L829174 CONTD.... PAGE 3 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

26-OCT-09 14:15

	L829174-4 08-OCT-09	L829174-3 08-OCT-09	L829174-2 08-OCT-09	L829174-1 08-OCT-09	Sample ID Description Sampled Date	
	L08-124	MW09-152	MW08-128	MW08-127	Sampled Time Client ID	
					Analyte	Grouping
					•	WATER
0 <0.30	<0.30	<0.30	<0.30	<0.30	Phosphorus (P)-Dissolved (mg/L)	Dissolved Metals
	3.5	3.2	3.0	2.7	Potassium (K)-Dissolved (mg/L)	
	<0.0010	<0.0010	<0.0010	<0.0010	Selenium (Se)-Dissolved (mg/L)	
	4.78	4.36	3.52	1.88	Silicon (Si)-Dissolved (mg/L)	
	0.000010	<0.000010	0.000013	<0.000010	Silver (Ag)-Dissolved (mg/L)	
112	8.1	112	36.0	58.8	Sodium (Na)-Dissolved (mg/L)	
	0.0932	0.375	0.122	0.110	Strontium (Sr)-Dissolved (mg/L)	
	<0.00010	<0.00010	< 0.00010	<0.00010	Thallium (TI)-Dissolved (mg/L)	
	0.00014	0.00022	0.00048	0.00036	Tin (Sn)-Dissolved (mg/L)	
	<0.010	<0.010	<0.010	<0.010	Titanium (Ti)-Dissolved (mg/L)	
	0.0175	0.00764	0.00428	0.000918	Uranium (U)-Dissolved (mg/L)	
	<0.0010	<0.0010	<0.0010	<0.0010	Vanadium (V)-Dissolved (mg/L)	
	0.0022	0.0018	0.0063	0.0076	Zinc (Zn)-Dissolved (mg/L)	
	<0.0010	<0.0010	<0.0010	<0.0010	Hexavalent Chromium (mg/L)	Speciated Metals
59	94	64	23	35	COD (mg/L)	Aggregate Organics

L829174 CONTD.... PAGE 4 of 6 26-OCT-09 14:15

	for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	licable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
colourimetric method. OR This analysis is carried o	out using pro	cedures adapted from APHA Method 2320 "Alkali	nity". Total Alkalinity is determined using the methyl orange inity". Total alkalinity is determined by potentiometric titration to a phenolphthalein alkalinity and total alkalinity values.
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
This analysis is carried of	out using pro		n Chromatography with Chemical Suppression of Eluent
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "lor "Determination of Inorganic Anions by Ion Chron	n Chromatography with Chemical Suppression of Eluent natography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "lor "Determination of Inorganic Anions by Ion Chron	n Chromatography with Chemical Suppression of Eluent natography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	lethod 300.0		n Chromatography with Chemical Suppression of Eluent natography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	lethod 300.0		n Chromatography with Chemical Suppression of Eluent natography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "lor "Determination of Inorganic Anions by Ion Chron	n Chromatography with Chemical Suppression of Eluent natography".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried o	out using pro	cedures adapted from APHA Method 5310 "Total	Organic Carbon (TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried of	out using pro	cedures adapted from APHA Method 5310 "Total	Organic Carbon (TOC)".
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
	out using pro		nical Oxygen Demand (COD)". Chemical oxygen demand is
This analysis is carried of determined using the closed of		Chromium, Hexavalent (Cr +6)	APHA 3500-Cr C (Ion Chromatography)

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

PAGE 5 of 6 Analytical Method Reference(Based On) APHA 2340B Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents. **Dissolved Metals in Water by ICPOES** EPA SW-846 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma -

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

PH-PCT-VA Water pH by Meter (Automated) This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

NH3-SIE-VA

PH-PCT-VA

Methods Listed (if applicable):

Matrix

Water

Water

optical emission spectrophotometry (EPA Method 6010B).

Water

Water

Water

Water

Water

ALS Test Code

MET-DIS-ICP-VA

HARDNESS-CALC-VA

MET-DIS-LOW-MS-VA

MET-DIS-ULTRA-MS-VA Water

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-DO-COL-VA

Dissolved ortho Phosphate by Colour

Dissolved ortho Phosphate by Colour

pH by Meter (Automated)

APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water Total Phosphate P by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Dissolved Metals in Water by ICPMS(Low)

Diss. Metals in Water by ICPMS (Ultra)

Ammonia by SIE

Test Description

Hardness

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6020A

APHA 4500 D. - NH3 NITROGEN (AMMONIA)

APHA 4500-H "pH Value"

APHA 4500-H pH Value

APHA 4500-P "Phosphorous"

L829174 CONTD.... PAGE 6 of 6

ALS Test Code	Matrix	Test Description	1	Analytical Method Reference(Based On)
	IVIALITX			
ascorbic acid colourime phosphate (total phosp	etric method. D phorous) is dete	Dissolved ortho-phosphate (dissolver ermined after persulphate digestio	ved reactive phosphorous) is deterr	s of phosphate are determined by the nined by direct measurement. Total sphate (total dissolved phosphorous) is the filtrate.
DS-VA	Water	Total Dissolved Solids by Gra	vimetric A	PHA 2540 C - GRAVIMETRIC
				nined gravimetrically. Total Dissolved Solids he filtrate to dryness at 180 degrees celsius.
KN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	A	PHA 4500-Norg (TKN)
		edures adapted from APHA Meth analysis using an ammonia selecti		. Total kjeldahl nitrogen is determined by
SS-VA	Water	Total Suspended Solids by G	ravimetric A	PHA 2540 D - GRAVIMETRIC
This analysis is carried	l out using proc	edures adapted from APHA Meth		nined gravimetrically. Total Suspended
This analysis is carried	l out using proc	edures adapted from APHA Meth	od 2540 "Solids". Solids are deterr filter, TSS is determined by drying	nined gravimetrically. Total Suspended
This analysis is carried Solids (TSS) are detern TURBIDITY-VA	l out using proc mined by filterin Water	edures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter	od 2540 "Solids". Solids are deterr filter, TSS is determined by drying A	nined gravimetrically. Total Suspended the filter at 104 degrees celsius.
This analysis is carried Solids (TSS) are detern TURBIDITY-VA	l out using proc mined by filterin Water	edures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter	od 2540 "Solids". Solids are deterr filter, TSS is determined by drying A od 2130 "Turbidity". Turbidity is de	nined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity"
This analysis is carried Solids (TSS) are detern 'URBIDITY-VA This analysis is carried 'URBIDITY-VA	l out using proc mined by filterin Water I out using proc Water	eedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter cedures adapted from APHA Meth Turbidity by Meter	od 2540 "Solids". Solids are deterr filter, TSS is determined by drying A od 2130 "Turbidity". Turbidity is de	nined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity" termined by the nephelometric method.
This analysis is carried Solids (TSS) are detern 'URBIDITY-VA This analysis is carried 'URBIDITY-VA This analysis is carried	l out using proc mined by filterin Water I out using proc Water I out using proc employed follo	eedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter cedures adapted from APHA Meth Turbidity by Meter cedures adapted from APHA Meth win-house procedures, which are	od 2540 "Solids". Solids are deterr filter, TSS is determined by drying A od 2130 "Turbidity". Turbidity is de A od 2130 "Turbidity". Turbidity is de generally based on nationally or in	nined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity" termined by the nephelometric method.
This analysis is carried Solids (TSS) are detern 'URBIDITY-VA This analysis is carried 'URBIDITY-VA This analysis is carried	l out using proc mined by filterin Water I out using proc Water I out using proc employed follo the above ALS	eedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter cedures adapted from APHA Meth Turbidity by Meter cedures adapted from APHA Meth win-house procedures, which are	od 2540 "Solids". Solids are deterr filter, TSS is determined by drying A od 2130 "Turbidity". Turbidity is de A od 2130 "Turbidity". Turbidity is de generally based on nationally or in	nined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity" termined by the nephelometric method. PHA 2130 Turbidity termined by the nephelometric method.

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

GENF 18.01 Front	LIENT COPY	YELLOW - CLIENT COPY	WHITE - LABORATORY COPY	WHITE - LABO		IG INFORMATION	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	R TO BACK PAGE FOR	REFER
			റ റ്		09/10/13	4	oct glog	DOX(U.	Ali
Time: Observations:	Date:	Verified by:	Temperature:	Time:	Date:	Received by:	Date; Time:		Released by:
SHIPMENT VERIFICATION (lab use only)	SHIPMENT VERIF		nly)	SHIPMENT RECEPTION (lab use on	SHIPMENT RECI		RELEASE (client use)	SHIPMENT RELE	
oort copy.	as specified on the back page of the white - report copy.	he back pa	as specified on t	ns and Conditions	rees with the Terr	nowledges and ag	By the use of this form the user acknowledges and agrees with the Terms and Conditions	By the us	_
	3LΥ.	form LEGIE	Please fill in this form LEGIBLY	ay delay analysis.	ns of this form ma	Failure to complete all portions of this form may delay analysis	Failure to c		
					EDT 10x1ac	103	. ICSR	CCHE	
					National States of the	Special			
a una secondadarea e anadadadea es substantivente deservatives en alter es anadadadea e en esta de esta e en e	a series and the series of the	A VIENT THE SECOND STREET		nan wood date to a state of the source of th					
5	\ { {	7 7	dw V	ž	oct Blog			Dupl	
	۱ ۲ ۱	7	άv	ă.	0,+8109			L08 - 124	
<u>م</u>	۲ ۲ ۲	۲ ۲	<i>α</i> ν	P	00000		ž	HW09-152	
5	5 5 5	7 7	đw	ě	0/6/09			4m08-128	
5	۲ ۲ ۲	۲ ۲	A N	109	0d 8 1		لذ	MW08-12	
Nu	ي و		Sample Type	/) (hh:mm)	(dd-mmm-yy)	report)	(This description will appear on the report)	(This	
	K			WDVC Time	Date P		Sample Identification		Samble #
PO4 PO4 PC4 PC4	- /TK nua hioi	iolve IV	mily ladt	Sampler:	ALS Natosh Contact: Marcovic		W L829174	Lab Work Order # (lab use only)	Lab Work O
		ed			#		Fax: 416 364.5162	5	Phone: 416
	N N	Me				N, H5# 375	St. W, Tomito, (Adelaide	Address: 13
	#2 7/1	fal	Sample	Groundwater			-		Contact: K
		5		5	Ξ	PO / AFE:		Avalon Rave	Company:
	8	2	100	170	034222-02		Report? (circle) Yes or No	Copy of Invoice with Report?	
Preserved, F/P)	(Indicate Filtered or Preserved, F/P	`				Ū	ircle) Yes or No (if No, provide details)	Same as R	<u> </u>
Analysis Request	Analysi		٩		をし		Fax:	1432 Sch	Phone:
- 2015 or Emergency < 1 Day, ASAP or Weekend - Contact ALS	ergency < 1 Day, AS	CONT OR Em	w tak	Davalo	JANG.	hilling TEmail 2:	ζ.	ĸ	K
y) - 100% Surcharge	Emergency (1 Business Day) - 100% Surcharge	Emerge	ς ΩM	5 0 4	while .	Email 1: 1	nion St.	570 Dominion	Address:
(Surcharges apply)	Priority, Date Req'd:	Priority	Fax	Digital	DF	Selec	d	unifer lode	Contact:
ind Times))	(Standard Turnaround Times))	Regular		Other (specify):	<	Standard:		Stantec	Company:
Requested: (Rush subject to availability)		Septie		bution	Report Format / Distribution	Repo			Report To
Page of				www.alsglobal.com	WW		ALS	al Division	Environmental Division
			9878	Canada Toll Free: 1 800 668 9878	Canada Tol			AY & TESTING SERVICES	ANALT TICAL CHEMIST
R06 # 09 - 02 0 378	-		uest Form	Chain of Custody / Analytical Request Form	hain of Custod	0		ALS Laboratory Group	ALS Lab

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Се	rtificate of Analysis		
STANTEC CONSUL		-		06-JUL-10 16:38 (MT)
ATTN: JEN TODD			Version:	FINAL
4370 DOMINION STI PO BOX 21 BURNABY BC V5G				
BORNADI DO VOC				
Lab Work Order #:	L897555		Date Receive	ed: 15-JUN-10
Project P.O. #:	NOT SUBMITTED			
Job Reference:	123510431 THOR LAKE			
Legal Site Desc:				
CofC Numbers:	123510431-203-0610			
Other Information:				
Comments: Detect	ion limits for some analytes have bee	a raised due to matrix interference		
Delec	Ion limits for some analytes have bee			
	11,	larkovic-U.		
	Matase 1	larkovic-U.		
		/		
	Natasha Markovi Account Manager			

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L897555 CONTD.... PAGE 2 of 7 06-JUL-10 16:38 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L897555-1 11-JUN-10 11:00 MWL08-128		
Grouping	Analyte			
WATER				
Physical Tests	Conductivity (uS/cm)	419		
	Hardness (as CaCO3) (mg/L)	253		
	рН (рН)	7.49		
	Total Suspended Solids (mg/L)	10.9		
	Total Dissolved Solids (mg/L)	333		
	Turbidity (NTU)	13.6		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	262		
	Ammonia as N (mg/L)	0.563		
	Bromide (Br) (mg/L)	<0.50		
	Chloride (Cl) (mg/L)	<5.0		
	Fluoride (F) (mg/L)	0.92		
	Nitrate and Nitrite as N (mg/L)	<0.050		
	Nitrate (as N) (mg/L)	<0.050		
	Nitrite (as N) (mg/L)	<0.010		
	Total Kjeldahl Nitrogen (mg/L)	1.79		
	Ortho Phosphate as P (mg/L)	0.0120		
	Total Phosphate as P (mg/L)	0.027		
	Sulfate (SO4) (mg/L)	<5.0		
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	30.6		
Total Metals	Aluminum (Al)-Total (mg/L)	0.149		
	Antimony (Sb)-Total (mg/L)	<0.00010		
	Arsenic (As)-Total (mg/L)	0.00478		
	Barium (Ba)-Total (mg/L)	0.208		
	Beryllium (Be)-Total (mg/L)	<0.00050		
	Bismuth (Bi)-Total (mg/L)	<0.00050		
	Boron (B)-Total (mg/L)	0.027		
	Cadmium (Cd)-Total (mg/L)	0.000038		
	Calcium (Ca)-Total (mg/L)	44.8		
	Chromium (Cr)-Total (mg/L)	0.00151		
	Cobalt (Co)-Total (mg/L)	0.00021		
	Copper (Cu)-Total (mg/L)	0.00063		
	Iron (Fe)-Total (mg/L)	16.2		
	Lead (Pb)-Total (mg/L)	0.000266		
	Lithium (Li)-Total (mg/L)	0.0069		
	Magnesium (Mg)-Total (mg/L)	31.4		
	Manganese (Mn)-Total (mg/L)	0.508		

