Solids by Gravimetric
Water	Turbidity by Meter
* INDICATES	ESTIMATED COMPLETION DATE OF REQUESTED PRODUCT IF DIFFERENT THAN THE ESTIMATED COMPLETION DATE.

Notice of Sub-contract Laboratory Service

Please be advised that the following tests will be subcontracted to the corresponding laboratory:

Chromium, Hexavalent (Cr +6) Subcontracted to: ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

Please contact your Account Manager immediately should you have questions or concerns regarding this arrangement. Approval of this arrangement shall be implied unless otherwise notified by you.

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

10

	Certificate of Analysis
JACQUES WHITFO	-
ATTN: JENNIFER	
PO BOX 21	REET, 5TH FLOOR Reported On: 30-OCT-08 04:38 PM
BURNABY BC V50	5 4L7
Lab Work Order #:	L694303 Date Received: 10-OCT-08
Project P.O. #:	
Job Reference:	1036222.02./79100
Legal Site Desc:	08 011247
CofC Numbers:	08-011347
Other Information:	
corres	ome of the submitted water samples, the measured concentration of specific dissolved parameters is greater than the sponding total parameters concentration. The explanation for these findings is one or a combination of the following: soratory method variability;
- bia - fie - fie	Id sampling method variability; as introduced during general handling, filtering, storage, transportation and/or analysis of the sample; Id sample grab bias - where separate grab samples are processed to produce total and dissolved samples; Id sample split bias - where total and dissolved parameters samples are produced from the same grab sample. Irther clarification on any of the above information, please contact your ALS account manager.
	MM
	Henry Illa &
	1 million
	Bryan Mark
	Account Manager

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L694303 CONTD

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE	2	of	6
30-OCT	-08	16:	35

	Sample ID Description Sampled Date Sampled Time Client ID	L694303-1 WATER 08-OCT-08 MWL08-124	L694303-2 WATER 09-OCT-08 10:00 MWL08-127	L694303-3 WATER 08-OCT-08 MWL08-128	L694303-4 WATER 07-OCT-08 MWL08-130	
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	738	405	382	558	
	Hardness (as CaCO3) (mg/L)	469	72.6	166	304	
	рН (рН)	8.25	8.16	7.90	8.21	
	Total Suspended Solids (mg/L)	110	213	29.2	3.2	
	Total Dissolved Solids (mg/L)	422	291	258	335	
	Turbidity (NTU)	171	1150	42.2	2.69	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	442	144	202	276	
	Ammonia as N (mg/L)	<0.020	0.024	0.610	0.070	
	Bromide (Br) (mg/L)	<0.050	<0.25	<0.25	<0.050	
	Chloride (Cl) (mg/L)	1.55	43.2	3.5	3.68	
	Fluoride (F) (mg/L)	2.41	1.37	0.97	1.04	
	Nitrate (as N) (mg/L)	0.475	<0.025	<0.025	5.55	
	Nitrite (as N) (mg/L)	0.0254	0.0079	0.0078	0.237	
	Total Kjeldahl Nitrogen (mg/L)	0.470	2.19	1.79	0.872	
	Ortho Phosphate as P (mg/L)	<0.0010	0.0087	<0.0010	<0.0010	
	Total Phosphate as P (mg/L)	<0.020	0.066	0.163	0.0044	
	Sulfate (SO4) (mg/L)	24.5	4.0	7.7	14.4	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	7.78	28.7	25.5	15.8	
	Total Organic Carbon (mg/L)	14.4	48.9	26.9	15.6	
Total Metals	Aluminum (Al)-Total (mg/L)	1.14	37.0	0.302	0.178	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.0025	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	0.00067	0.0067	0.00512	0.00054	
	Barium (Ba)-Total (mg/L)	0.160	0.473	0.156	0.407	
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010	
	Boron (B)-Total (mg/L)	<0.10	0.33	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.000254	0.000287	0.000282	0.000060	
	Calcium (Ca)-Total (mg/L)	30.9	17.6	29.1	50.5	
	Chromium (Cr)-Total (mg/L)	0.0104	0.0489	0.0010	<0.0010	
	Cobalt (Co)-Total (mg/L)	0.00439	0.0143	0.00138	0.00349	
	Copper (Cu)-Total (mg/L)	0.0256	0.0804	0.0029	0.0272	
	Iron (Fe)-Total (mg/L)	32.1	37.4	14.5	0.303	
	Lead (Pb)-Total (mg/L)	0.00069	0.0146	0.00103	<0.00050	
	Lithium (Li)-Total (mg/L)	0.0208	0.075	0.0147	0.0126	
	Magnesium (Mg)-Total (mg/L)	94.1	17.2	22.1	43.0	
	Manganese (Mn)-Total (mg/L)	0.188	0.619	0.552	0.100	
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.00010	<0.000020	<0.000020	
	Molybdenum (Mo)-Total (mg/L)	0.0215	0.0359	0.0177	0.0456	
	Nickel (Ni)-Total (mg/L)	0.0075	0.0396	0.0036	0.0115	

