FISHERIES ASSESSMENT OF THE MACKENZIE RIVER AT FORT PROVIDENCE, NT - PROPOSED DEH CHO BRIDGE -

Engineering Earth's Development, Preserving Earth's Integrity

REPORT ON

FISHERIES ASSESSMENT OF THE MACKENZIE RIVER AT FT. PROVIDENCE, NT - PROPOSED DEH CHO BRIDGE -

Prepared for:

Jivko I. Jivkov, P.Eng., Principal Jivko Engineering 5610 – 50A Avenue Yellowknife, Northwest Territories X1A 1G3

By:

Golder Associates Ltd. #300, 10525 – 170 Street Edmonton, Alberta T5P 4W2 Ph: (780) 483-3499 Fx: (780) 483-1574

DISTRIBUTION:

- 1 Copy Jivko Engineering
- 1 Copy Deh Cho Bridge Corporation
- 1 Copy Golder Associates Ltd.

Final Report: January 22, 2004

ACKNOWLEDGEMENTS

The authors would like to thank the following individuals for initiating and/or contributing to the success of the project:

Albert J. Lafferty	Chief Operating Officer, Deh Cho Bridge Corporation, Ft.
	Providence, Northwest Territories
Michael Vandell	President, Deh Cho Bridge Corporation, Ft. Providence,
	Northwest Territories
Andrew Gamble	Principal, Andrew Gamble and Associates, Yellowknife,
	Northwest Territories
Jivko Jivkov	Principal, Jivko Engineering, Yellowknife, Northwest Territories

We would also like to acknowledge the efforts of the following individuals in providing information on current and traditional fishing use by the community, and in assisting with the field research program:

Bob Head	Principal, Digaa Enterprises Ltd., Ft. Providence, Northwest
	Territories
Louie Lacorne	Ft. Providence, Northwest Territories
Edwin Sabourin	Ft. Providence, Northwest Territories
Joe Lacorne	Ft. Providence, Northwest Territories

The study was conducted by the following personnel from Golder Associates Ltd.:

Jim O'Neil	Senior Fisheries Biologist, Project Director and Author
Mark Dunnigan	Aquatic Biologist, Project Manager and Author
Jim Campbell	Project Fisheries Biologist, Field Coordinator and Author
Nathan Schmidt	Senior Water Resources Engineer, River Engineering Specialist
	and Author
John Chetelat	Aquatic Biologist, Technical Assistance
Angela Wight	Administrative Assistant, Word Processing
Corey De La Mare	Terrestrial Ecologist, Wildlife Specialist

Technical data and survey information on the proposed bridge were provided by Kuzman Jivko, Jivko Engineering, Yellowknife, Northwest Territories.

George Low and Pam Taylor of the Department of Fisheries and Oceans (Hay River, Northwest Territories) are acknowledged for providing historical and recent fish harvest information for the Ft. Providence area. Ed Hoeve of EBA Engineering Consultants Ltd., Yellowknife, Northwest Territories kindly provided technical information on riverbed material at the proposed bridge site.

EXECUTIVE SUMMARY

The Deh Cho Bridge Corporation (DCBC) of Ft. Providence, NT, is proposing to construct a bridge across the Mackenzie River on the Yellowknife Highway #3. The bridge would replace the existing ferry operation, which commenced in the early 1960's, and the winter ice crossing. To facilitate the north and south ferry landings, rock-fill causeways were built on top of natural peninsulas. The north causeway was stabilized in 1988 through the edition of 1000 m³ of armour rock. At the present time, the north causeway extends 430 m into the Mackenzie River (which is 1560 m wide at the crossing location); the south causeway extends 165 m into the channel. The approaches and abutments of the proposed bridge would, to a large extent, be built upon the existing footprint. However, the bridge would require lengthening the south causeway by approximately 60 m and shortening the north approach by 80 m. Other modifications to the site would include the removal of the ferry haul out area on the south approach and the installation of eight bridge piers in the river.

Golder Associates Ltd. was retained by Jivko Engineering (Yellowknife), on behalf of DCBC and Andrew Gamble Associates Ltd. (Yellowknife) to undertake a fisheries assessment of the Mackenzie River in the vicinity of the crossing. The principal objectives were to determine the short term (construction related) and long term (operational) impacts of the proposed bridge on fish and habitat resources. The overall significance of these impacts was to be evaluated after considering any benefits that might arise from discontinuing the current ferry and ice crossing. The final objective was to produce a "No Net Loss" plan which accounted for habitat gains and losses, in order to meet the requirements of Section 35 (2) of the federal Fisheries Act.

The 2003 fisheries investigation included summer (30 July to 3 August) and fall (17 to 23 September) field sampling. The field crew, which was comprised of Golder biological staff and assistants from Ft. Providence, used a variety of fish sampling gear (gill nets, fyke nets, boat electrofisher, beach seines, minnow traps). Twelve species of fish were recorded during the study, including eight large types (lake whitefish, round whitefish, northern pike, walleye, Arctic grayling, burbot, longnose sucker, white sucker) and four minnow varieties (emerald shiner, spottail shiner, trout-perch, ninespine stickleback). Of the large types of fish caught, northern pike and lake whitefish were numerically dominant (79% of catch). Lake whitefish, followed by northern pike, also dominated the fish harvest by residents of Ft. Providence over the period 1994 to 2001 (data provided by Department of Fisheries and Oceans, Hay River).