L897555 CONTD.... PAGE 3 of 7 06-JUL-10 16:38 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L897555-1 11-JUN-10 11:00 MWL08-128		
Grouping	Analyte			
WATER				
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.00862		
	Nickel (Ni)-Total (mg/L)	0.00073		
	Phosphorus (P)-Total (mg/L)	<0.30		
	Potassium (K)-Total (mg/L)	3.9		
	Selenium (Se)-Total (mg/L)	<0.0010		
	Silicon (Si)-Total (mg/L)	6.91		
	Silver (Ag)-Total (mg/L)	0.000064		
	Sodium (Na)-Total (mg/L)	5.0		
	Strontium (Sr)-Total (mg/L)	0.116		
	Thallium (TI)-Total (mg/L)	<0.00010		
	Tin (Sn)-Total (mg/L)	0.00013		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Uranium (U)-Total (mg/L)	0.00494		
	Vanadium (V)-Total (mg/L)	0.0026		
	Zinc (Zn)-Total (mg/L)	<0.0010		
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0504		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00469		
	Barium (Ba)-Dissolved (mg/L)	0.204		
	Beryllium (Be)-Dissolved (mg/L)	<0.00050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050		
	Boron (B)-Dissolved (mg/L)	0.024		
	Cadmium (Cd)-Dissolved (mg/L)	0.000041		
	Calcium (Ca)-Dissolved (mg/L)	46.8		
	Chromium (Cr)-Dissolved (mg/L)	<0.0015		
	Cobalt (Co)-Dissolved (mg/L)	0.00017		
	Copper (Cu)-Dissolved (mg/L)	0.00025		
	Iron (Fe)-Dissolved (mg/L)	15.4		
	Lead (Pb)-Dissolved (mg/L)	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	0.0070		
	Magnesium (Mg)-Dissolved (mg/L)	33.0		
	Manganese (Mn)-Dissolved (mg/L)	0.485		
	Mercury (Hg)-Dissolved (mg/L)	<0.000010		
	Molybdenum (Mo)-Dissolved (mg/L)	0.00663		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.30		

L897555 CONTD.... PAGE 4 of 7 06-JUL-10 16:38 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L897555-1 11-JUN-10 11:00 MWL08-128		
Grouping	Analyte			
WATER				
Dissolved Metals	Potassium (K)-Dissolved (mg/L)	4.3		
	Selenium (Se)-Dissolved (mg/L)	<0.0010		
	Silicon (Si)-Dissolved (mg/L)	7.14		
	Silver (Ag)-Dissolved (mg/L)	0.000039		
	Sodium (Na)-Dissolved (mg/L)	5.4		
	Strontium (Sr)-Dissolved (mg/L)	0.114		
	Thallium (TI)-Dissolved (mg/L)	<0.00010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.00470		
	Vanadium (V)-Dissolved (mg/L)	0.0023		
	Zinc (Zn)-Dissolved (mg/L)	0.0045		

L897555 CONTD.... PAGE 5 of 7 06-JUL-10 16:38 (MT)

Test Method References	:		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
		ures adapted from APHA Method 2320 "Alkalinity". Total and hydroxide alkalinity are calculated from phenolphth:	
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
		ures adapted from APHA Method 2320 "Alkalinity". Total and hydroxide alkalinity are calculated from phenolphthat	
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
		ures adapted from APHA Method 4110 B. "Ion Chromato etermination of Inorganic Anions by Ion Chromatography	
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		ures adapted from APHA Method 4110 B. "Ion Chromate etermination of Inorganic Anions by Ion Chromatography	
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		ures adapted from APHA Method 4110 B. "Ion Chromato etermination of Inorganic Anions by Ion Chromatography	
ANIONS-N+N-CALC-VA	Water	Nitrite+Nitrate by Ion Chromatography	CALCULATION
Conductivity" and EPA Met	hod 300.0 "De	ures adapted from APHA Method 4110 B. "Ion Chromato etermination of Inorganic Anions by Ion Chromatography trate and Nitrite" is determined by calculation.	
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	hod 300.0 "De	ures adapted from APHA Method 4110 B. "Ion Chromato etermination of Inorganic Anions by Ion Chromatography	
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	hod 300.0 "De	ures adapted from APHA Method 4110 B. "Ion Chromato etermination of Inorganic Anions by Ion Chromatography	
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		ures adapted from APHA Method 4110 B. "Ion Chromato etermination of Inorganic Anions by Ion Chromatography	
C-TOT-ORG-LOW-CL	Water	Total Organic Carbon	APHA 5310 C-Instrumental
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried out electrode.	using proced	ures adapted from APHA Method 2510 "Conductivity". C	conductivity is determined using a conductivity
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated from	n Calcium and	d Magnesium concentrations, and is expressed as calciu	im carbonate equivalents.
HG-DIS-LOW-CVAFS-VA	Water	Dissolved Mercury in Water by CVAFS(Low)	EPA SW-846 3005A & EPA 245.7
American Public Health Ass States Environmental Prote involves a cold-oxidation of	sociation, and ection Agency the acidified	ures adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evaluate (EPA). The procedures may involve preliminary sample sample using bromine monochloride prior to reduction of cence spectrophotometry (EPA Method 245.7).	ating Solid Waste" SW-846 published by the United e treatment by filtration (EPA Method 3005A) and
HG-TOT-LOW-CVAFS-VA	Water	Total Mercury in Water by CVAFS(Low)	EPA 245.7
American Public Health Ass States Environmental Prote	sociation, and ection Agency	ures adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evaluate (EPA). The procedure involves a cold-oxidation of the a noride. Instrumental analysis is by cold vapour atomic flu	ating Solid Waste" SW-846 published by the United acidified sample using bromine monochloride prior to
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health Ass	sociation, and ection Agency	ures adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evaluate (EPA). The procedure involves filtration (EPA Method 3 A Method 6010B).	ating Solid Waste" SW-846 published by the United
MET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
This apply aid is corriad and		ures adapted from "Standard Methods for the Examinativ	an of Water and Wastewater" published by the

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-DIS-ULTRA-MS-VA	Water	Diss. Metals in Water by ICPMS (Ultra)	EPA SW-846 3005A/6020A
American Public Health Ass States Environmental Protect	ociation, and ction Agency	Ires adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evaluat (EPA). The procedures involves preliminary sample tree upled plasma - mass spectrometry (EPA Method 6020A)	ating Solid Waste" SW-846 published by the United atment by filtration (EPA Method 3005A).
MET-TOT-ICP-VA	Water	Total Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health Ass States Environmental Protect	ociation, and ction Agency	Ires adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evalua (EPA). The procedures may involve preliminary sample instrumental analysis is by inductively coupled plasma - o	ating Solid Waste" SW-846 published by the United e treatment by acid digestion, using either hotblock or
MET-TOT-LOW-MS-VA	Water	Total Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health Ass States Environmental Protect	ociation, and ction Agency	Ires adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evaluat (EPA). The procedures may involve preliminary sample d 3005A). Instrumental analysis is by inductively couple	ating Solid Waste" SW-846 published by the United e treatment by acid digestion, using either hotblock or
MET-TOT-ULTRA-MS-VA	Water	Total Metals in Water by ICPMS (Ultra)	EPA SW-846 3005A/6020A
American Public Health Ass States Environmental Protect	ociation, and ction Agency	Ires adapted from "Standard Methods for the Examination with procedures adapted from "Test Methods for Evaluat (EPA). The procedures may involve preliminary sample d 3005A). Instrumental analysis is by inductively couple	ating Solid Waste" SW-846 published by the United e treatment by acid digestion, using either hotblock or
NH3-F-VA	Water	Ammonia by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out, Society of Chemistry, "Flow- Waston et al.	on sulphuric a	acid preserved samples, using procedures modified from lysis with fluorescence detection for the determination of	n J. Environ. Monit., 2005, 7, 37 - 42, The Royal f trace levels of ammonium in seawater", Roslyn J.
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried out u electrode	using procedu	ires adapted from APHA Method 4500-H "pH Value". Th	ne pH is determined in the laboratory using a pH
It is recommended that this	analysis be c	onducted in the field.	
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried out u electrode	using procedu	ires adapted from APHA Method 4500-H "pH Value". Th	ne pH is determined in the laboratory using a pH
It is recommended that this	analysis be c	onducted in the field.	
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P "Phosphorous"
ascorbic acid colourimetric r phosphate (total phosphoro	method. Disso us) is determi	Ires adapted from APHA Method 4500-P "Phosphorus". Olved ortho-phosphate (dissolved reactive phosphorous) ned after persulphate digestion of a sample. Total disso a 0.45 micron membrane filter followed by persulfate dig	is determined by direct measurement. Total lved phosphate (total dissolved phosphorous) is
PO4-DO-COL-VA	Water	Dissolved ortho Phosphate by Colour	APHA 4500-P Phosphorous
ascorbic acid colourimetric r phosphate (total phosphorou	method. Disso us) is determi	Ires adapted from APHA Method 4500-P "Phosphorus". Dived ortho-phosphate (dissolved reactive phosphorous) ned after persulphate digestion of a sample. Total disso a 0.45 micron membrane filter followed by persulfate dig	is determined by direct measurement. Total lved phosphate (total dissolved phosphorous) is
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P "Phosphorous"
ascorbic acid colourimetric r phosphate (total phosphorou	method. Disso us) is determi	Ires adapted from APHA Method 4500-P "Phosphorus". blved ortho-phosphate (dissolved reactive phosphorous) ned after persulphate digestion of a sample. Total disso a 0.45 micron membrane filter followed by persulfate dig	is determined by direct measurement. Total lved phosphate (total dissolved phosphorous) is
PO4-T-COL-VA	Water	Total Phosphate P by Color	APHA 4500-P Phosphorous
ascorbic acid colourimetric r phosphate (total phosphoro	method. Disso us) is determi	Ires adapted from APHA Method 4500-P "Phosphorus". Dived ortho-phosphate (dissolved reactive phosphorous) ned after persulphate digestion of a sample. Total disso a 0.45 micron membrane filter followed by persulfate dig	is determined by direct measurement. Total lved phosphate (total dissolved phosphorous) is
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
		rres adapted from APHA Method 2540 "Solids". Solids a le through a glass fibre filter, TDS is determined by evap	porating the filtrate to dryness at 180 degrees celsius.
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	APHA 4500-Norg (TKN)

	0.	dures adapted from APHA Method 4500-Norg alysis using an ammonia selective electrode.	Nitrogen (Organic)". Total kjeldahl nitrogen is determined by
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
			". Solids are determined gravimetrically. Total Suspended termined by drying the filter at 104 degrees celsius.
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 "Turbidity"
This analysis is carried out us	sing proce	dures adapted from APHA Method 2130 "Turbi	lity". Turbidity is determined by the nephelometric method.
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity
			APHA 2130 Turbidity dity". Turbidity is determined by the nephelometric method.
This analysis is carried out us	sing proce		lity". Turbidity is determined by the nephelometric method.
This analysis is carried out us	sing procee orate mod	dures adapted from APHA Method 2130 "Turbi	lity". Turbidity is determined by the nephelometric method.
This analysis is carried out us	orate mod	dures adapted from APHA Method 2130 "Turbi	lity". Turbidity is determined by the nephelometric method.
This analysis is carried out us ** ALS test methods may incorp The last two letters of the abo	orate mod ve test coo Labor	dures adapted from APHA Method 2130 "Turbi ifications from specified reference methods to de(s) indicate the laboratory that performed an	hity". Turbidity is determined by the nephelometric method. mprove performance. alytical analysis for that test. Refer to the list below:

Chain of Custody Numbers:

123510431-203-0610

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Molding Time Chain of Classoy/ Amylicial Request Ferm Core (£35,1014) - 234.		Released by											a da ser a conserva da serva da serva Serva da serva da serv					Phone:		Address:	Contact:	Company:	Invoice To	Phone: 60	EH F	Address:	Contact:	Company:	Rep		₹ V	
Chain of Custody / Analytical Request Form canada Toll Free: 1800 668 9878 Social Tree: 1800 668 9878 Numerical Databased Construction Samila Construction Samila Construction Constructin Constructin <th colspa<="" td=""><td>08:30 0H2-51</td><td>Date (dd-mmm-yy) Time (ht-mm)</td><td>Failure to complete By the use of this form the user ac Also provided on another Excel tab are the ALS loca</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>(This description will appear on the report)</td><td>Cample Identification</td><td></td><td></td><td>JAC375-AVA200-VA</td><td>Suite 1901, 130 Adelainde St. Toronto, ON, M5H 3P5</td><td>Cindy Hu / David Swisher</td><td>Avalon Rare Metals</td><td></td><td>4-867 828 2216 436-3014 Fax:</td><td></td><td>PO Box 1680, 5021-49 St. YELLOWKNIFE, NT, X1A 2N4</td><td>Up N</td><td></td><td></td><td>Rush Processing</td><td>ort Holding Time</td></th>	<td>08:30 0H2-51</td> <td>Date (dd-mmm-yy) Time (ht-mm)</td> <td>Failure to complete By the use of this form the user ac Also provided on another Excel tab are the ALS loca</td> <td></td> <td>0</td> <td>(This description will appear on the report)</td> <td>Cample Identification</td> <td></td> <td></td> <td>JAC375-AVA200-VA</td> <td>Suite 1901, 130 Adelainde St. Toronto, ON, M5H 3P5</td> <td>Cindy Hu / David Swisher</td> <td>Avalon Rare Metals</td> <td></td> <td>4-867 828 2216 436-3014 Fax:</td> <td></td> <td>PO Box 1680, 5021-49 St. YELLOWKNIFE, NT, X1A 2N4</td> <td>Up N</td> <td></td> <td></td> <td>Rush Processing</td> <td>ort Holding Time</td>	08:30 0H2-51	Date (dd-mmm-yy) Time (ht-mm)	Failure to complete By the use of this form the user ac Also provided on another Excel tab are the ALS loca											0	(This description will appear on the report)	Cample Identification			JAC375-AVA200-VA	Suite 1901, 130 Adelainde St. Toronto, ON, M5H 3P5	Cindy Hu / David Swisher	Avalon Rare Metals		4-867 828 2216 436-3014 Fax:		PO Box 1680, 5021-49 St. YELLOWKNIFE, NT, X1A 2N4	Up N			Rush Processing	ort Holding Time
Begular (Ocfault) □ Regular (Ocfault) 0 Regular (Ocfault) 0 Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 Analysis Requested (Rush for outine analysis Requested (Rush for outine analysis Requested indicate below Filtered, Preserver Nanaysis Requested indicate below Filtered, Preserver Analysis Requested indicate below Filtered, Preserver Y Y TDS, TSS Anion Scan Y Y Y No3+NO2 by cald V V V Y	10	red by:	all portions of knowledges a tion addresses	Special Inst												Contact:	ALS	Quote #:		LSD:	PO / AFE	Job #:	Client / P		Email 2: •	Email 1:	< ₽ ₽ ₽ ₽	Standard	Report Fo		Cha	
Begular (Ocfault) □ Regular (Ocfault) 0 Regular (Ocfault) 0 Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 Analysis Requested (Rush for outine analysis Requested (Rush for outine analysis Requested indicate below Filtered, Preserver Nanaysis Requested indicate below Filtered, Preserver Analysis Requested indicate below Filtered, Preserver Y Y TDS, TSS Anion Scan Y Y Y No3+NO2 by cald V V V Y	Sil golor	Date:	f this form may nd agrees with ;, phone numbu	ructions / Regu										11-Jun-10	Date (dd-mmm-yy)	M-M	National	Q24554				123510431 Th	roject Informat)	ennifer. t	<u>_carevieibbeld@</u>			ormat / Distribu	WWW	In of Custody Canada Toll	
Begular (Ocfault) □ Regular (Ocfault) 0 Regular (Ocfault) 0 Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 For Emergency (I Business Day) - 100% Surcharge 0 Analysis Requested (Rush for outine analysis Requested (Rush for outine analysis Requested indicate below Filtered, Preserver Nanaysis Requested indicate below Filtered, Preserver Analysis Requested indicate below Filtered, Preserver Y Y TDS, TSS Anion Scan Y Y Y No3+NO2 by cald V V V Y	IT.US	Time:	delay analysis. the Terms and (ers and sample (lations / Hazard											(hh:mm)							or Lake	lon		oddestrut	estantec.com			Ition	alsciobal.com	/ Analytical Re Frae: 1 800 660	
HG-TOT-LOW-CVAFS-VA HG-TOT-LOW-CVAFS-VA		Temperature:		ous Details										Nater	Sample Type		1001								-		□ Fax				quest Form 3 9878	
HG-TOT-LOW-CVAFS-VA HG-TOT-LOW-CVAFS-VA		Verifie	s form ovided rvatior	Į										\star	PH, I	ЕС, Т	urbio	lity,	Tot	ALI	<		Plea		OFor	0		Reg	Servi			
HG-TOT-LOW-CVAFS-VA HG-TOT-LOW-CVAFS-VA		əd by:	LEGIE on a 1 / hol	┟	\dashv	_	_			+				\star	TDS,	TSS							use ind		Emerge	ergency	nity (Sp	jular (De	ce Re			
HG-TOT-LOW-CVAFS-VA HG-TOT-LOW-CVAFS-VA			3LY. separa ding ti	ł	+		+	$\left \right $	_	+	-	-		,								8	icate t		ncy < 1	(1 Busir	cify Da	fault)	queste			
HG-TOT-LOW-CVAFS-VA HG-TOT-LOW-CVAFS-VA		Da	ate Ex me ta	ł	-+		-	┝─┼	+									3+N	102	by (cald		elow I		Day, As	Ness Day	te Requi		d (Rus			
HG-TOT-LOW-CVAFS-VA HG-TOT-LOW-CVAFS-VA		le:	cel tal	ł	\neg				+	+	+	+		~ /	-		_)4					Filtered	Analy	SAP or V	1) - 100			sh for ru			
Time: OC # I - Contact ALS Page - Log Surpharge		an a																	AFS	S-VA	\	Þ	d, Pres	sis Ru	Veekend	% Surch	t		outine a		8	
Innlyses. MET-DIS-ICP+MS+CD-VA File Observation X HG-DIS-LOW-CVAFS-VA File Vest / No ? If Yes add S		Time	mon a											×	мет	-тот	-ICP	+MS	6+C	D-V	A	P	Selved	senbe	I - Cont	arge			malysi		0 #	
ES. If Yes / No ?	5	the above and the second	inalys					\square						×	MET	-DIS-	ICP+	MS	+C[)-V/	4	₹β F	or bo	*	act ALS				s subje	Pag	235	
To all abbility of the second			es.					\square			+			×	HG-(DIS-L	-W O	CVA	\FS∙	-VA		9/2					ş		ct to av	I.	HOL	
	Yes a	bserva			-		+	$\left \right $															P, F/P				Ircharge		ailabilit	ť	9-2	
₩ 9 🞆		ations:					+	$\left\{ - \right\}$	-+	+	+	+		U					iers				<u> </u>				ts apply		3	\vdash	3-Q	