L694303 CONTD.... PAGE 3 of 6 30-OCT-08 16:35

ALS LABORATORY GROUP ANALYTICAL REPORT 30-OCT-08 16:35

	Sample ID Description Sampled Date Sampled Time Client ID	L694303-1 WATER 08-OCT-08 MWL08-124	L694303-2 WATER 09-OCT-08 10:00 MWL08-127	L694303-3 WATER 08-OCT-08 MWL08-128	L694303-4 WATER 07-OCT-08 MWL08-130
Grouping	Analyte				
WATER					
Total Metals	Potassium (K)-Total (mg/L)	3.9	10.5	4.1	3.1
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	0.00470	0.00229	0.000171	0.00377
	Sodium (Na)-Total (mg/L)	10.6	74.5	22.3	13.8
	Thallium (TI)-Total (mg/L)	<0.00020	<0.0010	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	0.00196	<0.0025	0.00176	0.00106
	Titanium (Ti)-Total (mg/L)	0.018	0.696	0.010	< 0.010
	Uranium (U)-Total (mg/L)	0.0197	0.0035	0.00382	0.00235
	Vanadium (V)-Total (mg/L)	0.0013	0.0642	0.0012	<0.00233
	Zinc (Zn)-Total (mg/L)	0.0188	0.0987	0.0139	0.0052
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0065	15.3	0.0338	0.0077
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.0025	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	<0.00050	0.0027	0.00233	0.00065
	Barium (Ba)-Dissolved (mg/L)	0.084	0.257	0.143	0.401
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	<0.10	0.31	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	0.000206	0.000249	0.000018
	Calcium (Ca)-Dissolved (mg/L)	29.5	14.9	29.3	50.4
	Chromium (Cr)-Dissolved (mg/L)	0.0013	0.0179	<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)	0.00178	0.0057	0.00126	0.00328
	Copper (Cu)-Dissolved (mg/L)	0.0046	0.0474	<0.00120	0.0182
	Iron (Fe)-Dissolved (mg/L)	0.133	8.85	10.8	< 0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	0.0066	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	0.0194	0.043	0.0152	0.0127
	Magnesium (Mg)-Dissolved (mg/L)	96.1	8.59	22.5	43.3
	Magnese (Mn)-Dissolved (mg/L)	0.0506	0.260	0.544	0.0888
	Marganose (Mir) Dissolved (mg/L) Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.00010	<0.00020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	0.0119	0.0345	0.0194	0.0466
	Nickel (Ni)-Dissolved (mg/L)	0.0024	0.0151	0.0027	0.0108
	Potassium (K)-Dissolved (mg/L)	3.4	6.6	4.2	3.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Silver (Ag)-Dissolved (mg/L)	<0.000020	0.00133	0.000031	<0.000020
	Sodium (Na)-Dissolved (mg/L)	10.5	72.9	23.3	13.9
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.0010	<0.00020	<0.00020
	Tin (Sn)-Dissolved (mg/L)	<0.00050	0.0027	0.00071	0.00333
	Titanium (Ti)-Dissolved (mg/L)	<0.010	0.354	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.0199	0.0027	0.00324	0.00230
	Vanadium (V)-Dissolved (mg/L)	<0.0010	0.0229	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	0.0327	0.0090	0.0061

L694303 CONTD.... PAGE 4 of 6 30-OCT-08 16:35

Additional Comments	for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	licable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automate	d) APHA 310.2
This analysis is carried or colourimetric method.	ut using proc	cedures adapted from EPA Method 310.2	"Alkalinity". Total Alkalinity is determined using the methyl orange
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
			0 "Alkalinity". Total alkalinity is determined by potentiometric titration to ted from phenolphthalein alkalinity and total alkalinity values.
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		0 "Determination of Anions by Ion Chromatography" and EPA Method tinely determined by this method include: bromide, chloride, fluoride,
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		0 "Determination of Anions by Ion Chromatography" and EPA Method tinely determined by this method include: bromide, chloride, fluoride,
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		0 "Determination of Anions by Ion Chromatography" and EPA Method tinely determined by this method include: bromide, chloride, fluoride,
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		0 "Determination of Anions by Ion Chromatography" and EPA Method tinely determined by this method include: bromide, chloride, fluoride,
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		0 "Determination of Anions by Ion Chromatography" and EPA Method tinely determined by this method include: bromide, chloride, fluoride,
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An		0 "Determination of Anions by Ion Chromatography" and EPA Method tinely determined by this method include: bromide, chloride, fluoride,
CARBONS-DOC-VA	Water	Dissolved organic carbon by combus	tion APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
		cedures adapted from APHA Method 531 ough a 0.45 micron membrane filter prior	0 "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are to analysis.
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
This analysis is carried o	ut using proc	cedures adapted from APHA Method 531	0 "Total Organic Carbon (TOC)".
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried of electrode.	ut using proc	cedures adapted from APHA Method 251	0 "Conductivity". Conductivity is determined using a conductivity

L694303 CONTD.... PAGE 5 of 6

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

HARDNESS-CALC-VA Water Hardness

Water

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Diss. Mercury in Water by CVAFS (CCME)

Total Mercury in Water by CVAFS (CCME)

Diss. Metals in Water by ICPOES (CCME)

VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CCME-CVAFS- Water

MET-DIS-CCME-ICP-VA Water

HG-DIS-CCME-CVAFS-

VA. This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to

reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

EPA SW-846 3005A/6010B

APHA 2340B

EPA 3005A/245.7

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

ME) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

МЕТ-ТОТ-ССМЕ-М	S-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

6020A).