Aquatic habitat in the vicinity of the crossing was described, mapped and quantified during the investigation. The study area contained a high diversity of aquatic habitats, which included the main channel (characterized by deep and high average velocity conditions) and the nearshore margins of the channel (series of backwater, lake-like habitats positioned behind narrow peninsulas extending into the main channel on a north-west to south-east orientation). The outer tip of these extensions provided riffle-run complexes over gravel/cobble riverbed material.

The construction of the proposed bridge would result in the short term disturbance and alteration of main channel and nearshore habitats, primarily due to increased suspended sediment levels. However, with effective scheduling (e.g., avoidance of construction activity during the spring spawning period) and mitigation (e.g., feedback monitoring to maintain satisfactory water quality), construction should not result in significant adverse effects over the long term.

Backwater areas along both shorelines are used extensively by Ft. Providence residents for gillnetting. Through proper planning and notification it will be possible to avoid conflicts with the domestic fishery. Fish movements through the area occur on a seasonal and defined basis. Due to the small portion of the channel affected by construction, in relation to the large size of the river, movement patterns are not likely to be altered significantly.

With respect to the footprint of the proposed bridge, a net gain of 5970 m² of aquatic habitat would be achieved. The amount of high quality backwater habitat will be increased by approximately 8500 m². The net gain of backwater habitat assumes a loss of 6700 m² at the north approach (due to the reduced causeway extension into the channel) and an offsetting gain of 15 200 m² at the south approach (due to the removal of the ferry haul out area and extension of the causeway). As such, the proposed bridge appears to meet the "No net Loss" of productive fish habitat objective.

The Deh Cho Bridge would result in a number of benefits apart from the footprint gains. These include: 1) no further sediment input from the ferry operation and ice crossing on an annual basis and 2) reduced risk of a major fuel spill (resulting from a tanker truck accident) at the ice crossing. Although the proposed Deh Cho Bridge appears to meet the stated habitat objectives, there are opportunities to provide compensation if required. The large size and flow volume of the Mackenzie River at the proposed bridge site present difficult conditions for achieving effective and lasting habitat improvements. This being the case, it might be advisable to pursue a habitat improvement initiative in a smaller tributary system near Ft. Providence (e.g., Providence Creek). Prior to proceeding in this direction, however, it would be necessary to discuss the initiative with, and obtain the approval of, the community of Ft. Providence. A local project of this scale could offer good opportunities for community involvement and environmental education benefits.

Regulators have expressed concerns with respect to the presence of ammonia residues and levels of regulated metals in blasted rock used for fill and armouring. The DCBC, in recognition of these issues, has initiated sampling efforts, and integrated them into a systematic water quality monitoring program. The intent of this program will be to ensure that adverse affects are predicted in advance, and subsequently avoided or minimized through planning and timely feedback.

TABLE OF CONTENTS

SECTION

<u>PAGE</u>

1.0	INTRO	ODUCTION	1				
	1.1	Background	1				
	1.2	Objectives	1				
	1.3	3 Study Area1					
2.0	SCOF	PE OF WORK	5				
	2.1	Principal Fisheries Issues	5				
	2.2	Impact Assessment	5				
	2.3	Requirements 6					
	2.4	Stakeholder Consultation	7				
	2.5	Wildlife Issues	7				
3.0	STUD	OY METHODS	9				
	3.1	Scheduling and Logistics	9				
	3.2	Community Consultation and Involvement	9				
		3.2.1 Stakeholder Meeting: Presentation to DCBC and Hamlet of					
		Ft. Providence	9				
		3.2.2 Training of Local Assistants	9				
	3.3	- , , , , , , , , , , , , , , , , , , ,					
	3.4	Water and Bottom Sediment	. 11				
		3.4.1 Temperature	. 11				
		3.4.2 Water Quality					
		3.4.3 Sediment Characteristics	. 13				
	3.5	Fish Resources	. 14				
		3.5.1 Existing Information	. 14				
		3.5.2 Local Fisheries Knowledge	. 14				
		3.5.3 Fish Capture					
4.0	INVE	NTORY RESULTS	17				
	4.1	Physical Habitat	. 17				
		4.1.1 River Hydrology and Geomorphology					
		4.1.2 General Fish Habitat Description					
	4.2	Water and Bottom Sediment	. 25				
		4.2.1 Water Temperature	. 25				
		4.2.2 Water Quality					
		4.2.3 Sediment Characteristics					
	4.3	Fish Resources	-				
		4.3.1 Local Fisheries Knowledge and Harvest	. 29				