II.

Phone: 604-436-3014

STANTEC CONSULTING LTD. ATTN: HEATHER PROVOST 4370 DOMINION STREET, 5TH FLOOR PO BOX 21 BURNABY BC V5G 4L7

Date Received: 14-SEP-10 Report Date: 24-SEP-10 09:48 (MT) Version: FINAL

Certificate of Analysis

Lab Work Order #: L931109 Project P.O. #: Job Reference: Legal Site Desc: C of C Numbers:

NOT SUBMITTED 123510431-203

10-022826

L Care

Heather Easton Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 🏬

L931109 CONTD.... PAGE 2 of 7 24-SEP-10 09:48 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L931109-1 03-SEP-10 09:30	L931109-2 03-SEP-10 09:45		
	Sampled Time Client ID	MWL08-128	MWL08-129		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	498	502		
	Hardness (as CaCO3) (mg/L)	303	302		
	рН (рН)	8.00	8.00		
	Total Suspended Solids (mg/L)	38.8	34.3		
	Total Dissolved Solids (mg/L)	312	302		
	Turbidity (NTU)	19.8	18.1		
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	275	276		
	Ammonia as N (mg/L)	0.437	0.450		
	Bromide (Br) (mg/L)	<0.050	<0.050		
	Chloride (Cl) (mg/L)	1.96	1.50		
	Fluoride (F) (mg/L)	1.32	1.39		
	Nitrate and Nitrite as N (mg/L)	0.0138	<0.0051		
	Nitrate (as N) (mg/L)	0.0138	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	0.91	0.92		
	Ortho Phosphate as P (mg/L)	0.0018	0.0015		
	Total Phosphate as P (mg/L)	0.034	0.447		
	Sulfate (SO4) (mg/L)	8.08 DLA	8.30		
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	17.4	15.2		
Total Metals	Aluminum (Al)-Total (mg/L)	0.220	0.193		
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010		
	Arsenic (As)-Total (mg/L)	0.00829	0.00794		
	Barium (Ba)-Total (mg/L)	0.194	0.191		
	Beryllium (Be)-Total (mg/L)	<0.00050	<0.00050		
	Bismuth (Bi)-Total (mg/L)	<0.00050	<0.00050		
	Boron (B)-Total (mg/L)	0.020	0.021		
	Cadmium (Cd)-Total (mg/L)	0.000212	0.000198		
	Calcium (Ca)-Total (mg/L)	53.7	53.1		
	Chromium (Cr)-Total (mg/L)	0.00109	0.00090		
	Cobalt (Co)-Total (mg/L)	0.00022	0.00020		
	Copper (Cu)-Total (mg/L)	0.00104	O.00090		
	Iron (Fe)-Total (mg/L)	9.04	9.45		
	Lead (Pb)-Total (mg/L)	0.000305	0.000268		
	Lithium (Li)-Total (mg/L)	0.0077	0.0079		
	Magnesium (Mg)-Total (mg/L)	39.0	38.3		
	Manganese (Mn)-Total (mg/L)	0.404	0.400		

L931109 CONTD.... PAGE 3 of 7 24-SEP-10 09:48 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L931109-1 03-SEP-10 09:30 MWL08-128	L931109-2 03-SEP-10 09:45 MWL08-129		
Grouping	Analyte				
WATER					
Total Metals	Mercury (Hg)-Total (mg/L)	<0.000010	<0.000010		
	Molybdenum (Mo)-Total (mg/L)	0.0164	0.0163		
	Nickel (Ni)-Total (mg/L)	0.00073	0.00058		
	Phosphorus (P)-Total (mg/L)	<0.30	<0.30		
	Potassium (K)-Total (mg/L)	3.5	3.5		
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0010		
	Silicon (Si)-Total (mg/L)	6.31	6.19		
	Silver (Ag)-Total (mg/L)	0.000059	0.000050		
	Sodium (Na)-Total (mg/L)	4.3	4.2		
	Strontium (Sr)-Total (mg/L)	0.111	0.109		
	Thallium (TI)-Total (mg/L)	<0.00010	<0.00010		
	Tin (Sn)-Total (mg/L)	0.00012	0.00012		
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010		
	Uranium (U)-Total (mg/L)	0.0115	0.0113		
	Vanadium (V)-Total (mg/L)	0.0013	0.0013		
	Zinc (Zn)-Total (mg/L)	DLB <0.0030	O.0020		
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0335	0.0344		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00944	0.00905		
	Barium (Ba)-Dissolved (mg/L)	0.195	0.199		
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050		
	Boron (B)-Dissolved (mg/L)	0.017	0.018		
	Cadmium (Cd)-Dissolved (mg/L)	0.000208	0.000209		
	Calcium (Ca)-Dissolved (mg/L)	55.2	55.2		
	Chromium (Cr)-Dissolved (mg/L)	DLM <0.0010	<0.0010		
	Cobalt (Co)-Dissolved (mg/L)	0.00014	0.00016		
	Copper (Cu)-Dissolved (mg/L)	0.00024	0.00031		
	Iron (Fe)-Dissolved (mg/L)	9.00	8.96		
	Lead (Pb)-Dissolved (mg/L)	<0.000050	0.000335		
	Lithium (Li)-Dissolved (mg/L)	0.0077	0.0074		
	Magnesium (Mg)-Dissolved (mg/L)	40.0	39.8		
	Manganese (Mn)-Dissolved (mg/L)	0.392	0.389		
	Mercury (Hg)-Dissolved (mg/L)	<0.000010	<0.000010		
	Molybdenum (Mo)-Dissolved (mg/L)	0.0154	0.0152		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30		

L931109 CONTD.... PAGE 4 of 7 24-SEP-10 09:48 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L931109-1 03-SEP-10 09:30 MWL08-128	L931109-2 03-SEP-10 09:45 MWL08-129		
Grouping	Analyte				
WATER					
Dissolved Metals	Potassium (K)-Dissolved (mg/L)	3.6	3.6		
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0010		
	Silicon (Si)-Dissolved (mg/L)	6.06	6.06		
	Silver (Ag)-Dissolved (mg/L)	0.000031	0.000037		
	Sodium (Na)-Dissolved (mg/L)	4.4	4.4		
	Strontium (Sr)-Dissolved (mg/L)	0.110	0.109		
	Thallium (TI)-Dissolved (mg/L)	<0.00010	<0.00010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.0114	0.0114		
	Vanadium (V)-Dissolved (mg/L)	0.0011	0.0011		
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	0.0014		

Qualifiers for Individual Parameters Listed:

Qualifier	Descriptio	on		
DLA	Detection	Limit Adjust	ed For required dilution	
DLB	Detection	limit was rai	sed due to detection of analyte at comparable level	in Method Blank.
DLM	Detection	Limit Adjust	ed For Sample Matrix Effects	
est Method	References			
ALS Test Cod		Matrix	Test Description	Method Reference**
ALK-PCT-VA		Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
This analysis		using proce		. Total alkalinity is determined by potentiometric titration to a
ALK-PCT-VA		Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
			dures adapted from APHA Method 2320 "Alkalinity" te and hydroxide alkalinity are calculated from pheno	. Total alkalinity is determined by potentiometric titration to a olphthalein alkalinity and total alkalinity values.
ANIONS-BR-I	C-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
			dures adapted from APHA Method 4110 B. "Ion Chr Determination of Inorganic Anions by Ion Chromatog	
ANIONS-CL-IC	C-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
			dures adapted from APHA Method 4110 B. "Ion Chi Determination of Inorganic Anions by Ion Chromatog	
ANIONS-F-IC-	VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
			dures adapted from APHA Method 4110 B. "Ion Chi Determination of Inorganic Anions by Ion Chromatog	
ANIONS-N+N-	CALC-VA	Water	Nitrite+Nitrate by Ion Chromatography	CALCULATION
Conductivity"	and EPA Me	thod 300.0 "I		romatography with Chemical Suppression of Eluent graphy". Specifically, nitrate and nitrite are detected
ANIONS-NO2-	IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
Conductivity"		thod 300.0 "I	dures adapted from APHA Method 4110 B. "Ion Chi Determination of Inorganic Anions by Ion Chromatog	romatography with Chemical Suppression of Eluent graphy". Specifically, the nitrite detection is by UV
ANIONS-NO3-	IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
Conductivity"		thod 300.0 "I	dures adapted from APHA Method 4110 B. "Ion Chi Determination of Inorganic Anions by Ion Chromatog	
ANIONS-SO4-	IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
This analysis Conductivity"	is carried out and EPA Me	using proce thod 300.0 "I	dures adapted from APHA Method 4110 B. "Ion Chi Determination of Inorganic Anions by Ion Chromatog	romatography with Chemical Suppression of Eluent graphy".
C-TOT-ORG-L	.OW-CL	Water	Total Organic Carbon	APHA 5310 C-Instrumental
EC-PCT-VA		Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis electrode.	is carried out	using proce	dures adapted from APHA Method 2510 "Conductiv	vity". Conductivity is determined using a conductivity
HARDNESS-C	ALC-VA	Water	Hardness	APHA 2340B
Hardness is o	calculated fror	m Calcium a	nd Magnesium concentrations, and is expressed as	calcium carbonate equivalents.
HG-DIS-LOW-	CVAFS-VA	Water	Dissolved Mercury in Water by CVAFS(Low)	EPA SW-846 3005A & EPA 245.7
American Pu States Enviro involves a co	blic Health As onmental Prote Id-oxidation of	sociation, ar ection Agenc f the acidified	nd with procedures adapted from "Test Methods for cy (EPA). The procedures may involve preliminary s	mination of Water and Wastewater" published by the Evaluating Solid Waste" SW-846 published by the United sample treatment by filtration (EPA Method 3005A) and tion of the sample with stannous chloride. Instrumental
HG-TOT-LOW	-CVAFS-VA	Water	Total Mercury in Water by CVAFS(Low)	EPA 245.7
American Pu States Enviro	blic Health As	sociation, ar	nd with procedures adapted from "Test Methods for cy (EPA). The procedure involves a cold-oxidation c	mination of Water and Wastewater" published by the Evaluating Solid Waste" SW-846 published by the United of the acidified sample using bromine monochloride prior to pric fluorescence spectrophotometry (EPA Method 245.7).
MET-DIS-ICP-		Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the

American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-LOW-MS-VA Water Dissolved Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-DIS-ULTRA-MS-VA Water Diss. Metals in Water by ICPMS (Ultra) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-LOW-MS-VA Water Total Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Total Metals in Water by ICPMS (Ultra) EPA SW-846 3005A/6020A Water MET-TOT-ULTRA-MS-VA

pH by Meter (Automated)

Dissolved ortho Phosphate by Colour

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-F-VA Water Ammonia by Fluorescence J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

APHA 4500-H "pH Value"

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

This analysis is carried out, on sulphuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PH-PCT-VA pH by Meter (Automated) Water

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field. Water

PH-PCT-VA

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PO4-DO-COL-VA Water

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-DO-COL-VA Water Dissolved ortho Phosphate by Colour

APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA	Water	Total Phosphate P by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water Total Phosphate P by Color APHA 4500-P Phosphorous

APHA 4500-H pH Value

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate. Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC TDS-VA This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-SIE-VA** Water Total Kieldahl Nitrogen by SIE APHA 4500-Norg (TKN) This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kieldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode. TSS-VA Water Total Suspended Solids by Gravimetric APHA 2540 D - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius. **TURBIDITY-VA** Water Turbidity by Meter APHA 2130 "Turbidity" This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. **TURBIDITY-VA** Water Turbidity by Meter APHA 2130 Turbidity This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location

Laboratory Demittion Code	
CL	ALS LABORATORY GROUP - CALGARY, ALBERTA, CANADA
VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Chain of Custody Numbers:

10-022826

GLOSSARY OF REPORT TERMS

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	Released by: Date: Time: 13: 00 Received by: Time: 13: 00 Received by: Time: 13: 00 Received by: Time: 13: 00 Received by:		By the use of this form the user acknowledges an	Failure to complete all p	Sp				MWL08-129	MWL08-128	Sample # (This description will appear on the report)	oniy) 6931109	4436	st. Twon	mild Swisher + Cinau	In Dave Motals	Copy of Invoice with Report? (circle) Yes or No		1 80	Address: 4370 Diminian Street	Contact: HEATHER PONOST	Stantec	Report To	Environmental Division Rush Processing	ANALYTICAL CHEMISTRY & TESTING SERV	ALSLABORATOR Short Holding Time
	ad by: Date: Time: Temperature:	SHIPMENT RECEPTION (lab use only)	By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.	Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	Special Instructions / Regulations / Hazardous Details			15	3-54010 9:45 Water	3-50-10 9:30 Water	Date Time Sample Type (dd-mmm-yy) (hh:mm) Sample Type	ALS Contact: Sampler: CS/SN/DC	Quote # Q24554		LSD:		Job # 123510431-203		Email 2:	Email 1: houther, prolostestantec.com		Standard: • Other (specify):	port Format / Distribution	www.alsglobal.com	Canada Toll Free: 1 800 668	Chain of Custody / Analytical Request Form
YELLOW - CLIENT COPY GENF 18.01 Front	Verified by: Date: Time: Observations: Yes / No ? If Yes add SIF	SHIPMENT VERIFICATION (lab use only)	the back page of the white - report copy.	form LEGIBLY.					XXXXXXXXX	XXXXXXXXXX	Ania T-Ac HS-Ti HS-Ti TKN,i Met-I HS-D	(Torb	2 - A 2 - A 2 - A 4031 - A - A - A - A - A - A - A - A	by NA NST				Analysis Request	For Emergency < 1 Day, ASAP or Weekend - Contact ALS	Emergency (1 Business Day) - 100% Surcharge	Priority, Date Req'd: (Surcharges apply)	(Standard Turnaround Times))	Service Requested: (Rush subject to availability)	Page 1 of 1		10-022826

STANTEC CONSULTING LTD. ATTN: HEATHER PROVOST 4370 DOMINION STREET, 5TH FLOOR PO BOX 21 BURNABY BC V5G 4L7

Phone: 604-436-3014

Date Received: 15-OCT-10 Report Date: 01-NOV-10 14:34 (MT) Version: FINAL

Certificate of Analysis

Lab Work Order #: L943658 Project P.O. #: Job Reference: Legal Site Desc: C of C Numbers:

NOT SUBMITTED 123510431

LCar

Heather Easton Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LIMITED Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 🏬

L943658 CONTD.... PAGE 2 of 10 01-NOV-10 14:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID	L943658-1	L943658-2	L943658-3	L943658-4	L943658-5
	Description Sampled Date Sampled Time Client ID	14-OCT-10 08:45 130	14-OCT-10 10:30 128	14-OCT-10 11:00 DUPLICATE	14-OCT-10 12:00 152	14-OCT-10 15:00 127
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	788	505	514	230	414
	Hardness (as CaCO3) (mg/L)		301	300	47.3	239
	рН (рН)	7.72	7.82	7.87	8.10	8.10
	Total Suspended Solids (mg/L)	7.7	90.2	40.2	244	692
	Total Dissolved Solids (mg/L)	546	299	294	135	231
	Turbidity (NTU)	6.05	41.8	28.5	41.7	323
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	290	279	282	107	232
	Ammonia as N (mg/L)	0.0055	0.474	0.472	0.0055	0.0199
	Bromide (Br) (mg/L)	<0.50	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	66.8	2.24	2.31	7.49	1.11
	Fluoride (F) (mg/L)	0.85	1.46	1.47	0.937	0.631
	Nitrate (as N) (mg/L)	0.323	<0.0050	<0.0050	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	^{DLM}	1.11	1.09	1.11	1.12
	Ortho Phosphate as P (mg/L)	0.0031	0.0010	0.0017	0.0010	<0.0010
	Total Phosphate as P (mg/L)	0.046	0.058	0.043	0.123	0.270
	Sulfate (SO4) (mg/L)	18.7	7.75	8.13	3.18	1.76
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	102	14.1	14.5	9.57	13.7
Total Metals	Aluminum (Al)-Total (mg/L)		0.844	0.281	2.17	11.7
	Antimony (Sb)-Total (mg/L)		0.00010	<0.00010	0.00129	0.00013
	Arsenic (As)-Total (mg/L)		0.00614	0.00649	0.00131	0.00229
	Barium (Ba)-Total (mg/L)		0.196	0.193	0.0953	0.278
	Beryllium (Be)-Total (mg/L)		<0.00050	<0.00050	<0.00050	0.00064
	Bismuth (Bi)-Total (mg/L)		<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Total (mg/L)		0.018	0.018	0.189	0.026
	Cadmium (Cd)-Total (mg/L)		0.000179	0.000193	0.000291	0.000088
	Calcium (Ca)-Total (mg/L)		50.6	52.0	15.3	45.2
	Chromium (Cr)-Total (mg/L)		0.00184	0.00108	0.0101	0.0124
	Cobalt (Co)-Total (mg/L)		0.00035	0.00021	0.00110	0.00417
	Copper (Cu)-Total (mg/L)		0.00183	0.00094	0.115	0.0995
	Iron (Fe)-Total (mg/L)		12.6	9.77	4.92	23.9
	Lead (Pb)-Total (mg/L)		0.00129	0.000519	0.00286	0.00790
	Lithium (Li)-Total (mg/L)		0.0073	0.0083	0.0224	0.0204
	Magnesium (Mg)-Total (mg/L)		37.1	38.3	5.35	37.8
	Manganese (Mn)-Total (mg/L)		0.387	0.365	0.141	1.08
	Mercury (Hg)-Total (mg/L)		0.000013	<0.00010	0.000014	0.000049

L943658 CONTD.... PAGE 3 of 10 01-NOV-10 14:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date	L943658-6 14-OCT-10
	Sampled Time Client ID	TRAVEL BLANK
Grouping	Analyte	
WATER	-	
Physical Tests	Conductivity (uS/cm)	<2.0
,	Hardness (as CaCO3) (mg/L)	<2.0
	рН (рН)	5.76
	Total Suspended Solids (mg/L)	<3.0
	Total Dissolved Solids (mg/L)	<10
	Turbidity (NTU)	0.73
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	<2.0
	Ammonia as N (mg/L)	<0.0050
	Bromide (Br) (mg/L)	<0.050
	Chloride (Cl) (mg/L)	<0.50
	Fluoride (F) (mg/L)	<0.020
	Nitrate (as N) (mg/L)	<0.0050
	Nitrite (as N) (mg/L)	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	<0.050
	Ortho Phosphate as P (mg/L)	<0.0010
	Total Phosphate as P (mg/L)	<0.0020
	Sulfate (SO4) (mg/L)	<0.50
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	0.55
Total Metals	Aluminum (Al)-Total (mg/L)	0.0129
	Antimony (Sb)-Total (mg/L)	<0.00010
	Arsenic (As)-Total (mg/L)	<0.00010
	Barium (Ba)-Total (mg/L)	0.000124
	Beryllium (Be)-Total (mg/L)	< 0.00050
	Bismuth (Bi)-Total (mg/L)	<0.00050
	Boron (B)-Total (mg/L)	<0.010
	Cadmium (Cd)-Total (mg/L)	<0.000017
	Calcium (Ca)-Total (mg/L)	<0.050
	Chromium (Cr)-Total (mg/L)	<0.00050
	Cobalt (Co)-Total (mg/L)	<0.00010
	Copper (Cu)-Total (mg/L)	0.00121
	Iron (Fe)-Total (mg/L)	<0.030
	Lead (Pb)-Total (mg/L)	0.00119
	Lithium (Li)-Total (mg/L)	<0.0050
	Magnesium (Mg)-Total (mg/L)	<0.10
	Manganese (Mn)-Total (mg/L)	0.000161
	Mercury (Hg)-Total (mg/L)	<0.000010

L943658 CONTD.... PAGE 4 of 10 01-NOV-10 14:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L943658-1	L943658-2	L943658-3	L943658-4	L943658-5
	Sampled Date Sampled Time Client ID	14-OCT-10 08:45 130	14-OCT-10 10:30 128	14-OCT-10 11:00 DUPLICATE	14-OCT-10 12:00 152	14-OCT-10 15:00 127
Grouping	Analyte					
WATER						
Total Metals	Molybdenum (Mo)-Total (mg/L)		0.0152	0.0161	0.0126	0.00440
	Nickel (Ni)-Total (mg/L)		0.00148	0.00080	0.00516	0.0131
	Phosphorus (P)-Total (mg/L)		<0.30	<0.30	< 0.30	< 0.30
	Potassium (K)-Total (mg/L)		4.0	4.0	2.9	8.0
	Selenium (Se)-Total (mg/L)		<0.0010	<0.0010	0.0012	0.0046
	Silicon (Si)-Total (mg/L)		7.78	6.52	6.04	29.0
	Silver (Ag)-Total (mg/L)		0.000096	0.000053	0.00132	0.0191
	Sodium (Na)-Total (mg/L)		4.5	4.8	36.6	7.4
	Strontium (Sr)-Total (mg/L)		0.111	0.110	0.129	0.111
	Thallium (TI)-Total (mg/L)		<0.00010	<0.00010	<0.00010	0.00020
	Tin (Sn)-Total (mg/L)		0.00012	0.00013	0.00180	0.00107
	Titanium (Ti)-Total (mg/L)		0.017	<0.010	0.048	0.242
	Uranium (U)-Total (mg/L)		0.00981	0.0116	0.00350	0.0103
	Vanadium (V)-Total (mg/L)		0.0019	0.0012	0.0031	0.0145
	Zinc (Zn)-Total (mg/L)		0.0101	0.0062	0.132	0.0412
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)		0.0279	0.0276	0.0132	0.0116
	Antimony (Sb)-Dissolved (mg/L)		<0.00010	<0.00010	0.00046	<0.00010
	Arsenic (As)-Dissolved (mg/L)		0.00813	0.00856	0.00030	0.00079
	Barium (Ba)-Dissolved (mg/L)		0.185	0.187	0.0463	0.117
	Beryllium (Be)-Dissolved (mg/L)		<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)		<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)		0.017	0.017	0.182	0.017
	Cadmium (Cd)-Dissolved (mg/L)		0.000187	0.000193	0.000018	<0.000017
	Calcium (Ca)-Dissolved (mg/L)		54.8	54.0	12.8	44.2
	Chromium (Cr)-Dissolved (mg/L)		DLM <0.0010	DLM <0.0020	<0.00050	<0.00050
	Cobalt (Co)-Dissolved (mg/L)		0.00017	0.00016	<0.00010	0.00025
	Copper (Cu)-Dissolved (mg/L)		<0.00050	<0.00050	0.0144	0.00059
	Iron (Fe)-Dissolved (mg/L)		10.1	9.15	0.040	2.27
	Lead (Pb)-Dissolved (mg/L)		<0.000050	<0.000050	0.000162	<0.000050
	Lithium (Li)-Dissolved (mg/L)		0.0078	0.0080	0.0189	0.0057
	Magnesium (Mg)-Dissolved (mg/L)		39.8	40.0	3.74	31.2
	Manganese (Mn)-Dissolved (mg/L)		0.368	0.362	0.000752	0.797
	Mercury (Hg)-Dissolved (mg/L)		<0.000010	<0.000010	<0.000010	<0.000010
	Molybdenum (Mo)-Dissolved (mg/L)		0.0150	0.0157	0.0119	0.00388
	Nickel (Ni)-Dissolved (mg/L)		0.00057	0.00051	0.00124	0.00102
	Phosphorus (P)-Dissolved (mg/L)		<0.30	<0.30	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)		4.2	4.0	<2.0	3.6

L943658 CONTD.... PAGE 5 of 10 01-NOV-10 14:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L943658-6 14-OCT-10		
	Client ID	TRAVEL BLANK		
Grouping	Analyte			
WATER				
Total Metals	Molybdenum (Mo)-Total (mg/L)	<0.000050		
	Nickel (Ni)-Total (mg/L)	<0.00050		
	Phosphorus (P)-Total (mg/L)	<0.30		
	Potassium (K)-Total (mg/L)	<2.0		
	Selenium (Se)-Total (mg/L)	<0.0010		
	Silicon (Si)-Total (mg/L)	<0.050		
	Silver (Ag)-Total (mg/L)	<0.000010		
	Sodium (Na)-Total (mg/L)	<2.0		
	Strontium (Sr)-Total (mg/L)	<0.00010		
	Thallium (TI)-Total (mg/L)	<0.00010		
	Tin (Sn)-Total (mg/L)	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.010		
	Uranium (U)-Total (mg/L)	<0.000010		
	Vanadium (V)-Total (mg/L)	<0.0010		
	Zinc (Zn)-Total (mg/L)	<0.0030		
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	<0.0030		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	<0.00010		
	Barium (Ba)-Dissolved (mg/L)	<0.000050		
	Beryllium (Be)-Dissolved (mg/L)	<0.00050		
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050		
	Boron (B)-Dissolved (mg/L)	<0.010		
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017		
	Calcium (Ca)-Dissolved (mg/L)	<0.050		
	Chromium (Cr)-Dissolved (mg/L)	<0.00050		
	Cobalt (Co)-Dissolved (mg/L)	<0.00010		
	Copper (Cu)-Dissolved (mg/L)	<0.00050		
	Iron (Fe)-Dissolved (mg/L)	<0.030		
	Lead (Pb)-Dissolved (mg/L)	0.000057		
	Lithium (Li)-Dissolved (mg/L)	<0.0050		
	Magnesium (Mg)-Dissolved (mg/L)	<0.10		
	Manganese (Mn)-Dissolved (mg/L)	<0.000050		
	Mercury (Hg)-Dissolved (mg/L)	<0.000010		
	Molybdenum (Mo)-Dissolved (mg/L)	<0.000050		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050		
	Phosphorus (P)-Dissolved (mg/L)	<0.30		
	Potassium (K)-Dissolved (mg/L)	<2.0		

L943658 CONTD.... PAGE 6 of 10 01-NOV-10 14:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time	L943658-1 14-OCT-10 08:45	L943658-2 14-OCT-10 10:30	L943658-3 14-OCT-10 11:00	L943658-4 14-OCT-10 12:00	L943658-5 14-OCT-10 15:00
	Client ID	130	128	DUPLICATE	152	127
Grouping	Analyte					
WATER						
Dissolved Metals	Selenium (Se)-Dissolved (mg/L)		<0.0010	<0.0010	<0.0010	<0.0010
	Silicon (Si)-Dissolved (mg/L)		6.17	6.12	1.30	5.33
	Silver (Ag)-Dissolved (mg/L)		0.000032	0.000029	<0.000010	0.000012
	Sodium (Na)-Dissolved (mg/L)		4.9	4.9	36.0	6.8
	Strontium (Sr)-Dissolved (mg/L)		0.109	0.110	0.118	0.0900
	Thallium (TI)-Dissolved (mg/L)		<0.00010	<0.00010	<0.00010	<0.00010
	Tin (Sn)-Dissolved (mg/L)		<0.00010	<0.00010	0.00023	<0.00010
	Titanium (Ti)-Dissolved (mg/L)		<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)		0.0104	0.0113	0.00258	0.00688
	Vanadium (V)-Dissolved (mg/L)		<0.0010	<0.0010	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)		<0.0030	<0.0030	0.0246	<0.0030

L943658 CONTD.... PAGE 7 of 10 01-NOV-10 14:34 (MT)

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L943658-6 14-OCT-10 TRAVEL BLANK
Grouping	Analyte	
WATER	Allayto	
Dissolved Metals	Selenium (Se)-Dissolved (mg/L)	-0.0010
	Silicon (Si)-Dissolved (mg/L)	<0.0010
	Silver (Ag)-Dissolved (mg/L)	<0.050
	Sodium (Na)-Dissolved (mg/L)	<0.000010
	Strontium (Sr)-Dissolved (mg/L)	<2.0
	Thallium (TI)-Dissolved (mg/L)	<0.00010
	Tin (Sn)-Dissolved (mg/L)	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.00010
	Uranium (U)-Dissolved (mg/L)	<0.010
	Vanadium (V)-Dissolved (mg/L)	<0.000010
	Zinc (Zn)-Dissolved (mg/L)	<0.0010
		<0.0030