Water Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

PH-PCT-VA

Water pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the

L694303 CONTD.... PAGE 6 of 6

ALS Test Code	Matrix	Test Description	Analy	rtical Method Reference(Based On)
phosphate (total phos	phorous) is dete	ermined after persulphate dige	solved reactive phosphorous) is determine stion of a sample. Total dissolved phospha ilter followed by persulfate digestion of the	te (total dissolved phosphorous) is
PO4-T-COL-VA	Water	Total Phosphate P by Colo	or APHA	A 4500-P "Phosphorous"
ascorbic acid colourin phosphate (total phos	netric method. D phorous) is dete	Dissolved ortho-phosphate (distermined after persulphate dige	lethod 4500-P "Phosphorus". All forms of p solved reactive phosphorous) is determine stion of a sample. Total dissolved phospha ilter followed by persulfate digestion of the	d by direct measurement. Total te (total dissolved phosphorous) is
TDS-VA	Water	Total Dissolved Solids by	Gravimetric APHA	A 2540 C - GRAVIMETRIC
			lethod 2540 "Solids". Solids are determine r, TDS is determined by evaporating the fil	
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by	SIE APHA	A 4500-Norg (TKN)
		edures adapted from APHA M analysis using an ammonia sel	lethod 4500-Norg "Nitrogen (Organic)". To ective electrode.	tal kjeldahl nitrogen is determined by
TSS-VA	Water	Total Suspended Solids by	Gravimetric APHA	2540 D - GRAVIMETRIC
			lethod 2540 "Solids". Solids are determine ore filter, TSS is determined by drying the f	
TURBIDITY-VA	Water	Turbidity by Meter	APHA	A 2130 "Turbidity"
This analysis is carrie	d out using proc	edures adapted from APHA N	lethod 2130 "Turbidity". Turbidity is determ	ined by the nephelometric method.
			are generally based on nationally or internate laboratory that performed analytical ana	
Laboratory Definition	on Code La	boratory Location	Laboratory Definition Code	Laboratory Location
		S LABORATORY GROUP -		

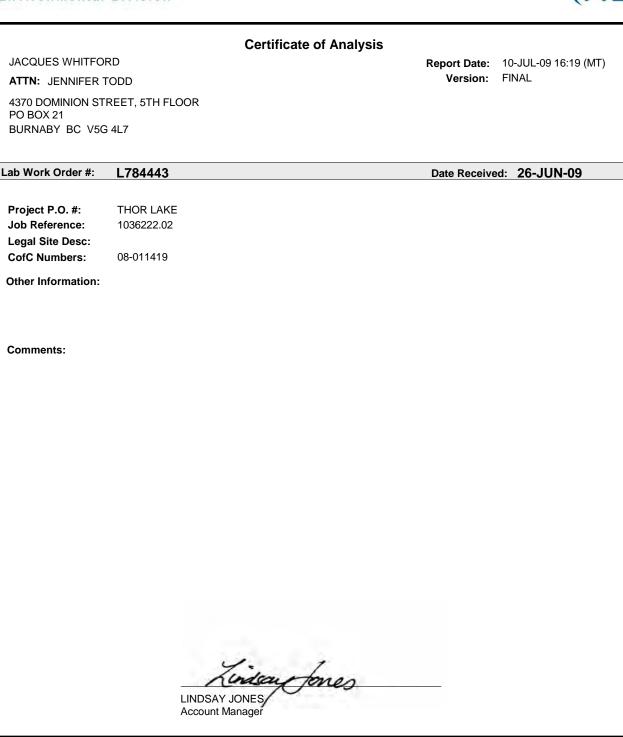
Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