		4.3.2	Species Occurrence (2003)	34
		4.3.3	Fyke Net Catches	35
		4.3.4	Gill Net Catches	35
		4.3.5	Beach Seine Catches	35
		4.3.6	Minnow Trap Catches	40
		4.3.7	Boat Electrofishing	40
		4.3.8	Life History Data	
		4.3.9	Important/Critical Fish Movements	50
5.0	IMPA	CT AS	SESSMENT AND MITIGATION OPPORTUNITIES	53
	5.1	Key F	ish Species and Important / Critical Habitat Availability	53
	5.2	Short	Term Effects (Construction)	54
	5.3	Opera	tional Effects (Footprint)	57
		5.3.1	North Approach Footprint and Peripheral Habitats	57
		5.3.2	South Approach Footprint and Peripheral Habitats	58
		5.3.3	Footprint of Instream Bridge Abutments and Piers	61
	5.4	Effects	s of Bridge Structures on Migrations and Movements	63
	5.5	Discor	ntinuing Ferry and Ice Road Operations	63
		5.5.1	Present Ferry and Ice Road Impacts to Fish Habitat	
		5.5.2	Impacts of Gravel Fill Placement	65
	5.6	Availa	bility of Alternate Habitats in Vicinity of Bridge Crossing	68
	5.7	Summ	nary of Impacts / Mitigation Opportunities	68
6.0	"NO N	NET LC	SS" ACCOUNTING AND STRATEGY	79
	6.1	Footp	rint	79
	6.2	Opera	tional Habitat Gains (Non-Footprint)	80
7.0	COM	PENSA	TION REQUIREMENTS / OPTIONS	83
8.0	CLOS	SURE		85
9.0	LITEF	RATUR	E CITED	87

LIST OF TABLES

Table 4.1	Distribution of aquatic habitat in the vicinity of the proposed Deh Cho Bridge, July to October 200324
Table 4.2	Selected water quality constituents of the Mackenzie River in the vicinity of the Deh Cho Bridge, 18 September 2003
Table 4.3	Selected sediment characteristics of the Mackenzie River in the vicinity of the Deh Cho Bridge, 18 September 2003
Table 4.4	Summary of domestic fish harvest by residents of Ft. Providence, NT (1994 to 2001)
Table 4.5	Seasonal fish harvest by residents of Ft. Providence, NT (1996 to 2001)
Table 4.6	Fish species recorded in the vicinity of the proposed Deh Cho Bridge, July to Sept 2003
Table 4.7	Summary of fish captured in the vicinity of the proposed Deh Cho Bridge, July to September 2003

Table 4.8	Number of fish captured and effort (CPUE) in the fyke net located in the vicinity of the proposed Deh Cho Bridge, July to September 2003
Table 4.9	Gillnet catches and CPUE in the vicinity of the proposed Deh Cho Bridge, July to September 2003
Table 4.10	Beach seine catches and CPUE in the vicinity of the proposed Deh Cho Bridge39
Table 4.11	Boat electrofishing catches and CPUE in the vicinity of the proposed Deh Cho Bridge, July to September 200341
Table 5.1	Aquatic habitat suitability ¹ of the Mackenzie River for key fish species in the vicinity of the proposed Deh Cho Bridge
Pg 1	55
Table 5.2	Projected changes in nearshore habitats due to modification of the north approach
Table 5.3	Projected changes in nearshore habitats due to modification of the south approach
Table 5.4	Grain size analyses of gravel fill material from the Highway #3 Ferry operations on the Mackenzie River, 30 July 2003
Table 5.5	Expected downstream sediment transport distances, Highway #3 ferry operations on the Mackenzie River near Ft. Providence
Table 5.6	Expected downstream sediment deposition distances, Highway #3 ferry operations on the Mackenzie River
Table 5.7	Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Construction Phase
Table 5.8	Potential fisheries impacts to the footprint of the proposed Deh Cho Bridge – Operational Phase
Table 5.9	Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – De-commissioning of Ferry and Ice Crossing
Table 5.10	Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Availability of Near-shore Habitats
Table 5.11	Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Fish Movements
Table 6.1	Summary of aquatic habitat gains and losses at the site of the proposed Deh Cho Bridge ¹
Table 6.2	Pre and post-construction habitat distribution according to habitat type, proposed Deh Cho Bridge

LIST OF FIGURES

Figure 1.1	Fisheries assessment of the proposed Deh Cho Bridge near Ft. Providence, NT, 2003. – Study Area
Figure 3.1	Fisheries sampling locations in the vicinity of the proposed Deh Cho Bridge near Ft. Providence, NT, 2003
Figure 4.1	Channel depth distribution of the Mackenzie River in the vicinity of the proposed Deh Cho Bridge, 19 September 2003
Figure 4.2	Aquatic habitat in the vicinity of the proposed Deh Cho Bridge, July to October 2003
Figure 4.3	Water and air Temperatures recorded in the vicinity of the proposed Deh Cho Bridge on the Mackenzie River, 2003
Figure 4.4	Length-frequency distribution of fish caught in the vicinity of the proposed Deh Cho Bridge, July - September 2003
Figure 5.1	Aquatic habitat in the vicinity of the north causeway, pre- and post-construction.59
Figure 5.2	Aquatic habitat in the vicinity of the south causeway, pre- and post-construction.60