Qualifiers for Individual Parameters Listed:

Qualifier	Description		
DLM	Detection Limit Adjus	ted For Sample Matrix Effects	
est Method Re	ferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
) "Alkalinity". Total alkalinity is determined by potentiometric titration to a d from phenolphthalein alkalinity and total alkalinity values.
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 Alkalinity
) "Alkalinity". Total alkalinity is determined by potentiometric titration to a d from phenolphthalein alkalinity and total alkalinity values.
ANIONS-BR-IC-V	A Water	Bromide by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".
ANIONS-CL-IC-V	A Water	Chloride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
This analysis is Conductivity" an	carried out using proc d EPA Method 300.0	edures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".
ANIONS-NO2-IC-	VA Water	Nitrite by Ion Chromatography	APHA 4110 B.
Conductivity" an) B. "Ion Chromatography with Chemical Suppression of Eluent n Chromatography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-	VA Water	Nitrate by Ion Chromatography	APHA 4110 B.
	d EPA Method 300.0) B. "Ion Chromatography with Chemical Suppression of Eluent n Chromatography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-	VA Water	Sulfate by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 Determination of Inorganic Anions by Ion	B. "Ion Chromatography with Chemical Suppression of Eluent Chromatography".
C-TOT-ORG-LOV	V-CL Water	Total Organic Carbon	APHA 5310 C-Instrumental
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is electrode.	carried out using proce	edures adapted from APHA Method 2510) "Conductivity". Conductivity is determined using a conductivity
HARDNESS-CAL	C-VA Water	Hardness	APHA 2340B
Hardness is calo	culated from Calcium a	and Magnesium concentrations, and is ex	xpressed as calcium carbonate equivalents.
HG-DIS-LOW-CV	AFS-VA Water	Dissolved Mercury in Water by CVAF	S(Low) EPA SW-846 3005A & EPA 245.7
American Public States Environm involves a cold-o	Health Association, a nental Protection Agen oxidation of the acidifie	nd with procedures adapted from "Test I cy (EPA). The procedures may involve procedures may	for the Examination of Water and Wastewater" published by the Methods for Evaluating Solid Waste" SW-846 published by the United preliminary sample treatment by filtration (EPA Method 3005A) and rior to reduction of the sample with stannous chloride. Instrumental d 245.7).
HG-TOT-LOW-C	VAFS-VA Water	Total Mercury in Water by CVAFS(Lo	w) EPA 245.7
American Public States Environm	Health Association, a nental Protection Agen	nd with procedures adapted from "Test N cy (EPA). The procedure involves a colo	for the Examination of Water and Wastewater" published by the Methods for Evaluating Solid Waste" SW-846 published by the United d-oxidation of the acidified sample using bromine monochloride prior to d vapour atomic fluorescence spectrophotometry (EPA Method 245.7).
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOE	S EPA SW-846 3005A/6010B
American Public States Environm	Health Association, a	nd with procedures adapted from "Test N cy (EPA). The procedure involves filtrati	for the Examination of Water and Wastewater" published by the Methods for Evaluating Solid Waste" SW-846 published by the United on (EPA Method 3005A) and analysis by inductively coupled plasma -
MET-DIS-LOW-N		Dissolved Metals in Water by ICPMS	(Low) EPA SW-846 3005A/6020A
This analysis is	carried out using proc	adures adapted from "Standard Methods	for the Examination of Water and Wastewater" published by the

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A).

Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Diss. Metals in Water by ICPMS (Ultra) MET-DIS-ULTRA-MS-VA Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

MET-TOT-ICP-VA Water Total Metals in Water by ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-LOW-MS-VA Water Total Metals in Water by ICPMS(Low)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Total Metals in Water by ICPMS (Ultra) EPA SW-846 3005A/6020A MET-TOT-ULTRA-MS-VA Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-F-VA Water Ammonia by Fluorescence

This analysis is carried out, on sulphuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

PH-PCT-VA Water pH by Meter (Automated)

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

It is recommended that this analysis be conducted in the field.

PH-PCT-VA Water pH by Meter (Automated)

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

Dissolved ortho Phosphate by Colour

It is recommended that this analysis be conducted in the field. Water

PO4-DO-COL-VA

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-DO-COL-VA Dissolved ortho Phosphate by Colour Water

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA Total Phosphate P by Color Water

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

TDS-VA Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC

APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.

APHA 4500-H pH Value

APHA 4500-H "pH Value"

EPA SW-846 3005A/6020A

EPA SW-846 3005A/6010B

EPA SW-846 3005A/6020A

J. ENVIRON, MONIT., 2005, 7, 37-42, RSC

APHA 4500-P Phosphorous

APHA 4500-P "Phosphorous"

L943658 CONTD.... PAGE 10 of 10 01-NOV-10 14:34 (MT)

Chain of Custody Numbers:					
A ALS LABORATORY GROUP - VANCOUVER, BC, CANADA					
L ALS LABORATORY GROUP - CALGARY, ALBERTA, CANADA					
Laboratory Definition Code	Labor	atory Location			
The last two letters of the ab	ove test coo	de(s) indicate the laboratory that performed analy	tical analysis for that test. Refer to the list below:		
* ALS test methods may inco	rporate mo	difications from specified reference methods to ir	nprove performance.		
This analysis is carried out	using proce	dures adapted from APHA Method 2130 "Turbid	ity". Turbidity is determined by the nephelometric method.		
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 Turbidity		
This analysis is carried out	using proce	edures adapted from APHA Method 2130 "Turbid	ity". Turbidity is determined by the nephelometric method.		
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 "Turbidity"		
			Solids are determined gravimetrically. Total Suspended ermined by drying the filter at 104 degrees celsius.		
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC		
		dures adapted from APHA Method 4500-Norg "Nalysis using an ammonia selective electrode.	litrogen (Organic)". Total kjeldahl nitrogen is determined by		
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	APHA 4500-Norg (TKN)		

Surrogate A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg milligrams per kilogram based on dry weight of sample.

mg/kg wwt milligrams per kilogram based on wet weight of sample.

mg/kg lwt milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L milligrams per litre.

< - Less than.

D.L. The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

ANALYTICAL CHEMISTRY & TEATING SERVICES Canada T	y / Analytical Re Il Free: 1 800 660 w.alsglobal.com									1		030 , 1		
eport To Report Format / Distri	Report Format / Distribution				ce Re	ques	ted:	(Rus	h subj	ect to a	availat	oility)	-	
	er (specify):			Service Requested: (Rush subject to availability)										
	el / Digital	Fax	11	Priority, Date Reg'd: (Surcharges appl								ply)		
	Email 1: HEATHER, PROVOSTO, STANTEC. COM							ess D	ay) - 1	100% 5	_			
BURNABY EC Email 2: TOBI. GAT					-	-						Conta	ICT ALS	
hone: 604 436 3014 Fax: 604 436 3752	WIGE & FRIT	00.00//		-				-		equest	_			_
	Client / Project Information				(Indicate Filtered or Preserved, F/P)									
Copy of Invoice with Report? (circle) Yes or No Job #: 1235	0431		199991911111								1			
ompany: PO / AFE:				-		-	1						r	
ontact: LSD:			1					1.1						
ddress:	Sec. Sec.		1			4	N				2.4	100		ers
none: Fax: Quote #: 2,03.	Quote #: 203, 200			5		12	e TALS				111	10		tain
ab Work Order # (lab use only) L943658 ALS HATHER Contact: BASTON		51 GARBNER	GENERAL	NUTRIENTS	U	TOTALMETOL	3	2						r of Containers
Sample # Sample Identification Date (This description will appear on the report) (dd-mmm-)	(hh:mm)	Sample Type	GEN	NUT	700	TOTA	DISS.	t		-				Number
130 14.007.	0 08:45		V	P	P			P				1		4
128 14.007.		1	1	P	P	P	P/F	P			-			11
		1.1	1	P	P	A	P/F							16
			-				P	-			-	-	-	6
152 14.04.			r,	P	P	P		P			-	-	-	6
127 10.05.	0 15:00	and the state	V	P	P	P	PA	P			331			6
				0	_	-								
	1.	1	-	1. s.	1		1.00	1		1			-	
		1	1.11		1	11	10							
		-		-				-			-	-	-	-
		1.3.5		-	-	-	-	-	-		-	-	-	+
				_	-	-	-		-		-	-	-	-
	1					-			1					
		and the second second												
Special Instructions / Re	gulations / Hazard	lous Details		-										
SAMPLE 152- DISSOLVED METALS WAS NOT FILTERED	NO METALS	FRom same	28	130			24					V.	1	1
Failure to complete all portions of this form m By the use of this form the user acknowledges and agrees with the Ter							white	e - re	port c	copy.			9	
	EPTION (lab use of	nly)				HIPM	ENT	VERI	FICAT	FION (I	iab use		1	
TOBI GARDWER OCT. 152019 Received by: Date: 15-001-	by: Date: Time: Temperature: 28 °C			Verified by:			Date:			Yes / I		bservations: es / No ? Yes add SIF		

And the second s

Appendix A.4

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 4 – Terrain, Soils, and Permafrost 2010

THOR LAKE RARE EARTH METALS BASELINE PROJECT

Environmental Baseline Report: Volume 4 – Terrain, Soils and Permafrost

FINAL INTERIM REPORT

Prepared for:

Avalon Rare Metals Inc. 130 Adelaide Street Suite 1901 Toronto, ON M5H 3P5

Prepared by:

Stantec 4370 Dominion Street, Suite 500 Burnaby, BC V5G 4L7 Tel: (604) 436-3014 Fax: (604) 436-3752

and

Stantec P.O. Box 1680, 5021 - 49 Street Yellowknife, NT X1A 2N4 Tel: (867) 920-2216 Fax: (867) 920-2278

Project No.: 123510050 and 123510051

January 15, 2010

AUTHORSHIP

Christiane Brouwer, B.Sc., P.Ag.	Soils
Olivier Piraux, M.Sc.	Terrain
Daniel Fortier, Ph.D	Permafrost
Dennis O'Leary, BA	Senior Review

EXECUTIVE SUMMARY

Avalon Rare Metals Inc (Avalon) is currently undertaking a Prefeasibility Study (PFS) for the development of the Nechalacho Deposit, located on mineral leases it holds at its' Thor Lake site in the Northwest Territories. The deposit is located approximately 100 km southeast of Yellowknife and 4 km north of the Hearne Channel of Great Slave Lake. The Thor Lake site is within the Taiga Shield ecozone, characterized by Precambrian bedrock outcrops with many lakes and wetlands in glacially carved depressions. The site is located within the Akaitcho Territory, an area currently under negotiation of a comprehensive land claim between the federal government and the Akaitcho First Nations, representing First Nations in LutselK'e, Fort Resolution, Ndilo and Dettah. Thor Lake lies within the Mackenzie Valley region of the NWT and is, therefore, subject to the provisions of the *Mackenzie Valley Resource Management Act* (MVRMA) in addition to other federal and territorial legislation of general application.

The Thor Lake site has been subject to mineral exploration by others since the 1970s. Previous exploration focused on beryllium resources in the T-zone and included drilling and bulk sampling. Since acquiring the property in 2006, Avalon has focused on delineating the rare earth resource within the Nechalacho Deposit, which is not part of the T-zone. Preliminary development concepts being considered for the Nechalacho Deposit during the PFS include development of an underground mine, mineral concentration, tailings disposal, waste rock disposal, fuel and concentrate storage, power generation and transportation infrastructure (airstrip, upgraded site roads, wharf on Great Slave Lake). Concentrate would be shipped off-site seasonally for refinement into a marketable rare earth product.

Stantec (formerly Jacques Whitford) initiated environmental baseline studies at the Thor Lake project site in fall 2008. Aquatic monitoring of drilling was undertaken during fall 2007 and winter 2008. This Technical Data Report (TDR) presents and analyzes data collected for the terrain, soils and permafrost disciplines as of fall 2009.

TABLE OF CONTENTS

1	Project Background1			
	1.1	Focus of Baseline Investigation		1
	1.2	Study A	rea and Physiography	1
		1.2.1	Quaternary History	3
		1.2.2	Landforms and Surficial Geology	3
		1.2.3	Climate and Permafrost Conditions	3
		1.2.4	General Soil Patterns	4
	1.3	Methodo	blogy	4
		1.3.1	Literature Review	4
		1.3.2	High Definition Mapping and Applications (HD-MAPP)	4
		1.3.3	Field Program	5
	1.4	Quality /	Assurance/Quality Control	7
		1.4.1	Preliminary Mapping	8
		1.4.2	Field Inventory Program	8
		1.4.3	Final Mapping and Classification	8
2	Results		8	
	2.1	Terrain.		8
			Surficial Geology and Geomorphology	0
		2.1.1	Canicial Coology and Cooliciphology	8
			figure here**Surficial Material Description	
		**insert		10
	2.2	**insert Surficial	figure here**Surficial Material Description	10 11
	2.2	**insert Surficial	figure here**Surficial Material Description Material Description	10 11 15
	2.2	**insert Surficial Permafr	figure here**Surficial Material Description Material Description ost	10 11 15 15
	2.2	**insert Surficial Permafr 2.2.1	figure here**Surficial Material Description Material Description ost Permafrost Distribution and Landforms	10 11 15 15 19
	2.2	**insert Surficial Permafr 2.2.1 2.2.2	figure here**Surficial Material Description Material Description ost Permafrost Distribution and Landforms Permafrost thermal regime and thickness	10 11 15 15 19 20
	2.2	**insert Surficial Permafr 2.2.1 2.2.2 2.2.3 2.2.4	figure here**Surficial Material Description Material Description ost Permafrost Distribution and Landforms Permafrost thermal regime and thickness Active Layer Thickness	10 11 15 15 19 20 20
		insert Surficial Permafr 2.2.1 2.2.2 2.2.3 2.2.4	figure hereSurficial Material Description Material Description ost Permafrost Distribution and Landforms Permafrost thermal regime and thickness Active Layer Thickness Upper Permafrost Cryostructure, Ice Content and Thaw-Susceptibility	10 11 15 15 19 20 20 25
		insert Surficial Permafr 2.2.1 2.2.2 2.2.3 2.2.4 Soils	figure hereSurficial Material Description Material Description ost Permafrost Distribution and Landforms Permafrost thermal regime and thickness Active Layer Thickness Upper Permafrost Cryostructure, Ice Content and Thaw-Susceptibility	10 11 15 15 20 20 25 25
3	2.3	**insert Surficial Permafr 2.2.1 2.2.2 2.2.3 2.2.4 Soils 2.3.1 2.3.2	figure here**Surficial Material Description Material Description ost Permafrost Distribution and Landforms Permafrost thermal regime and thickness Active Layer Thickness Upper Permafrost Cryostructure, Ice Content and Thaw-Susceptibility Overview	10 11 15 15 19 20 20 25 25 25

List of Tables

Table 2-1:	Surficial Materials within the Thor Lake Project Area	11
Table 2-2:	Active Layer and Near Surface Permafrost Temperatures as Measured by a Thermistor Cable Located Near Thor Lake (see Figure 2-8)	19
Table 2-3:	Description of Soil Units Mapped in the Thor Lake Project Area	26
Table 2-4:	Extent of Soils Mapped within the Thor Lake Project Area	27