347						TS						sneni	etn	of Co	per	un	V	+			-		-													rond
08-011347	Page of	availability)		charge	Surcharge	ekend - Contact A		(F/P)	1		144			·tr	せ	0								10	(A	1001								ab use only)	Observations: Yes / No 7	CIENE 18.00 Front
COC #	1303	Seprice Requested: (rush - subject to availability)	ult)	morrity (2-3 Business Days) - 50% Surcharge	Emergency (1 Business Day) - 100% Surcharge	For Emergency < 1 Day, ASAP or Weekend - Contact ALS	Analysis Request	(Indicate Filtered or Preserved, F/P)	200	PID	11/10	2	- + 50 4	150	S a a D	レッショー	111	11		27	141			ALLEN A	ied hu ta	5- 050							white - report copy.	SHIPMENT VERIFICATION (lab use only)	Date & Time:	ENT COPY
	7694303	Seprice-Reque	(Regular (Default)	Priority (2-3 Bu	Emergency (1	· COM . For Emergency		1	10020	-	רק	For 1-)	1	NO NO	455 O X T	TUTI	1/1/1		7	1111	Witu			could no	VIDISION /	ave de	100	X				Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.		Verified by:	PINK - FILE COPY, YELLOW - CLIENT COPY
E					aggreed	hitterd u	-		129102							Sample Type	G MI	4 4	1.1	11	1	,		F-127	DOC	Da				us Details		Please fill in this	as specified on	(A)	Terriperature:	
I Request For	0 668 9878 om	ión	Other:	, Digital	torld (a)	A			122 02.					Sampler:		Time		-	Cam.	DX X				MWL08	No.	oles .				itions / Hazardo		elay analysis.	and Conditions	TION (lab use on	AS ICAL	- H
Chain of Custody / Analytical Request Form	Canada Toll Free: 1 800 668 9878 www.alsglobal.com	Format / Distribution	7	PDF - Excel	KUNI KI	0		Project Information:	19501		Legal Site Description:					Date	OC+B	200	004 -00	Sct Bak	25-17/08			He: B1	DVPSC	Scam				Special Instructions / Regulations / Hazardous Details		this form may d	with the Terms a	HIPMENT RECEPTION (lab use only	Oct 90	WTIN OWI
Chain of Custo	Canada	Report Fo	Standard:	A. Select: PI	/ bode mail 1:	Email 2:	0	~	Job #:	PO / AFE:	Legal Site		ranole #.	ALS Contact:										FN X						Special Instri		all portions of	es and agrees v	S	Received by:	NO FAN
7					str.	V544L	86.875								ation	r on the record)				ł				-	r	1			1		-	ure to complete	er acknowledg		199	SAMPLING, INFOR
~	ALS)	-	- Dic -	D	FSUDIN	A DE	Fax: ON	Kes No ?				Fax.			Sample Identification	(This description will appear on the report	24	1	5	28	30		4 +	d in	Ę				- Ser			Fail	this form the us	(client use)	A Date & time:	BEER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING, INFORMATION
rty Group	uo		White a	en los	Tomin	X		Report ?						rdor # nly)	50	(This desc	1-2011			1- 201	1-801		Preserved	- Itaved	lowknif				1 - 18 1 -				By the use of	ENT RELEASE	(or the	PAGE FOR ALS L
ALS Laboratory Group	Environmental Division	10	Jacque	Jenni /	9-22-6	ingla		o: same as Report ?						Lab Work Order # (lab use only)			MIN I	- Mist		3 MM	MM +		J	7	$\Sigma_{\mathcal{F}}$	e dar			12/2	Sales and the second			Q	SHIPMENT R	Sea by CC	EFER NO BACK
ALS	Environ	Report to:	Company:	Contact:	Address;	DUNG	Phone:	Invaice To:	Company	Contact:	Address:	Detroit	- linite		Sample	-																	1	1	Hallessee	P

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L784443 CONTD.... PAGE 2 of 6 10-JUL-09 16:22

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L784443-1 WATER 26-JUN-09 10:00 152	L784443-2 WATER 26-JUN-09 10:00 163
Grouping	Analyte		
WATER			
Physical Tests	Conductivity (uS/cm)	717	721
Thysical rests	Hardness (as CaCO3) (mg/L)	71.4	71.3
	pH (pH)	8.52	8.56
	Total Suspended Solids (mg/L)	110	116
	Total Dissolved Solids (mg/L)	466	464
	Turbidity (NTU)	35.1	34.1
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	287	282
	Ammonia as N (mg/L)	0.100	0.103
	Bromide (Br) (mg/L)	0.188	0.193
	Chloride (Cl) (mg/L)	61.8	62.0
	Fluoride (F) (mg/L)	4.37	4.38
	Nitrate (as N) (mg/L)	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.705	0.681
	Sulfate (SO4) (mg/L)	12.6	12.6
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	9.32	8.78
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0176	0.0181
	Antimony (Sb)-Dissolved (mg/L)	0.00032	0.00029
	Arsenic (As)-Dissolved (mg/L)	0.00180	0.00174
	Barium (Ba)-Dissolved (mg/L)	0.0160	0.0164
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010
	Bismuth (Bi)-Dissolved (mg/L)	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	0.806	0.817
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	15.7	15.6
	Chromium (Cr)-Dissolved (mg/L)	<0.0030	<0.0030
	Cobalt (Co)-Dissolved (mg/L)	<0.00020	<0.00020
	Copper (Cu)-Dissolved (mg/L)	<0.00020	0.00021
	Iron (Fe)-Dissolved (mg/L)	0.083	0.093
	Lead (Pb)-Dissolved (mg/L)	<0.00010	<0.00010
	Lithium (Li)-Dissolved (mg/L)	0.063	0.061
	Magnesium (Mg)-Dissolved (mg/L)	7.79	7.83
	Magnese (Mn)-Dissolved (mg/L)	0.0255	0.0254
	Manganese (Min)-Dissolved (mg/L) Mercury (Hg)-Dissolved (mg/L)	<0.0255	<0.00050
	Melculy (Hg)-Dissolved (Hg/L) Molybdenum (Mo)-Dissolved (mg/L)	<0.000050	0.0497
	Nickel (Ni)-Dissolved (mg/L)	<0.0497	<0.0497
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	3.2	3.2
	Selenium (Se)-Dissolved (mg/L)	<0.0020	<0.0020
	Silicon (Si)-Dissolved (mg/L)	4.09	4.02