Figure 5.3	Schematic of typical flow configuration and scour hole location at b	oridge
	abutments (adapted from FHWA 2001).	61
Figure 5.4	Schematic of typical flow configuration and scour hole location at bridge	piers
	(adapted from Melville and Coleman 2000).	62

LIST OF APPENDICES

- Appendix A Appendix B Appendix C Water and Sediment
- Habitat Data
- Fish Data
- Appendix D Construction Monitoring Program Sediment Transport
- Appendix E
- Appendix F Wildlife Issues Memorandum

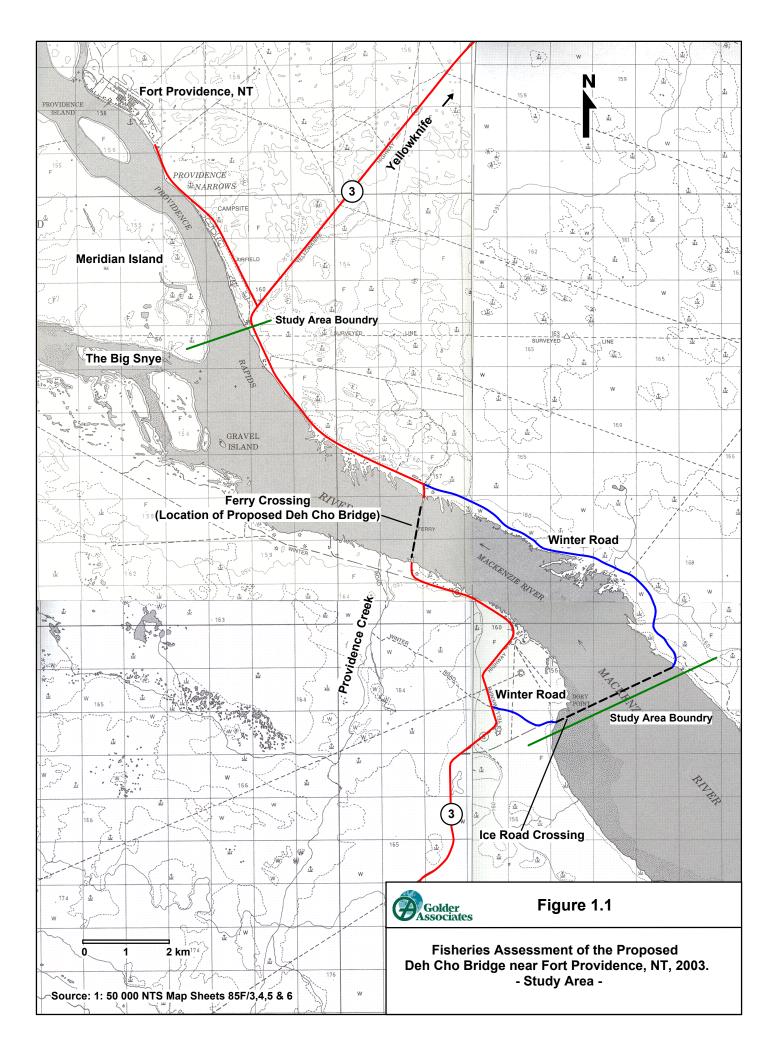
1.0 INTRODUCTION

1.1 Background

The Deh Cho Bridge Corporation Ltd. (DCBC) of Ft. Providence, NT, is proposing to construct a bridge across the Mackenzie River at Km 23 of the Yellowknife Highway #3. Following construction, the bridge will be operated and maintained by the DCBC, for a period of 35 years. On expiration of the agreement, bridge ownership will be transferred to Government of Northwest Territories (GNWT). The proposed bridge will replace the existing ferry and ice bridge crossings, making Highway #3 an all-weather facility with uninterrupted, year-round service between Yellowknife and southern Canada.

The proposed Deh Cho Bridge Project has the initial approval of the GNWT, and is supported by local residents and the Municipal Authorities of Ft. Providence. A Memorandum of Intent between GNWT and the Deh Cho Bridge Corporation was signed on 15 November 2002 allowing the proponent to proceed with the final design and preparation for construction.

1.2 Objectives


The general objectives of the present fisheries and aquatic environmental assessment for the proposed Deh Cho Bridge Project were as follows:

- to evaluate direct, short-term effects of proposed construction activities on fish habitat;
- to determine the long-term, operational influences on existing and potentially altered fish habitat due to the bridge; and,
- to provide recommendations on mitigation and compensation measures as required to meet the Department of Fisheries and Ocean's (DFO) policy for "No Net Loss" of fish habitat.