List of Figures

Figure 1-1:	Project Location	2
Figure 2-1:	Bedrock Outcrops and Ice Flow Indicators	9
Figure 2-2:	Surficial Deposits of the Thor Lake Project Area10	C
Figure 2-3:	Till material (ST21)	2
Figure 2-4:	Glaciofluvial material (ST25)13	3
Figure 2-5:	Lacustrine Material Found at Site ST2514	4
Figure 2-6:	Blocky Colluvial Deposit	5
Figure 2-7:	Location of Potential Ice-Rich Deposits	7
Figure 2-8:	Temperature profile of the active layer and near surface permafrost	C
Figure 2-9:	Selected sediment samples from the boreholes showing the fine-grained nature of glaciolacustrine (ST44, ST46), lacustrine (ST48) deposits and the coarse-grained nature of washed-out till (ST08) (see Appendix A for additional information)	2
Figure 2-10:	Selected gravimetric ice contents for various types of deposits encountered in the boreholes	3
Figure 2-11:	Selected volumetric ice contents for the permafrost boreholes (see appendix for additional information)	4
Figure 2-12:	Spatial Distribution of Soils in the Thor Lake Project Area	3

List of Appendices

Appendix A	Permafrost Data
Appendix B	Soil Data
Appendix C	Soil Unit Descriptions and Chemical Characteristics of Soils in the LSA

List of Tables in Appendices

Table A-1:	Grain Size Distribution Statistics – Borehole ST08Append	A xit
Table A-2:	Grain Size Distribution Statistics – Borehole ST44Append	A xit
Table A-3:	Grain Size Distribution Statistics – Borehole ST48Append	A xib
Table C-1:	BrC Summary TableAppend	dix C
Table C-2:	Description of BrC Soil UnitAppend	dix C
Table C-3:	Physical and Chemical Characteristics of the BrC Soil Unit – Site ST45Append	dix C
Table C-4:	BrF Summary TableAppend	dix C
Table C-5:	Description of BrF Soil UnitAppend	dix C
Table C-6:	Physical and Chemical Characteristics of the BrF Soil Unit – Site ST53 Append	dix C
Table C-7:	RgC Summary TableAppend	dix C
Table C-8:	Description of RgC Soil UnitAppend	dix C
Table C-9:	Physical and Chemical Characteristics of the RgC Soil Unit – Site ST42Append	dix C
Table C-10:	RgF Summary TableAppend	dix C
Table C-11:	Description of RgF Soil UnitAppend	dix C
Table C-12:	Physical and Chemical Characteristics of the RgF Soil Unit – Site ST10 Append	dix C
Table C-13:	CrO Summary TableAppend	dix C
Table C-14:	Description of CrO Soil UnitAppend	dix C
Table C-15:	Physical and Chemical Characteristics of the CrO Soil Unit – Site ST08 Append	dix C
Table C-16:	CrM Summary TableAppend	dix C
Table C-17:	Description of CrM Soil UnitAppend	dix C
Table C-18:	Physical and Chemical Characteristics of the CrM Soil Unit – Site ST49 Append	dix C

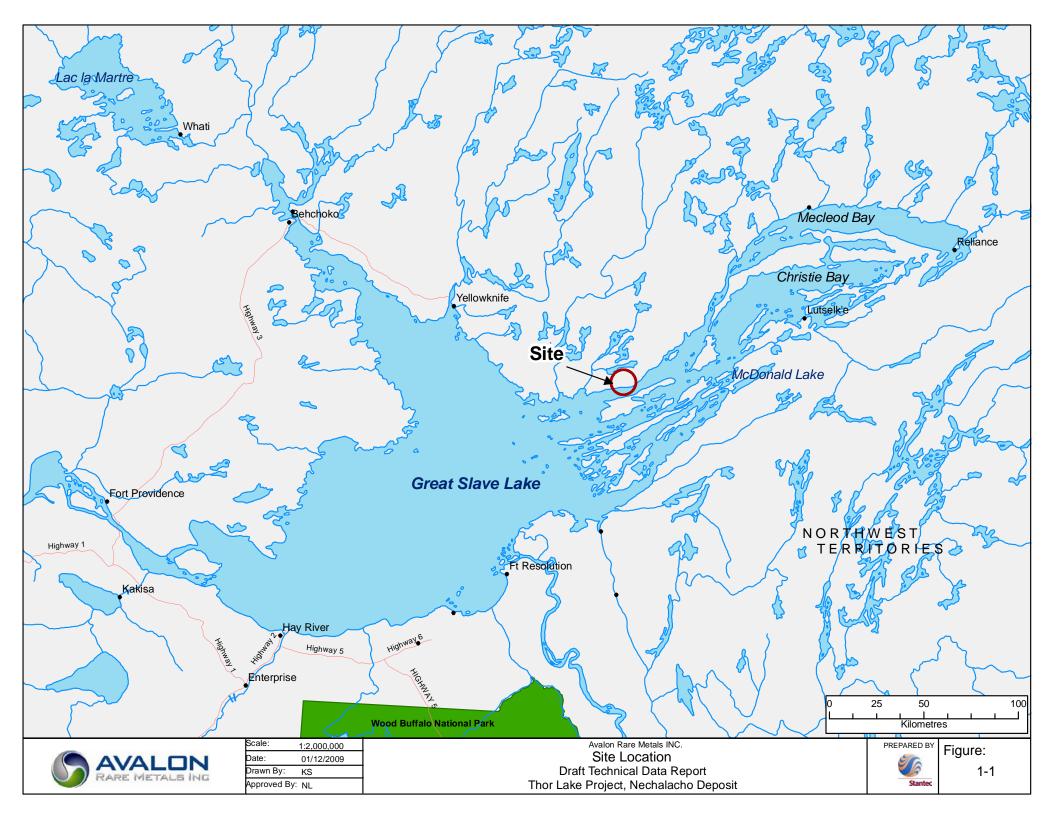
THIS PAGE INTENTIONALLY LEFT BLANK.

1 PROJECT BACKGROUND

1.1 Focus of Baseline Investigation

The main objective of this investigation is to characterize the soils, terrain and permafrost distribution in the vicinity of the proposed Thor Lake project mine and related infrastructure. Detailed information on the surficial geology, landforms diversity, permafrost distribution and associated terrain constraints is paramount in the support of infrastructure planning, facility sitting and routing considerations.

The focus of baseline investigations include


- Identification and distribution of surficial material types
- Identification and distribution of permafrost conditions
- Soil types and their distribution
- Land capability classification of soils
- Soil suitability for reclamation
- Susceptibility to soil acidification from acid emissions
- Baseline metal content of soils
- Descriptions and location of erosion-prone sensitive soils
- The study area's susceptibility to soil compaction.

This report presents the data collected to date with respect to the above topics.

1.2 Study Area and Physiography

The Thor Lake Regional Study Area (RSA), mine lease 3178, is located within NTS 85I/SE, near the northeast shores of the Hearne Channel, Great Slave Lake, Northwest Territories, some. 100 km east/southeast of Yellowknife (Figure 1-1).

The study area falls within the Bear Slave Uplands of the physiographic Kazan Region (Bostock 1970). This region consists of vast areas of massive rocks that form flat, broad, sloping uplands, plateaus and lowlands.

1.2.1 Quaternary History

The study area was covered by the Laurentide Ice Sheet during the last glaciation, in the Late Wisconsinan. During glacial maximum, about 18 ka ago, the dominant ice flow direction was southwest, flowing from the Keewatin Ice Divide (Dyke and Dredge 1989; Lemmen, *et al.* 1994; Fulton 1995).

The Laurentide Ice Sheet retreated to the northeast of the Project area, leaving the area free of ice between 10,000 and 9,000 years before present (Dyke and Dredge 1989; Dyke, *et al.* 2003). Glacial meltwater impounded along this margin, forming Glacial Lake McConnell (Dyke, *et al.* 2003; Lemmen, *et al.* 1994; Smith 1995). Great Bear Lake (NWT), Great Slave Lake (NWT) and Lake Athabasca (AB/SASK) are remnants of this lake, though it wasn't until around 8,000 years before present that the lakes completely separated to their modern configurations. Glacial Lake McConnell covered approximately 240 000 km². Former lake shores of glacial Lake McConnell reached elevations between 245 and 295 metres above sea level (m asl) (Craig 1965). Observation in the Yellowknife area showed material reworked by wave action as far as 70 km inland from the actual location of Great Slave Lake (Kerr and Wilson 2000). This implies that glacial Lake McConnell reached elevations averaging 275 to 285 m asl.

1.2.2 Landforms and Surficial Geology

The bedrock of the region is covered by a thin and discontinuous veneer of glacial till material (Fulton 1995). Great Slave Lake was far more extensive in the past, as part of Glacial Lake McConnell, but very little sediment seems to have been deposited in this lake (Dyke and Dredge 1989; Kerr and Wilson 2000).

The regional landscape and surficial geology in the vicinity of Yellowknife was described by Kerr and Wilson (2000) as a vast terrain of low relief with topographic variations usually ranging between 10 and 30 m. The earth's surface consists mostly of bare rocky outcrops intersected by generally thin accumulation of glacial and glaciolacustrine sediments. The most common surficial deposit consists of till and commonly shows signs of reworking by glacial meltwater and glaciolacustrine processes, resulting in a variety of material facies and textures.

1.2.3 Climate and Permafrost Conditions

The weather station with the oldest historical data is located 100 km to the northwest in the city of Yellowknife (62°27'N, 114°26'W, elevation 206 m), an area characterized by a sub-arctic, semi-arid climate. The annual mean air temperature for the period from 1971 to 2000 was -4.6°C (Environment Canada 2002). The region had approximately 1,835.5 thawing degree-days and approximately 3,475.4 freezing degree-days. Winter (continuous daily mean temperature below 0°C) begins in early-October and ends around late-April, for a mean total of 222 days/year. The annual precipitation is 280.7 mm/year, of which 41 percent (151.8 cm) falls as snow (Environment Canada 2002).

By definition, permafrost refers to a condition when the ground, either loose material or bedrock, remains at or below a temperature of 0°C for a minimum period of two years (NRC, Permafrost

Subcommittee 1988). The Thor Lake Project is located in the extensive discontinuous permafrost zone of Canada (Heginbottom *et al.* 1995; Frozen Ground Data Center,

<u>http://nsidc.org/data/ggd318.html</u>). This zone consists of an area where 50 to 90 percent of the land is characterized by permafrost conditions. Ground ice, which is a direct indicator of permafrost conditions, occurs under three main forms: (1) as coating on grains and as crystals within pores of unconsolidated deposits (pore ice); (2) as thin ice lenses and ice veins (segregated ice, intrusive ice and reticulate ice); and (3) as large bodies of more-or-less pure ice (i.e. ice wedges, massive ice and pingo ice).

In the Yellowknife area, permafrost can be absent or present depending on the geological and physiographic contexts. Where permafrost is present, reported thicknesses vary between 30 to 90 m. Close to Table Mountain (~ 63.6° N, 123.6° W) and Norman Wells (~ 65.3° N, 127° W) reported permafrost thicknesses vary respectively between 40 to 70 m and 15 to 61 m. The reported geothermal gradient for the Yellowknife area is 12°C/km and varies between 48 to 62 °C/km for Norman Wells.

1.2.4 General Soil Patterns

There have been few extensive soil surveys completed for the Thor Lake area. The Canadian Soil Information System (CanSIS) has limited information for the Thor Lake Study Area. The Project area lies north of Great Slave Lake and has extensive areas of bedrock outcrops. Soils in upland areas typically consist of Orthic Gray Luvisols, Orthic or Eluviated Dystric or Eutric Brunisols, and Regosols. Gleyed Regosolic, Cryosolic and Organic soils are found in low-lying, imperfectly to very poorly drained areas.

1.3 Methodology

The baseline program for this study used a combination of research techniques including a review of historical data, a field inventory program and detailed mapping using Stantec's HD-MAPP system.

1.3.1 Literature Review

A literature review of terrain, permafrost and soils conditions around the Thor Lake area was conducted in order to collect valuable background information and in order to identify any data gaps.

Detailed information specific to the Project area is very scarce. There is very few or no large scale bedrock geology, surficial geology or soils maps available for the study area, as per a review of federal and territorial government publications. There is also very limited information related to permafrost and ground temperature within the general Thor Lake Project area.

1.3.2 High Definition Mapping and Applications (HD-MAPP)

Mapping of the surficial geology and soil resources of the Project area was completed by terrain and soil scientists using Stantec's HD-MAPP system. HD-MAPP incorporates both PurVIEWTM and ArcGIS applications, allowing scientists to view medium to small scale aerial photography (e.g.,

1:40,000) in a digital environment at scales as large as 1:1,500. The ability to view imagery at such detailed scales provides a number of significant advantages, including better delineation and classification of key landscape features.

Relatively homogenous terrain units were initially delineated at a scale of 1:5,000 based on surficial sediment type (e.g., till, organic, etc.), surface expression (e.g., hummocky, veneer, fan, etc.), slope, drainage, and geomorphologic processes (e.g., groundwater seepage, mass wasting, permafrost, etc.). Mapping of permafrost related landforms and ground ice distribution was conducted using base data derived from surficial deposits, vegetation and drainage. Soils were generally based on terrain polygons, and further divided into soil units representing a combination of both soil order and parent material texture. Appendix C contains the physical and chemical characteristics of each soil unit identified in the Project area from the preliminary field work conducted in 2008.

Soil unit polygons were delineated at a scale of 1:5,000 based on soil texture and Great Group. These polygons can be used to determine soil spatial extents in the Project area (Figure 2-12)

In this interim report, the following maps will be provided:

- Overview of project area
- Surficial geology
- Location of potential ice rich deposits in the Project area
- Soil and terrain inspection sites, soil unit polygons and dominant soil types.

1.3.3 Field Program

The purpose of the field inventory program was to collect data to verify preliminary terrain and soils mapping and to obtain detailed data for classification. Fieldwork was undertaken over the entire Project area in early October, 2008.

As the Local Study Area (LSA) and the specific locations of the mine and related infrastructure (infrastructure footprint) were not determined at the time of the fieldwork, the area of investigation for terrain, permafrost and soils consists of the general project area surrounding Thor Lake and Long Lake, an area of approximately 1,097 ha.

Most field sites were accessed by foot, with minimum quads and helicopter support. At each site the following general site data were recorded on a standard data sheet:

- GPS coordinates
- Slope position, aspect, gradient, and length
- Sediment type
- Surface expression
- Land use
- Terrain and soil texture
- Percentage of clasts
- Clast roundness and size

- Drainage
- Geomorphic modifying processes.

Additional information relevant to the site was recorded in a notes section. Ground inspection sites were selected while completing mapping using the HD-MAPP system. GPS coordinates for each site were downloaded from the HD-MAPP system into a handheld GPS unit set to NAD83 to allow for efficient sampling. Sixty-three (63) field sites were visited during the 2008 program.

1.3.3.1 Permafrost

Field investigations relative to the permafrost characterization were specifically conducted in the fall, a period when the active layer is fairly deep. An overview helicopter flight was also conducted to observe the Project area and to better identify any permafrost related landforms. Four days of field investigation were dedicated to permafrost observations. The area of investigation was limited to five sites; these sites were previously identified as potential ice rich deposits during the air photo interpretation and subsequently confirmed during the aerial reconnaissance flight.