L784443 CONTD PAGE 3 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

10-JUL-09 16:22

	Sample ID Description Sampled Date Sampled Time Client ID	L784443-1 WATER 26-JUN-09 10:00 152	L784443-2 WATER 26-JUN-09 10:00 163		
Grouping	Analyte				
WATER					
Dissolved Metals	Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (TI)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	<0.000020 147 0.270 <0.00020 <0.00020 <0.010 0.00662 <0.0020	<0.000020 148 0.269 <0.00020 <0.00020 <0.010 0.00658 <0.0020		
Speciated Metals	Zinc (Zn)-Dissolved (mg/L) Hexavalent Chromium (mg/L)	<0.0020 0.0032	<0.0020 0.0015		

Additional Comment	s for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if ap	plicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried colourimetric method.	out using proc	cedures adapted from EPA Method 310.2 "Alka	alinity". Total Alkalinity is determined using the methyl orange
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
This analysis is carried Conductivity" and EPA	out using proc Method 300.0	edures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	Method 300.0		Ion Chromatography with Chemical Suppression of Eluent romatography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	Method 300.0		Ion Chromatography with Chemical Suppression of Eluent romatography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
This analysis is carried	out using proc	cedures adapted from APHA Method 5310 "To	tal Organic Carbon (TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using proc	cedures adapted from APHA Method 5310 "To	tal Organic Carbon (TOC)".
CR-CR6-ED	Water	Chromium, Hexavalent (Cr +6)	APHA 3500-Cr C (Ion Chromatography)
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried electrode.	out using proc	cedures adapted from APHA Method 2510 "Co	nductivity". Conductivity is determined using a conductivity
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated	from Calcium	and Magnesium concentrations, and is expres	sed as calcium carbonate equivalents.

L784443 CONTD.... PAGE 5 of 6

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
American Public Health States Environmental F involves a cold-oxidatio	Association, rotection Age n of the acidif	and with procedures adapted from "Test Method ncy (EPA). The procedures may involve prelimir	Examination of Water and Wastewater" published by the s for Evaluating Solid Waste" SW-846 published by the United hary sample treatment by filtration (EPA Method 3005A) and reduction of the sample with stannous chloride. Instrumental 7).
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health	Association, rotection Age	and with procedures adapted from "Test Method ncy (EPA). The procedure involves filtration (EP	Examination of Water and Wastewater" published by the s for Evaluating Solid Waste" SW-846 published by the United A Method 3005A) and analysis by inductively coupled plasma -
MET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health States Environmental F	Association, rotection Age	and with procedures adapted from "Test Method	Examination of Water and Wastewater" published by the s for Evaluating Solid Waste" SW-846 published by the United sample treatment by filtration (EPA Method 3005A). hod 6020A).
NH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		uric acid preserved samples, using procedures a monia selective electrode.	dapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried electrode	out using proc	edures adapted from APHA Method 4500-H "pH	I Value". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried electrode	out using proc	edures adapted from APHA Method 4500-H "pF	I Value". The pH is determined in the laboratory using a pH
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			Is". Solids are determined gravimetrically. Total Dissolved Solids ned by evaporating the filtrate to dryness at 180 degrees celsius.
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	APHA 4500-Norg (TKN)
This analysis is carried sample digestion at 367	out using prod ' celcius with a	cedures adapted from APHA Method 4500-Norg analysis using an ammonia selective electrode.	"Nitrogen (Organic)". Total kjeldahl nitrogen is determined by
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
			ls". Solids are determined gravimetrically. Total Suspended etermined by drying the filter at 104 degrees celsius.
		Turbidity by Meter	APHA 2130 "Turbidity"
TURBIDITY-VA	Water		idie de Trancistica in determinent les the group place stais as the set
		cedures adapted from APHA Method 2130 "Turb	laity . Turbiaity is determined by the nephelometric method.
TURBIDITY-VA This analysis is carried TURBIDITY-VA		cedures adapted from APHA Method 2130 "Turb	APHA 2130 Turbidity

L784443 CONTD.... PAGE 6 of 6

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	A	Analytical Method Reference(Based On)
Laboratory Definiti	on Code La	aboratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA	ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