1.3 Study Area

The proposed bridge will be constructed at the existing ferry crossing of the Mackenzie River, located approximately 8 km upstream of the Hamlet of Ft. Providence. The site is approximately 25 km downstream of Beaver Lake, a widening of the channel located at the western outlet of Great Slave Lake (Figure 1.1). At the crossing site, the natural river/channel is approximately 1560 m wide. To facilitate ferry operation, which commenced in the early 1960's, partial causeways were built on the north and south shores. The north causeway projects 430 m into the Mackenzie River, whereas the south causeway is considerably shorter (extends 165 m into the channel). The partial causeways were constructed on top of natural peninsulas which projected into the channel. The north causeway was stabilized in 1988, through the addition of 1000 m³ of armour rock (i.e., to repair and prevent ice damage). At present, the unobstructed portion of the

channel (located between the two ferry landing causeways) is 965 m. The study area for the fisheries and aquatic environmental assessment focused primarily on habitats located within 500 m of the proposed bridge (i.e., in the vicinity of the existing ferry landing causeways). However, representative effort was also applied upstream and downstream of the ferry crossing; the total length of river investigated was approximately 12 km. The expanded study area included nearshore habitats adjacent to the ice road causeways, and selected habitats in the vicinity of Providence Rapids. Photographic plates 1-20 (following Literature Cited, which is located on pages 87 to 89) illustrate the study area and relevant aspects of the study.

2.0 SCOPE OF WORK

2.1 Principal Fisheries Issues

The proposed bridge would involve modification of existing causeway approaches (downsizing of north approach, extension of south approach), construction of eight piers within the Mackenzie River and two abutments, and the fabrication and installation of the superstructure. The proposed bridge would be 1045 m in length. Because of the net reduction in causeway length, the unobstructed channel width would be increased to 995 m (i.e., 3.1% increase over present conditions). The principal fisheries issues and concerns that needed to be addressed in relation to the proposed Deh Cho Bridge Project included the following:

- direct and permanent loss of habitat associated with the footprints of the causeways and piers;
- habitat alteration adjacent to the perimeter of the causeways and piers, due to altered water velocities, water depth, placement of armour rock, etc.;
- temporary disruption of fish habitat resulting from the proposed method of construction and type of material to be used for the in-stream bridge portions, including causeways and pier foundations; and,
- potential interference (delay, deflection) with seasonal fish migrations/ movements past the construction site (i.e., to and from the Great Slave Lake and nearby tributaries of the Mackenzie River).

2.2 Impact Assessment

To define the nature, extent, and significance of principal fisheries issues and concerns, an impact assessment (which included the following project actions and parameters) was carried out:

- definition of the timing and extent of fish migrations and movements within and adjacent to the study area, including an assessment of key fish species (e.g., inconnu, lake whitefish, Arctic grayling, northern pike, and walleye) in the area and their movements during the open water period (i.e., spawning, rearing, feeding, and overwintering);
- quantitative and qualitative assessment of habitat lost under the footprint of the project (e.g., approach causeways and piers), including peripheral habitats within the zone of influence of footprint structures. The focus was to be on the essential fish species and various life-stages, as identified in historical fisheries studies in the area and by local residents with specific Traditional Knowledge;
- evaluation of alternative habitats similar to those potentially affected by the project within the study area (e.g., natural peninsulas along the shorelines, some of which exceed 300 m in length). These alternate habitats were to be described, quantified and compared to the proposed bridge causeway structures. The availability of alternate habitats, of similar or higher quality,

could tend to temper the negative consequences of habitat alteration due to the construction and operation of the bridge;

- description and evaluation of the effects on fish habitat due to the placement of 1000 m³ armour rock at the North Ferry Landing in 1988 (i.e., to stabilize and protect the structure from ice effects);
- assessment of the effects of discontinuing the ferry operation, and in particular discontinuing the yearly placing of approximately 1000 m³ of silty gravel in the watercourse;
- assessment of the effects of discontinuing the operation of the winter ice crossing, in view of contamination of the ice with silt and oil imported by traveling vehicles, fuel spills, and the potential effects on fish habitat from vehicles breaking through the ice, etc.;
- assessment of the effects of temporary disruption on fish habitat during the placement of 10,000 m³ of clean blasted rock for extension and widening of the bridge approaches, and for the temporary road detour-in addition, addressing the effects of temporary disruption on fish habitat from drilling below the riverbed and the installation of cast-in-place pier footings; and,
- a review of relevant literature assessing the impacts of bridge developments on aquatic resources in northern Canada.

2.3 Requirements

The present study identifies, assesses and recommends appropriate mitigation and compensation strategies to satisfy the "No Net Loss" (NNL) guiding principal of the DFO Habitat Management Policy (DFO 1986). This policy was established to maintain the extent and productive capacity of fish habitats. Fish habitat is defined by the Fisheries Act as "spawning ground and nursery, rearing, food supply, and migration areas on which fish depend directly or indirectly in order to carry out their life processes." To further advance the NNL principle, DFO has published a document entitled, "Decision Framework for the Determination and Authorization of Harmful Alteration, Disruption or Destruction (HADD) of Fish Habitat" (DFO 1998). The Deh Cho Bridge Project will be required to meet DFO's NNL requirements through the following deliverables:

- development of a NNL strategy that includes a systematic accounting of important/critical habitat losses and gains for key/essential fish species, and provides effective mitigation and compensation strategies;
- assessment of the remediation of the ferry and ice crossing landing and staging areas, (removal /alteration) of existing approach causeways, and an estimation of the rate of recovery of affected fish habitat;
- preparation of a post-construction assessment plan to evaluate newly created fish habitat and to establish the rate of recovery of the excavated and surrounding areas; and,
- preparation of construction monitoring plans DFO frequently requests that monitoring plans be developed and implemented when instream construction

activities take place; such plans are commonly required when a HADD of fish habitat is authorized.