Specific field methods and operations were conducted in order to confirm terrain mapping and in order to collect site-specific information and samples concerning the local permafrost conditions. Measurements of the active layer thickness were done in various types of materials, including finegrained soils, coarse grained till, and peat deposits. This was done manually using a graduated steel probe. A series of test pits were dug in order to observe the materials and to study the stratigraphic sequence throughout the Project Area. In order to characterize the thaw-susceptibility of the permafrost, five shallow boreholes were drilled in potentially ice-rich areas. A portable shallow core drill with a carbide and diamond crown (12 cm in diameter) was used. Maximum drilling depth averaged 3.5 m. Core recovery was almost 100 -percent and material was sampled along the entire sequence. Samples within the active layer were taken from the walls of the test pits. A detailed cryostratigraphic description of the test pits and core samples was conducted in the field. Core descriptions were done following the classification of Murton and French (1994) and included dip of the sedimentary strata, cryostructure, type of ice, organic matter decomposition, and type of sediments. The core samples were logged in the field and brought back frozen to the camp where they were kept in a freezer. The frozen samples were analyzed at the Cold regions geomorphology and geotechnical laboratory (University of Montreal). The analyses included gravimetric and volumetric water content, pH, conductivity and grain size distribution (by sieving and hydrometer methods, ASTM D422).

The temperature regime of the active layer and upper permafrost was measured in October 2008 using a thermistor cable installed in a borehole (0- 14.1 m) backfilled with sand. The borehole is located a few tens of meters to the south-west of Thor Lake.

1.3.3.2 Soils

At each soil inspection site, soil profiles were described using criteria established by the Soil Classification Working Group (1998) and according to national standards established by the *Expert*

Committee on Soil Survey (1983). The following information was collected for each horizon when field conditions permitted:

- Depth
- Texture
- Moisture
- Color
- Structure
- Consistence
- Coarse fragment content
- Presence of salts
- Field pH (Bm horizons)
- Calcareousness
- Extent of mottling
- Presence of frozen horizons
- Samples taken for analysis.

Soil profiles were assigned a unit based on their textural group and soil order using the Canadian System of Soil Classification (Soil Classification Working Group, 1998). Representative profiles from each soil series were sampled by horizon to characterize the physical and chemical characteristics of each. Samples were placed in clean plastic bags, labeled and delivered to Exova Canada Inc. in Edmonton. Analyses conducted include:

- Electrical conductivity (saturated paste)
- pH (saturated paste, 1:2 H2O, 0.01 M CaCl2)
- Soluble cations (calcium, magnesium, sodium, and potassium)
- Saturation percentage and sodium adsorption ratio
- Exchangeable calcium, magnesium, sodium, potassium
- Calcium carbonate equivalent or total inorganic carbon
- Total Kjeldahl nitrogen
- Total organic carbon
- Particle size analysis (hydrometer method)
- Bulk density
- Metals Analysis.

1.4 Quality Assurance/Quality Control

Quality control and quality assessments were completed by Stantec's Practice Lead for terrain sciences during the preliminary mapping, field inventory program, final mapping, and classification phases of the work.

1.4.1 Preliminary Mapping

Preliminary terrain linework was reviewed by a senior terrain scientist early in the mapping process to ensure that mapping adhered to standards established for the Project (e.g., 1cm² minimum polygon size, etc.). Approximately 40% of all linework was reviewed; any linework that was not acceptable was discussed with the mappers, modified and subsequently reviewed a second time.

1.4.2 Field Inventory Program

The QA assessment for the field program consisted of three activities: field correlation, a field assessment and a review of all field plot cards.

Field correlation was completed on a daily basis with discussions occurring between field team members at the end of each day. These correlation discussions focused on material types, landforms, quaternary history, and geomorphic modifying processes such as permafrost. Field plot cards were reviewed on a nightly basis to ensure the data was properly recorded and met internal data requirements.

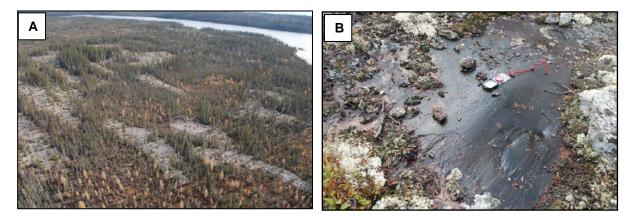
1.4.3 Final Mapping and Classification

Final mapping and classification was reviewed to ensure compliance with the mapping standards for the Project. Formal classifications were reviewed and compared to assess their level of congruence. A minimum of 20% of all terrain and soils units (e.g., polygons) were reviewed throughout the final mapping process.

2 RESULTS

Results of the terrain and soils section are based on the 2008 field program.

2.1 Terrain


2.1.1 Surficial Geology and Geomorphology

The landforms and surficial geology within the Project area show strong evidence of glacial and postglacial activity. The landscape consists of a gently undulating relief that gradually decreases in elevation towards Great Slave Lake. Elevation ranges from 235 m along the shore of Thor Lake, to about 265 m on top of the highest bedrock knobs. Elevations progressively drop to approximately 160 m along the north shore of Great Slave Lake.

Bedrock outcrops are dominant landscape elements throughout the Northwest Territories; within the Thor Lake Project area, bedrock accounts for 43.2 percent of the mapped area (Table 2-1). Several bedrock outcrops show glacial striations, grooves and scratches, all evidence of glacial erosion and ice flow directions. Those abrasion marks are formed by debris-carrying ice and represent some very good indicators of former ice-flow patterns. Several were recorded throughout the Project area and

all were displaying a southwest orientation. A similar ice-flow pattern is reported in the literature for this general area (see Section 1.3.2, Quaternary History). A series of large-scale indicators such glacially smoothed bedrock outcrops, and roche moutonnées were also observed. At the study site, glacially profiled bedrock outcrops are aligned NE-SW which is consistent with the glacial striaes. These low elevation outcrops are separated by longitudinal glacial troughs and glacial overdeepening depressions now occupied by lakes (e.g., Thor Lake).

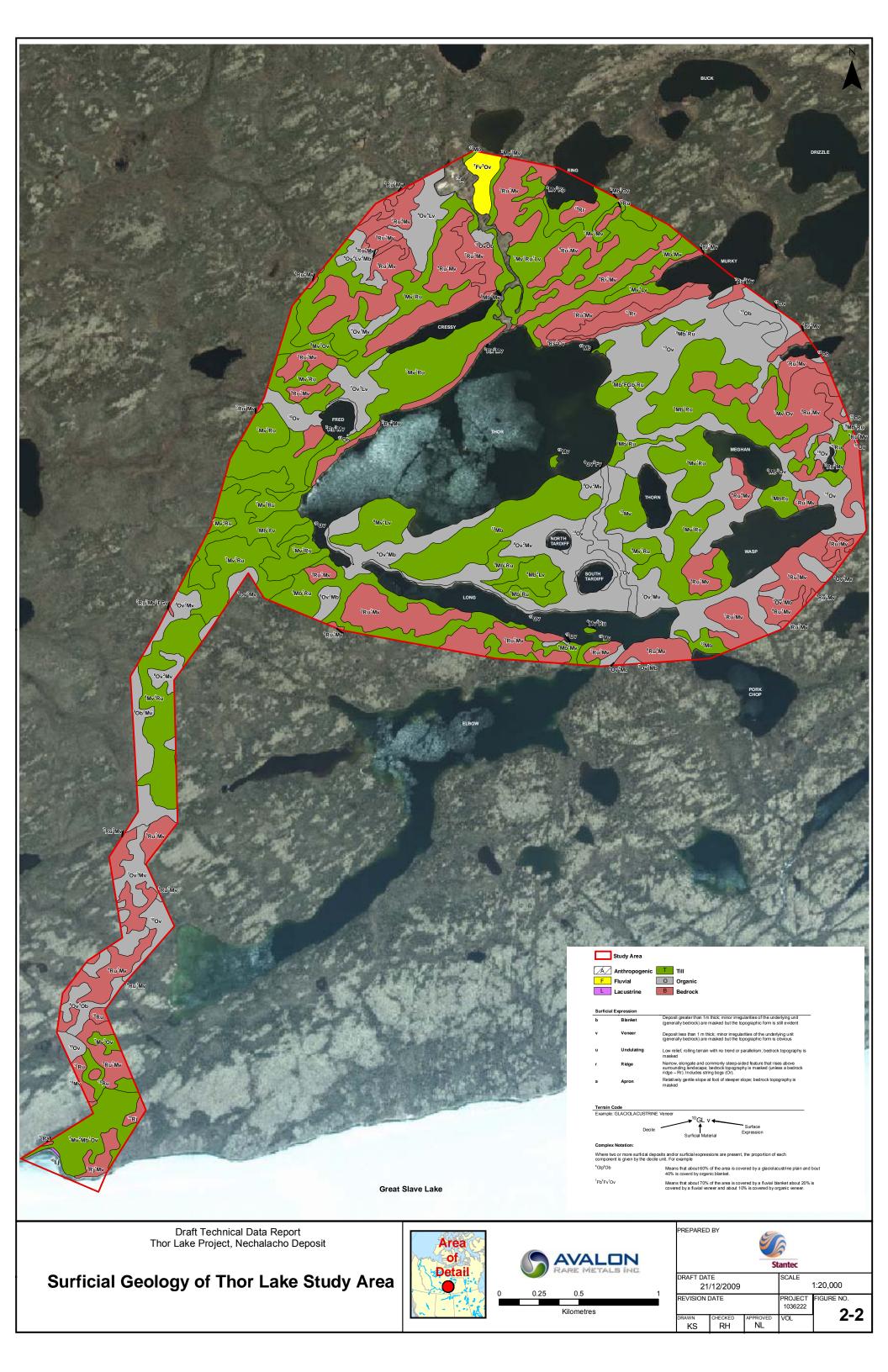

Slopes were measured throughout the Project area and usually ranged from 5 to 15% with slope lengths ranging from 100 to 500 m. Short slopes between 15 and 30% are present but less common. Steep slopes are rare although a series of bedrock outcrops show some escarpments up to 70% steep with a maximum height of 15 m. Maximum elevation difference between topographic highs and lows average 30 m. Bedrock outcrops show variable degree of weathering in relation with processes such as geological decompression, frost action and thermal expansion.

Figure 2-1: Bedrock Outcrops and Ice Flow Indicators

- A) Extensive bedrock outcrops located within the Project area. Areas between the outcrops are mostly characterized by washed out tills and thin organic accumulations.
- B) Glacially smoothed and striated bedrock surface showing a southwest ice flow (general orientation 230°, photo is from site ST12).

Surficial Material Description

Table 2-1 provides a statistical summary of the surficial materials found throughout the Project area; these are described in detail below. Figure 2-2 shows the distribution of the parent materials throughout the Thor Lake Project area. In Figure 2-2, the colors displayed on the map correspond to the dominant parent material only (i.e., Decile 1).

Surficial Material	Total Area (ha)	Percent of Project Area (%)
Bedrock	469.2	43.2
Surficial Deposits		
Glacial Deposits		
Glaciofluvial	3.4	0.3
Till	270.4	24.5
Post-glacial Deposits		
Colluvium	0	0
Fluvial	24.5	2.2
Lacustrine	16.4	1.5
Organic	240.4	21.7
Water Body	72.7	6.6
Anthropogenic	0.1	<1.0
Total	1097.1	100.0

Table 2-1: Surficial Materials within the Thor Lake Project Area

2.1.1.1 Glacial Deposits

Till Deposits

Till is the dominant surficial deposit found within the Project area accounting for 24.5 percent. It consists of material deposited directly by ice by lodgment, melt out, or post-melt out gravity flow. Till deposits are generally found as discontinuous veneers (<1 m in thickness) and blankets (>1 m in thickness but not masking the underlying bedrock surface) directly overlying the bedrock. The surface topography is generally flat to very gently undulating.

Till facies varies considerably throughout the Project area but generally consist of a poorly compact, stony, matrix supported diamicton (Figure 2-3). Depending on the location and the degree of reworking of the material, the matrix ranges from silty clay to medium sand with minor amount of silt. Clasts range in size from pebbles to boulders and are sub-rounded to angular. Several erratics are found throughout the area, with diameters up to 1.5 m. Clast content is generally high, averaging 30 to 50%, but observation pits and coring have showed till material with clast content below 10%. The material lithology reflects the underlying bedrock type or the bedrock found in up-ice areas of the Project area. Drainage of till deposits range for moderate to poor.

Some till deposits contain lenses and beds of reworked material. In some cases, till facies shows evidence of reworking by glacial meltwaters and wave action (former glacial lake McConnell and present-day Great Slave Lake). Similar observations have been made in the Yellowknife area, where wave-washed bouldery till surface was found up to 100 m (275-280 m a.s.l.) above the present Great Slave Lake level (Kerr and Wilson 2000). These tills are generally coarser, in relation with the fine sediment being removed.

Figure 2-3: Till material (ST21)

Observation pit showing coarse till material with approximately 50% coarse fragments in a silty sand matrix.

2.1.1.2 Glaciofluvial Deposits

Glaciofluvial deposits consist of well-sorted sediment deposited by glacial meltwaters (subaerial or outwash deposits) and also includes material deposited in proglacial lakes in contact with glacier ice (ice-contact deposits) and material deposited at the margins of glaciers. They are very uncommon within the study area (0.3 percent of the study area) and are mostly found as a minor polygon component. No glaciofluvial landforms (e.g., esker, kame, outwash, etc.) were observed within the Project area.

Glaciofluvial materials within the Thor Lake Project area consist of medium- to coarse textured sand with variable amount of gravels and pebbles (Figure 2-4). The clasts are for the most sub-rounded to round, with minor sub-angular. Glaciofluvial sediments are generally massive or vaguely horizontally bedded. Most observed deposits were forming discontinuous veneers, and generally located in topographic lows. Drainage of this type of material was usually good to moderate.

Figure 2-4: Glaciofluvial material (ST25)

Site ST25 showed medium to coarse sand with approximately 30% of subrounded gravel.

Glaciolacustrine Deposits

This type of material is generally well-sorted and consists of heavy clay to silty clay, deposited by suspension into the former glacial lake basin. The sediments are compact, firm and generally massive; although in some areas they are finely laminated (rhythmic beddings). Dropstones released by melting icebergs may be present. Buried organic horizons are not associated with glaciolacustrine sediments due to the limited amount of vegetation that existed in glacial times.

Glaciolacustrine material occupies former topographic depressions. No glaciolacustrine deposits were found exposed at the surface. A shallow borehole drilling revealed the presence of such material at 2.5 meters below the surface. The material consisted of silt and clay (see permafrost section for detailed material description). The bottom of the units was not reached during the drilling.

2.1.1.3 Post-glacial Deposits

Lacustrine Deposits

Lacustrine deposits were mapped over only 1.5 percent of the Project area (most lacustrine deposits were found underlying organic accumulations. Lacustrine sediment consists of massive to poorly laminated silt and clay with minor amount of sand (Figure 2-5). They also include sandy to gravelly beach deposits formed by currents wave action along the Great Slave Lake. Most lacustrine deposits are found in topographic low and bedrock controlled depressions. The thicknesses of lacustrine deposits are highly variable and the material was commonly found underlying organic accumulations.

Figure 2-5: Lacustrine Material Found at Site ST25

Observation pit at site ST25. Material consists mostly of massive silt with minor clay and very fine sand.

Fluvial Deposits

Fluvial sediments are rare throughout the study area accounting for slightly more than one percent of all materials mapped. They consist mainly of moderately well to well sorted, fine sand and silt with a very low amount of sub-rounded to well rounded gravels and pebbles. Fluvial deposits are generally massive, but bedding and lamination with thin buried organic layers are not uncommon. Fluvial material observed in the field was usually less than one meter thick and their drainage ranged from moderate to poor.