_	_		Page	ant f	multi	eur b	ad: 1		Per	and					at / Distributi		(ALS)	ntal Division	
_		oility)	availa	ect to	subje	rusn						-			at / Distributi			STANTEL	eport to:
-			ircharge	V C.	1 50	Dave			De (De					Other:	1.5.1	Standard:		Fablicto	ompany: ontact:
-			Surcha	-		_	-	-	-	the second second			-	Digital		Select: PD		LENNIFER TODD	ddress:
-	A1 0	- Contact				_	_	_	-	_		OLD. CHM	2500	ADQ JACQUE	NNI FER. T	Email 2	56 417	4320 DOMINION &	001855.
-	ALO	Contact	_	_	is Re		_	ney	merge		-					Enion E	Fax:	04 436 3014	hone: 6
-	T)	d, F/P	-	_			dicate	()n(_			KE	THOP LA	ct Informatio	Client / Pro	(No?	Same as Report ?	voice To:
	7	11	1	1	1	1	1	6		0	16			22.02		Job #:		STANTEC	ompany:
	-	T			-		4	-								PO / AFE:			ontact:
							TURBIA	- 1							scription:	Legal Site I	B3B IW8	.0. Box 38212	ddress: 1
lers				1.1	2		E			1.1	5				2100			ARTMOUTH N.S	D
Containers				dut	5		in		m	1.1	F					Quote #:	Fax:		hone:
r of Cor				S	- לעאורדי	755	PH, Consummerty	0	1/NW3	5	SS METAL			Sampler:		ALS Contact:		Lab Work Order # (lab use only)	
Numbe				ANIAN	Total	7.25	pH, Hq	Toc	TKN	CrVI	Diss	le Type	Si	Time	Date	1)	Sample Identification cription will appear on the report		Sample #
5				x	X	x	x	×	×	×	×	ARTAL	68	HADO:00	JUNE 26/0			152	1
5				x	2	x	x	X	×	×	×	ATAK	-		JUNE 26/09			163	
-	+					-	-	-	-			ALL	100						Carlo Carlos
-	+	++	-	-	-+		-	-	-				+	1					
-	-	++		-	-	-	- +	-	-+	-			+					2	and the State of State
_	\rightarrow	-+-+			-+	-	-+	\rightarrow	-	_			+						- HOLE - HOLE
	-		-			_	-	-	-	_			+						- Contraction
_					_			_					-	1					Processory of the second
			-																and the second second
														1					
														1.2					and a set
		++			-			-				-	1	1	-				A STATE
-	-+			-	+		- 1	-	-	-			-						
	_			_										tions / Hazardo	Name / Decule	Canalal Insta		9	and the second
-						-		-			-	15	ous i	nons / nazarut	tions / Regula	Special list			
	_			ani.												te all portions of			
A set of	ALC: NO	antes	link we			-				ск ра	ne ba	med on t	-	OF THE REPORT OF THE REPORT OF			f this form the user acknowle	and the second se	N
-	TIS:	bservation	lab use	NUN	The Aller of the	ERIF & Ti	Print Print Print	HPME	ALC: NOT THE OWNER OF	fied b	Veri	rature:	ALC: NO.	ION (lab use or Time:	Date:	Received by:	CONTRACTOR OF THE OWNER OF	SHIPMENT RELEASE	Released b
		'es / No ? Yes attac	Y		10.	0. 11	Date		P.	100 0	Vern	aruie,	10	i nine.	2010	toodivou by.	Date & Tille,		10100300 0

Part of the ALS Laboratory Group Toll Free: 1-800-668-9878 Manitoba: 1-800-607-7555

1988 Triumph Street, Vancouver, BC V5L 1K5

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

ALS LABORATORY GROUP SAMPLE RECEIPT CONFIRMATION

ATTN:JENNIFER TODDFax Number:604-436-3752Account Manager:NATASHA MARKOVIC-MIROVICJob Reference:Project P.O. #:Date Sampled:26-JUN-09Date Received:26-JUN-09Sampled By:JTWorkorder #:L784443	Company:	JACQUES WHITFO)RD
Account Manager: NATASHA MARKOVIC-MIROVIC Job Reference: Project P.O. #: Date Sampled: 26-JUN-09 Date Received: 26-JUN-09 Sampled By: JT	ATTN:	JENNIFER TODD	
Job Reference: Project P.O. #: Date Sampled: 26-JUN-09 Date Received: 26-JUN-09 Sampled By: JT	Fax Number:	604-436-3752	
Project P.O. #:Date Sampled:26-JUN-09Date Received:26-JUN-09Estimated Completion Date:11-JUL-09Sampled By:JT	Account Manager:	NATASHA MARKO	VIC-MIROVIC
Date Sampled:26-JUN-09Date Received:26-JUN-09Sampled By:JT	Job Reference:		
Date Received: 26-JUN-09 Estimated Completion Date: 11-JUL-09 Sampled By: JT	Project P.O. #:		
Sampled By: JT	Date Sampled:	26-JUN-09	
	Date Received:	26-JUN-09	Estimated Completion Date: 11-JUL-09
Workorder #: L784443	Sampled By:	JT	
	Workorder #:	L784443	
Chain of Custody #: 08-011419	Chain of Custody #:	08-011419	