2.4 Stakeholder Consultation

Throughout the implementation of the present study, consultations were maintained with stakeholders directly affected by this project to ensure that all necessary information required for assessments were obtained. Stakeholders included the following:

- Jivko Engineering;
- Andrew Gamble and Associates Ltd.;
- Deh Cho Bridge Corporation Ltd.;
- Ft. Providence Resource Management Board;
- Community of Ft. Providence;
- Department of Fisheries and Oceans;
- Mackenzie Valley Impact Review Board;
- Northwest Territories Water Board;
- Government of Northwest Territories, Department of Public Works & Services; and,
- Government of Northwest Territories, Department of Transportation.

2.5 Wildlife Issues

Golder Associates Ltd. was also requested to assess possible avian wildlife issues resulting from the construction and operation of the proposed Deh Cho Bridge. A memorandum briefly outlining the major issues and recommendations is provided in Appendix F.

3.0 STUDY METHODS

3.1 Scheduling and Logistics

The 2003 sampling program at the proposed Deh Cho Bridge included two field sessions (i.e., summer and fall). The summer field session was conducted between 30 July and 3 August (inclusive), whereas the fall field session was carried out from 17 through 23 September (inclusive). During the summer sampling period, activities included the collection of traditional fisheries knowledge, fish sampling (fyke nets, gill nets, beach seines, and minnow traps), and preliminary water and sediment sampling in the nearshore zones. The fall sampling program included collection of background data on water and sediment chemistry (for a comprehensive suite of constituents), systematic fish sampling (including boat electrofishing), and the collection of bathymetry data in the vicinity of the proposed bridge.

Golder equipment and personnel assigned to the project were based out of Yellowknife, NT. Two residents of Ft. Providence were hired through Digaa Enterprises Ltd. to assist with field investigations. All field work was based out of Ft. Providence, NT.

3.2 Community Consultation and Involvement

3.2.1 Stakeholder Meeting: Presentation to DCBC and Hamlet of Ft. Providence

Once the contract was awarded, key agencies were contacted in order to raise awareness of the study. Prior to the first field sampling session, a meeting was held (11 July) with representatives from key stakeholder groups. These included representatives of the DCBC, Ft. Providence Metis Council, Ft. Providence Resource Management Board, and elders. This meeting served to raise awareness of the study (e.g., study design and schedule), and document local concerns. Informal meetings continued throughout the duration of the project.

3.2.2 Training of Local Assistants

Louie Lacorne, Edwin Sabourin, and Joe Lacorne (residents of Ft. Providence), participated in field sampling sessions. They received training from project biologists on-site with respect to: the setting and operation of the directional fyke net, the collection and recording of fisheries data, the use of a range of water quality meters (pH, dissolved oxygen, conductivity) and specialized equipment for conducting transect data collections, and sampling for water and sediments. Due to their previous knowledge of fish and habitat resources in the area, they were able to provide considerable guidance to the project biologists.

3.3 Physical Habitat

Project Footprint

The area directly affected by the footprint of the project and peripheral habitats (within the zone of influence of the structures) was described and quantified as follows:

- calculation of potentially affected area based on technical scale drawings; verification of area involved through field measurements (laser range finder);
- characterization and differentiation of the potentially affected habitat through depth bathymetry, substrate assessment, and description of bottom and shoreline cover (underwater camera); and,
- depth and velocity profiles were recorded representative locations in the main channel and nearshore zones.