Colluvial Deposits

Colluvial deposits are composed of angular to very angular material, deposited by gravity-induced mass movement. They consist mainly of blocky talus, characterized by the absence of fine grained matrix. The thickness of the colluvial deposits found within the Project area is generally thin (less than 2 m). All were characterized as well to rapidly drained. Colluvial deposits are mostly derived from the weathering (gelifraction) of local bedrock and are commonly found mantling the edges of bedrock ridges. The material is generally very coarse and angular, with an average clast size in the 20 to 50 cm range (Figure 2-6). These types of deposits are very rare within the study area, in relation with the relatively flat topography.

Figure 2-6: Blocky Colluvial Deposit

A very coarse colluvial deposit found along a bedrock ridge, east of Thor Lake. Material consists mostly of very angular blocks derived from the local bedrock.

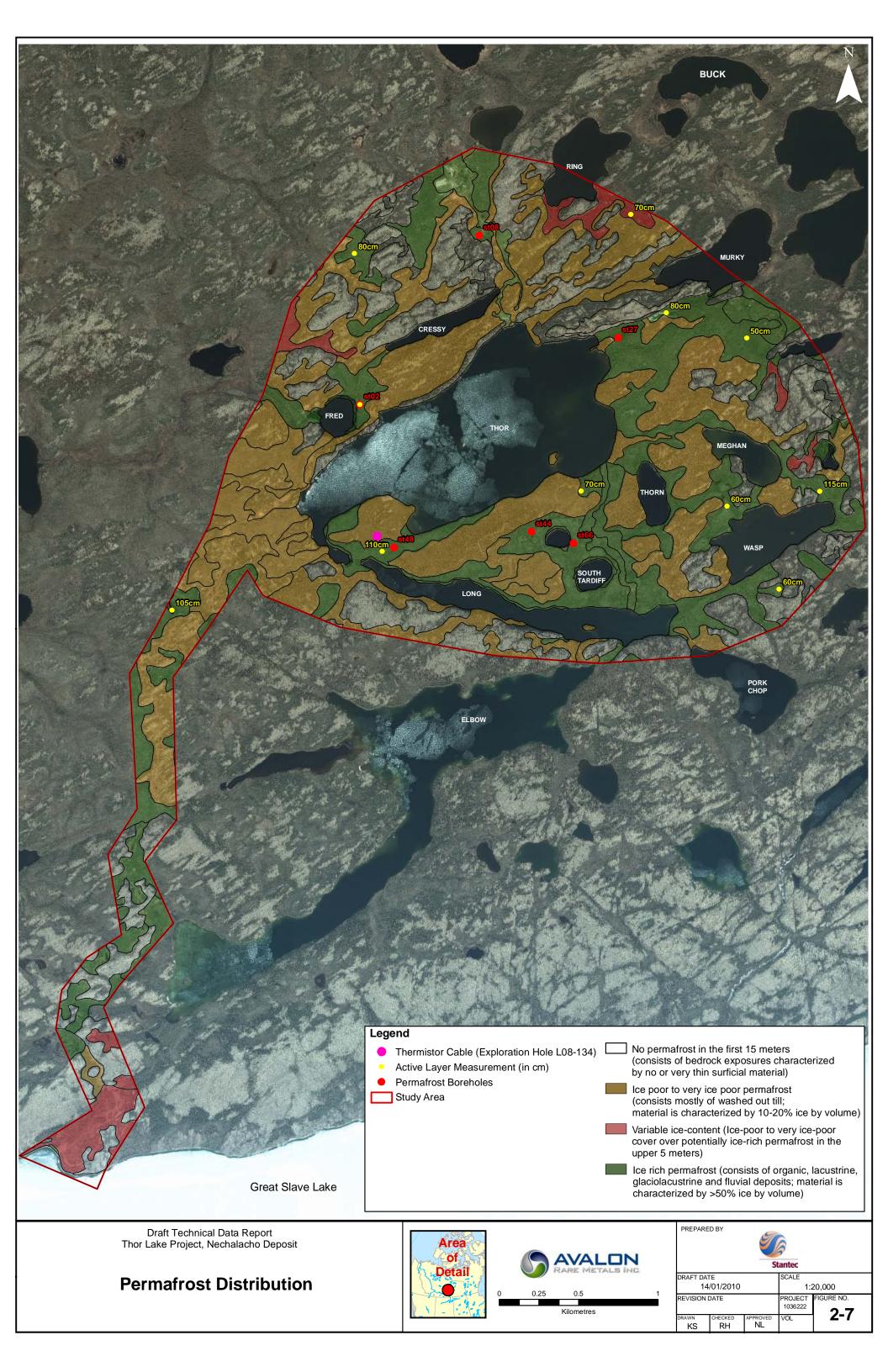
Organic Deposits

Organic accumulations are common throughout the study area and account for 17.9% of the surficial materials. They generally occupy topographic lows, and either rest directly on bedrock or overlie poorly drained surficial deposits such as fine-grained lacustrine or glaciolacustrine material. In lesser occasions, organic material is found overlying fine-grained till deposits. Only organic accumulations greater than 40 cm thick have been mapped as 'organic'. Accumulations less than 40 cm thick have been mapped as material.

Organic accumulations form bogs and fens which host varying amounts of grasses, sedges and sphagnum mosses. The average depth of organics is about 80 cm, however some areas only have thin veneers (<50 cm) and others are characterized by deposits over 2 m thick. Drainage of the organic deposit units is considered very poor. More details with regard to the organic peat depths and landform types are found in Section 2.2 (Permafrost)

2.2 Permafrost

2.2.1 Permafrost Distribution and Landforms


The project site is located in the zone of extensive discontinuous permafrost. In this zone the spatial distribution of the permafrost is highly dependent on local factors. Factors promoting permafrost presence are thin snow cover, northern exposure, presence of a significant organic cover (>dm thick)

and fine-grained sediments (silt, clay). Terrain with southern exposure, coarse-grained sediments (clean sand and gravel, pebbles, boulders), thick snow cover and large/deep lakes (e.g., Thor Lake) are unlikely to support permafrost conditions (Figure 2-7).

At the project site, glacial troughs filled with till (Figure 2-2) having a fine-grained matrix, glaciolacustrine and lacustrine deposits as well as peatlands are very likely affected by ice-bonded permafrost. These deposits represent approximately 50 percent of the Project area. North facing rock outcrops are also possibly affected by permafrost. However, these outcrops do not represent a geotechnical concern as they only contain a limited amount of ice (if any) in fractures and are therefore thaw-stable.

Permafrost landforms in the Project area are essentially represented by the presence of frostshattered bedrock and frost-heaved sediments forming small uplifted peat plateaus. Permafrost degradation landforms are represented by thaw lakes, thermokarst pits and collapsed fens and bogs. Bathymetric data collected as part of the fisheries baseline assessment and field observations of permafrost degradation along lake shorelines suggest South Tardiff, North Tardiff and Fred lakes are pure thaw lakes. The north-west and south-east portion of Meghan Lake as well as the eastern portion of Thor Lake also likely resulted from the degradation of ice-rich permafrost.

2.2.2 Permafrost thermal regime and thickness

Table 2-2 and Figure 2-8 show the temperature profile of the active layer and near surface permafrost as measured in a borehole located on the periphery of Thor Lake. In the permafrost, the depth at which there is no discernable change in temperature is termed the "depth of zero annual amplitude" (NRC, Permafrost Subcommittee 1988). Measurements made on October 9 and 21, 2009 indicate that the depth of zero annual amplitude is located a few decimeters below the deepest thermistor bead. The temperature at the depth of zero annual amplitude is used to calculate the permafrost thickness using the following equation:

$$PMF_t = (T_{zaa}/G) + D_{zaa}$$

Where:

 PMF_t is the permafrost thickness T_{zaa} is the temperature at the depth of zero annual amplitude G is the local geothermal gradient D_{zaa} is the depth of zero annual amplitude.

The geothermal gradient at Thor Lake is unknown, but Yellowknife measured *G* is 12° C/km (Smith and Burgess 2000). Assuming a similar geothermal gradient at Thor Lake, the permafrost thickness at the location of the thermistor cable can then be estimated to be around 60 m. This is similar to reported permafrost thicknesses for sites with similar elevation at Yellowknife, Table Mountain, Great Bear River and Norman Wells (Smith and Burgess 2000). It should be mentioned that the permafrost thickness at the study site can vary in the order of several meters to tens of meters depending on local factors (e.g., water bodies, soil type, snow cover, exposures).

Depth (mbg)	Reading (°C)	Reading (°C)
Depth (mbg)	09-Oct-09	21-Oct-09
0.413	-5.93	-4.03
-0.087	0.59	0.03
-0.587	1.04	0.04
-1.087	0.64	0.05
-1.587	0.15	0.03
-2.087	0.05	0.02
-3.087	-0.33	-0.31
-4.087	-0.46	-0.43
-6.587	-0.59	-0.58
-8.087	-0.62	-0.61
-11.087	-0.66	-0.66
-14.087	-0.75	-0.67

Table 2-2:	Active Layer and Near Surface Permafrost Temperatures as Measured by a
	Thermistor Cable Located Near Thor Lake (see Figure 2-8)

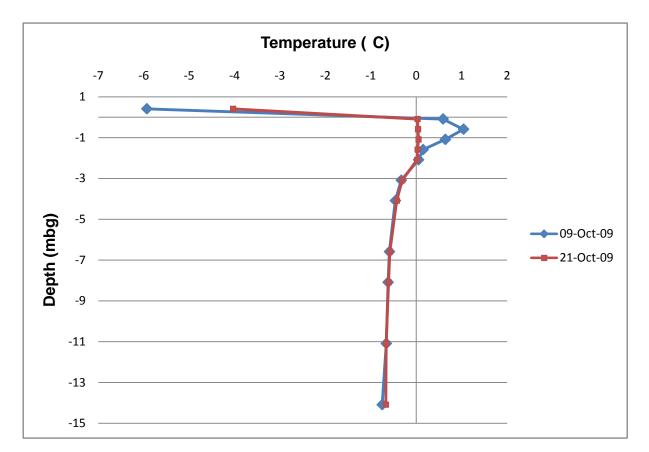


Figure 2-8: Temperature profile of the active layer and near surface permafrost

2.2.3 Active Layer Thickness

Sites with surficial deposits affected by permafrost have an active layer (the zone that freezes and thaws annually) that varies between about 40 and 200 cm. Variations in active layer thickness are related to local terrain factors, the most important being thickness of the organic cover and sediment texture. Sites with organic cover thicker than a few decimeters and underlain by fine-grained sediments (silt, clay, fine-grained till) usually have active layer in the order of 60 to 65 cm on average (n=12). In coarser sediments and in locations with thinner organic cover, the active layer will usually be thicker than 100 cm. In bedrock, the active layer can be a few meters thick.

2.2.4 Upper Permafrost Cryostructure, Ice Content and Thaw-Susceptibility

Five shallow boreholes indicate the near surface permafrost in the Project area is potentially very ice-rich and thus highly thaw-susceptible. From a geotechnical point of view, permafrost with

volumetric ice content over 40% are considered very problematic upon thawing as they initiate major geomorphic and environmental changes such as thaw-settlement, soil consolidation, impeded drainage, excess pore water pressure and mass movement.

2.2.4.1 Peat Accumulation

Significant decimeter to meter thick peat cover was encountered in several locations in the Project Area. These organic accumulations usually support permafrost, the latter usually extending down in the sedimentary deposit or bedrock below. Frozen peat is generally very ice-rich with volumetric ice content over 40% (gravimetric ice content over 100% is very common). Frozen peat is highly thaw-susceptible. Degradation and erosion of frozen peat is also very problematic as peat provides an isolative cover protecting the intrasedimentary permafrost. Removal and destruction of peat cover initiates positive feedback effects which accelerate permafrost degradation.

2.2.4.2 Glaciolacustrine Deposit

Glaciolacustrine silt deposits becoming finer in texture with depth were encountered in boreholes ST44 and ST46 (west of North Tardiff Lake). These deposits are covered by a fine to medium sand blanket a few decimeters thick and peat up to 1.7 m thick. The active layer thickness was 50 cm in borehole ST44 and 80 cm in borehole ST46. Below the active layer the peat has a porous cryostructure and is very ice-rich (60 - 70% volumetric ice content). The sediments have lenticular to reticulate cryostructures and are very ice-rich (40 - 75% volumetric ice content). Glaciolacustrine sediments are considered highly thaw-susceptible. This type of deposit is covered by either peat or various types of sediments and has not been observed directly at the surface. The extent, depth and thickness of glaciolacustrine deposits are unknown but presumably important as the area was covered by glacial Lake McConnell.

2.2.4.3 Lacustrine Deposit

A lacustrine silty sand deposit was encountered in borehole ST48 (south-west of Thor Lake). This deposit is covered by about 70 cm of peat. The active layer is located at the interface between the peat and the mineral sediments. The silts have lenticular to suspended cryostructures and are generally ice-rich (25 – 62% volumetric ice content). Lacustrine deposits are considered highly thaw-susceptible. This type of deposit is covered by either peat or various types of sediments and has not been observed directly at the surface. The extent and thickness of this type of deposit are unknown but presumably smaller than glaciolacustrine deposits as they are related to isolation phases of former glacial Lake McConnell

2.2.4.4 Till with Fine-grained Matrix

A till deposit with a silty matrix was encountered in borehole ST02 (east of Fred Lake). This deposit is covered by peat a few decimeters thick. The active layer thickness was 40 cm and located at the mineral interface. The sediments have reticulate to suspended cryostructures and are very ice-rich (>65% volumetric ice content) in the first meter but the ice content decreased with depth. This type of

deposit is presumably encountered at depth in several glacial troughs in the Project area. Locally this deposit has been washed out by waves of glacial Lake McConnell (see below).

2.2.4.5 Washed-out Till

A washed-out, coarse-grained till deposit was encountered in borehole ST08 (north of Thor Lake). This deposit was overlaid by about 75 cm of peat. The active layer was 55 cm thick. The peat has porous to micro-lenticular cryostructures and was very ice-rich (>480% gravimetric ice content, volumetric ice content not available). The sediment has a porous cryostructure and was ice-poor (<20% gravimetrictric ice content, volumetric ice content not available). Washed-out till deposits are considered thaw-stable.

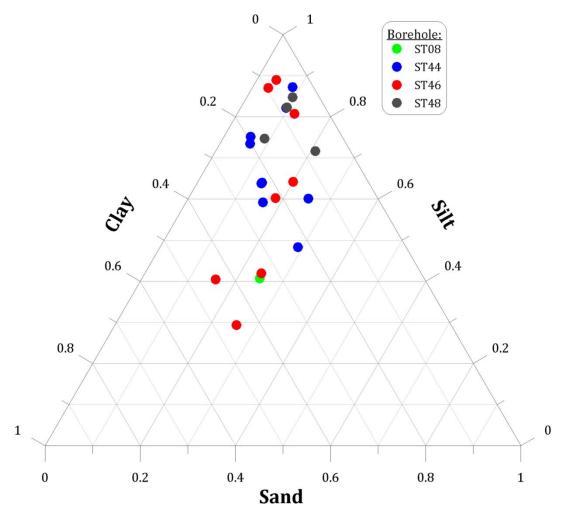


Figure 2-9: Selected sediment samples from the boreholes showing the fine-grained nature of glaciolacustrine (ST44, ST46), lacustrine (ST48) deposits and the coarse-grained nature of washed-out till (ST08) (see Appendix A for additional information)