Sample #/SampleID/DateSampled/DateDue: L784443-1/152/26-JUN-09/11-JUL-09

-	-	
Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	
Water	Anions by Ion Chromatography	
	Bromide by Ion Chromatography	
	Chloride by Ion Chromatography	
	Fluoride by Ion Chromatography	
	Nitrite by Ion Chromatography	
	Nitrate by Ion Chromatography	
	Sulfate by Ion Chromatography	
Water	Total organic carbon by combustion	
Water	Chromium, Hexavalent (Cr +6)	
Water	Conductivity (Automated)	
Water	Dissolved Mercury in Water by CVAFS	
Water	Diss. Metals in Water by ICPOES & ICPMS	
	Hardness	
	Dissolved Metals in Water by ICPOES	
	Dissolved Metals in Water by ICPMS(Low)	
Water	Ammonia by SIE	
Water	pH by Meter (Automated)	
Misc.	Handling/Disposal Fee	
Water	Total Dissolved Solids by Gravimetric	
Water	Total Kjeldahl Nitrogen by Auto. Colour	

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

Sample #	/SampleID/DateSampled/DateDue:	L784443-1/152/26-JUN-09/11-JUL-09	
Matrix	Product Description	Product Due*	
Water	Total Suspended Solids by Gravimetric		
Water	Turbidity by Meter		
Sample #	/SampleID/DateSampled/DateDue:	L784443-2/163/26-JUN-09/11-JUL-09	
Matrix	Product Description	Product Due*	
Water	Alkalinity by Colourimetric (Automated)		
Water	Anions by Ion Chromatography		
	Bromide by Ion Chromatography		
	Chloride by Ion Chromatography		
	Fluoride by Ion Chromatography		
	Nitrite by Ion Chromatography		
	Nitrate by Ion Chromatography		
	Sulfate by Ion Chromatography		
Water	Total organic carbon by combustion		
Water	Chromium, Hexavalent (Cr +6)		
Water	Conductivity (Automated)		
Water	Dissolved Mercury in Water by CVAFS		
Water	Diss. Metals in Water by ICPOES & ICPM	S	
	Hardness		
	Dissolved Metals in Water by ICPO	ES	
	Dissolved Metals in Water by ICPM	S(Low)	
Water	Ammonia by SIE		
Water	pH by Meter (Automated)		
Misc.	Handling/Disposal Fee		
Water	Total Dissolved Solids by Gravimetric		
Water	Total Kjeldahl Nitrogen by Auto. Colour		
Water	Total Suspended Solids by Gravimetric		
Water	Turbidity by Meter		

* INDICATES ESTIMATED COMPLETION DATE OF REQUESTED PRODUCT IF DIFFERENT THAN THE ESTIMATED COMPLETION DATE.

Notice of Sub-contract Laboratory Service

Please be advised that the following tests will be subcontracted to the corresponding laboratory:

Chromium, Hexavalent (Cr +6) Subcontracted to: ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

Please contact your Account Manager immediately should you have questions or concerns regarding this arrangement. Approval of this arrangement shall be implied unless otherwise notified by you.

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

_			Pag	anti	mili	euro b	ad.		De De	and				w.aisglobal.co nat / Distributi		(ALS)	ental Division	
_		oiliity)	o availa	ect to	- subj	rusn								hat / Distributi			STANTEC	eport to:
_			unchase	0/ C.	1.50	Dave			(D				Other:	V.	Standard:		LEALUERS TAND	ompany: ontact:
_	Priority (2-3 Business Days) - 50% Surcharge Emergency (1 Business Day) - 100% Surcharge							-	the second second		Select: PDF 🖌 Excel 🖌 Digital					LENNIFER TODD	ddress:	
For Emergency < 1 Day, ASAP or Weekend - Contact ALS								-		_		mail 1. JENNI FER, TOLD D. JACON ESWHITFORD. COM				56 417	4320 DOMINION , BURNABY BC V	udiess.
-	ALO	Contact		_	_	the second s	_	oney	merg		-				Lindin 2	Fax:	04 436 3014	hone: 6
-	(Indicate Filtered or Preserved, F/P)							()n	-		ant / Project Information: THOP LAKE				(D) (D)?	Same as Report ?	voice To:	
	7	11		7	1	7	1	6		6	16			1036	Job #:		STANTEC	ompany:
	-	-	r				4				PTP-			1000	PO / AFE:		210.100	ontact:
							TURBIA	1						escription:	Legal Site I	B3B IW8	P.O. Box 38212	ddress:
ers					2		5			21.1	5			200			ARTMOUTH N.S	
Containers				dut	E		in		m		F				Quote #:	Fax:		hone:
r of Cor				S	ALLALTY	755	PH, Consummert,	0	1/NW3	is	SS METAL		Sampler:		ALS Contact:		Lab Work Order # (lab use only)	
Numbe				ANIAN	Total	7.25	pH, G	700	TKN	CrVI	SSIC	Sample Type	Time	Date	port)	Sample Identification scription will appear on the rep		Sample #
5				x	x	x	x	x	×	×	×	Sp. Warge	MADO:01	JUNE 26/0			152	
5				x	2	x	×	X	×	×	×	ED. WATER		JUNE 26/09			163	
5	-				~	~	-		-	-		CD. WATE					NT CONTRACTOR	
-	-		+	-	-		-	-	-	-								
-	-			-	-	-	-	-	-	-								Visit States
-	-			-	-+	-		-		-	-							- Contraction
	-				-		-	-										
																		They also
																	10	and the second second
														_				the Long
-													1.1.1.1.1.1			Contraction of the second	the second s	No. Martin
-	-	+ +									-						-	and the second
-	-			-	-	-	-	-		-	+							
-	_			_						_		Detalla	ons / Hazardo	News / December	Canadal Insta		9	and the second
-		-			_			-				Details	ons / Hazardo	ctions / Regula	Special instru			
						-			BLY.	LEG	form	ese fill in this	lav enelvsis. I	tis form may d	plete all portions of	Failure to com		
				NOV.	ort co	- rep	white	the								of this form the user acknow	By the use of	
a state	ALM I	oniy)	(lab us						A	E P	Hardine Ball		ON (lab use on				SHIPMENT RELEASE	1
-		bservatio	0	and a	The Allocation	= & T	and the party	in mi	ALC: NOT THE OWNER.	fied b	Veri	Temperature:	Time:	Date:	Received by:	Date & Time:	CO. 1. CONTRACTOR OF THE PARTY	Released b