Habitat Features

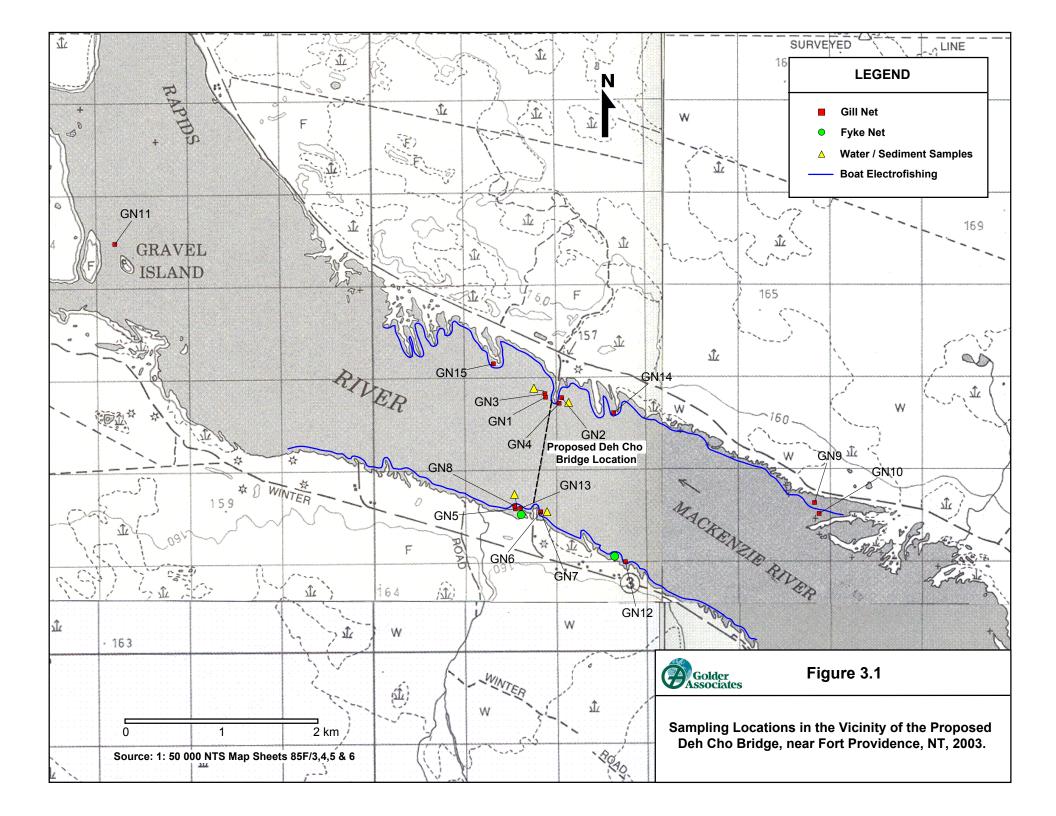
General habitat information describing conditions within the entire study area was recorded. Photographs were taken of noteworthy in-channel and shoreline habitat features (e.g., existing ferry landings, winter road landings, potential overwintering or spawning habitat). A habitat map, covering the detailed study area (4.2 km in length), which included the existing ferry crossing and surrounding sections, was developed. It identified and delineated the area of major instream habitat and nearshore features, according to the following major habitat types:

- Main Channel (MC) The central portion of the channel, which includes the thalweg and accounts for the majority of the flow-through during baseflow periods; the channel is characteristically deep (mean depth of approximately 5.0 m at transects, measured in September 2003) and features high average velocity (mean channel velocities exceeding 1.0 m/s at transects, measured in September 2003). The habitat is relatively uniform, in comparison to nearshore habitats.
- Backwater (BW) Discrete, nearshore areas featuring low velocity, lake-like conditions; located in the lee of natural spur-like peninsulas which extend into the main channel. The setting features a flow reversal (relative to the main current) and is primarily depositional in nature (i.e., substrate dominated by fines and organic detritus). These areas, which generally range in depth from 1.5 m to 3.0 m, feature extensive aquatic macrophyte growths. Water clarity and water temperature often exceed levels attained in the main channel.
- **Riffle Run Complex (RR)** Localized area of riffles, runs and associated pools located on the offshore terminus of spur-like peninsulas which extend into the channel. Characterized by increased velocities (relative to the adjacent backwaters, coarse substrate (gravel, cobble, boulder) and depths generally ranging from 0.5 m to 1.5 m (at baseflow levels).
- **Deep Runs (DR)** Deep (generally exceeding 2.0 m), high velocity runs located off the tip of the north and south causeways; characterized by considerable channel scour.
- Exposed Banks (EB) Localized areas, particularly along the ferry approach causeways, that are exposed to river currents and ice flows; shoreline reaches that are typically armoured by large boulders.
- Sheltered Banks (SB) Localized areas, particularly along the ferry approach causeways, that are situated on the leeward side of prevailing river flows; shoreline reaches that are not exposed on a sustained basis to high water velocity, and ice flows; usually border depositional habitats.

The assessment of instream habitat features was carried out in conjunction with fish sampling activities and during a general reconnaissance of the surveyed area. Discrete habitat features were individually recorded and mapped on 1:10 000 air photographs and/or 1:50 000 NTS (National Topographic Series) maps; the areal contribution of each habitat unit was estimated from these sources.

Depth Transects

Channel depth profiles were determined along pre-selected transects within the vicinity of the existing ferry causeways and cross-channel. A GarminTM GPSMAP 168 depth sounder was employed; it was linked to a laptop computer that stored the paired depth and UTM (Universal Transverse Mercator) coordinates as the boat moved along a transect. Transect data were collected (fall field sampling session), as follows:


- three cross-channel transects (one upstream, one downstream, and one connecting the two ferry landing causeways; and,
- several transects aligned with the flow of the river, and generally corresponding with the deep water areas off of the nose of each causeway.

Depth data were then tabulated and analysed to determine a mean depth reading for each transect. Also recorded were distances from shore at the start and end of each transect, UTM coordinates, and transect direction. Wetted channel widths at each transect location were calculated from recorded GPS coordinates and verified with air photographs (1:10 000 scale).