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certificate of Analysis		
JACQUES WHITFOR	RD		26-OCT-09 14:03 (MT)
ATTN: JENNIFER T	ODD	Version:	FINAL
4370 DOMINION STI PO BOX 21	REET, 5TH FLOOR		
BURNABY BC V5G	4L7		
Lab Work Order #:	L829174	Date Receive	ed: 13-OCT-09
Project P.O. #:	THOR LAKE		
Job Reference:	1036222.02/Z9100		
Legal Site Desc:	GROUNDWATER SAMPLES		
CofC Numbers:	09-020378		
Other Information:			
Comments:			
	1 1		
	Kindeng fones		
	Lindsay Jones		
	Account Manager		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L829174 CONTD.... PAGE 2 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

26-OCT-09 14:15

	Sample ID Description	L829174-1	L829174-2	L829174-3	L829174-4	L829174-5
	Sampled Date Sampled Time	08-OCT-09	08-OCT-09	08-OCT-09	08-OCT-09	08-OCT-09
	Client ID	MW08-127	MW08-128	MW09-152	L08-124	DUP1
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	404	367	592	460	587
-	Hardness (as CaCO3) (mg/L)	74.5	147	95.9	365	96.5
	рН (рН)	6.86	7.41	8.17	8.10	8.24
	Total Suspended Solids (mg/L)	56.8	17.8	23.3	28.8	35.8
	Total Dissolved Solids (mg/L)	240	230	388	274	399
	Turbidity (NTU)	42.7	20.0	22.6	70.6	19.8
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	121	173	278	265	289
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	121	173	278	265	289
	Ammonia as N (mg/L)	0.063	0.575	0.106	0.046	0.067
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	36.9	11.4	20.8	0.84	21.0
	Fluoride (F) (mg/L)	0.720	1.16	2.76	2.19	2.79
	Nitrate (as N) (mg/L)	0.0063	<0.0050	<0.0050	0.125	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.508	1.14	0.716	0.481	0.769
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	0.060	0.041	0.0078	0.019	0.0148
	Sulfate (SO4) (mg/L)	25.1	6.88	8.40	7.80	7.08
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	11.8	14.9	19.7	11.9	18.5
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0108	0.0084	0.0066	0.0037	0.0245
	Antimony (Sb)-Dissolved (mg/L)	0.00013	0.00011	0.00011	<0.00010	0.00012
	Arsenic (As)-Dissolved (mg/L)	0.00066	0.00404	0.00084	0.00038	0.00090
	Barium (Ba)-Dissolved (mg/L)	0.0496	0.107	0.0212	0.0874	0.0217
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	0.067	0.021	0.690	0.050	0.725
	Cadmium (Cd)-Dissolved (mg/L)	<0.000080	<0.00020	<0.00010	<0.000080	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	17.1	29.8	20.4	26.7	20.5
	Chromium (Cr)-Dissolved (mg/L)	<0.0060	<0.0030	<0.0020	<0.0030	<0.0030
	Cobalt (Co)-Dissolved (mg/L)	0.00045	0.00043	0.00017	0.00138	0.00017
	Copper (Cu)-Dissolved (mg/L)	0.00102	0.00046	0.00040	0.00408	0.00062
	Iron (Fe)-Dissolved (mg/L)	1.09	5.96	0.098	0.324	0.094
	Lead (Pb)-Dissolved (mg/L)	0.000141	<0.000050	<0.000050	<0.000050	0.000052
	Lithium (Li)-Dissolved (mg/L)	0.0188	0.0139	0.0580	0.0189	0.0586
	Magnesium (Mg)-Dissolved (mg/L)	7.73	17.5	10.9	72.6	11.0
	Manganese (Mn)-Dissolved (mg/L)	0.222	0.336	0.0294	0.0508	0.0304
	Molybdenum (Mo)-Dissolved (mg/L)	0.0230	0.0627	0.0382	0.0281	0.0403
	Nickel (Ni)-Dissolved (mg/L)	0.00663	0.0027	0.00054	0.00208	0.00071