3.4 Water and Bottom Sediment

3.4.1 Temperature

Three VemcoTM 8 bit Minilog TR thermographs were deployed at the onset of the summer survey period. One unit was used to record air temperature (north ferry causeway); two others were placed to record water temperatures (one at each of the north and south ferry causeways). The thermographs provided data on seasonal changes and daily temperature fluctuations; they were set to record temperature ($\pm 0.01^{\circ}$ C) at 30 min intervals. The air thermograph was suspended in the shade among large boulders, whereas the water thermographs were installed 15 m from shore at a depth of approximately 1.5 m. The thermograph units were retrieved at the end of the fall field sampling session.

3.4.2 Water Quality

Field

Selected water quality constituents were recorded in the field. A WTWTM Multi 340i hand-held multi-constituent instrument was used periodically to measure pH, temperature, dissolved oxygen and conductivity. Turbidity was measured using a LaMotteTM 2020 meter and water transparency was determined with a standard Secchi disk, Except for turbidity, water quality was determined from surface waters in-situ (0.5 to 1.0 m water depth; variable for Secchi disk). Turbidity was determined at the end of the field day based on surface grab samples collected earlier in the day.

Laboratory

Surface water samples (0.5 m depth) from four locations (upstream and downstream of the two ferry causeways) were collected during the fall field sampling session (Figure 3.1). The samples were collected using a pre-washed Van Dorn water bottle, and polyethylene gloves were worn to prevent contamination. The samples were placed in pre-washed plastic bottles supplied by Enviro-Test Laboratories in Edmonton. The appropriate pre-measured preservatives supplied by the analytical laboratory were added prior to placing the labeled sample in a cooler.

The samples were kept cool at the site and shipped to the laboratory as soon as possible after collection (within 48 h). Laboratory analyses included a full-range of routine water parameters (including nutrients). Also analysed were: of oil/grease, BTEX (benzenes, toluenes, ethyl benzene, xylenes), TPH (total petroleum hydrocarbon), TEH [total extractable hydrocarbons, includes C5-C10/diesel (C11-C32)], phenols, PAH (polynucleic aromatic hydrocarbons), metals [ICP (inductively coupled plasmaspectrometer) scan], and TOC (total organic carbon).

The constituents analyzed and their detection limits are provided in Appendix A, Table A-1. Methods used by Enviro-Test Laboratories are based on "Standard Methods for the Examination of Water and Wastewater", 20th Edition, published by the Water Environment Federation (WEF 1998), or on protocols of the United States Environmental Protection Agency (USEPA) as described in "Test Methods for Evaluating Solid Waste, Physical/Chemical Method, SW846", 3rd Edition (USEPA 1998). Other procedures are based on methodologies accepted by the appropriate regulatory agency. Methodology briefs and the QC (Quality Control) report are provided in Appendix A, Table A-2.

3.4.3 Sediment Characteristics

Sediment samples were collected at the same locations and times as the water samples. The surface layer of sediment (approximately 5 to 10 cm deep) was collected using a Petite PonarTM grab (15.2 \times 15.2 cm sampling area). The sediment samples were shipped to Enviro-Test

Laboratories in Edmonton, Alberta, where they were analyzed to determine particle size distribution and a range of other parameters (see Section 3.3.2).

3.5 Fish Resources

3.5.1 Existing Information

Historical information specific to the Deh Cho Bridge study area is limited to the following:

- environmental review and assessment of proposed dredging in the Mackenzie River. Fisheries information was collected during spring, summer, and fall of 1977 [Renewable Resources Consulting Services Ltd. (RRCS) 1978];
- assessment of Arctic grayling spring spawning migrations in Providence Creek in 1966 (Bishop 1971) and 1976 - 1979 (Falk et. al., 1982);and,
- domestic fisheries harvest data for the Ft. Providence area collected by the Department of Fisheries and Oceans (Hay River); data were available for the years 1995 through 2001.

3.5.2 Local Fisheries Knowledge

In order to obtain information on current and historical use of fish resources in the Ft. Providence area the study team interviewed the local assistants. The information that was obtained during the interview supplemented the material that had been collected on the river during the field surveys. Additional data on domestic fish harvest trends was obtained from DFO (Hay River) and summarized.

3.5.3 Fish Capture

During the fisheries survey in the Deh Cho Bridge study area, several fish capture methods, were applied.

Fyke Net

The main fish sampling gear used in shallow, nearshore habitat was a two-way Arctic fyke net, similar to those used extensively along the Beaufort Sea coast (Bond and Erickson 1989) and along the coast near Kugluktuk (RL&L 1993; Golder 2002). The fyke net consisted of two traps separated by a 45 m lead set perpendicular to shore. This directional set-up allowed the separation of river migrations into eastward (upstream) and westward (downstream) components. However, only one trap was utilized during the summer sampling session, thus precluding collection of directional data during this sampling period. Suitable setting locations for the fyke net were very limited (i.e., restricted to sites along the south shore) (Figure 3.1). During summer, the fyke net was installed immediately downstream of the ferry pull-out area, and during fall it was placed

January 2004

1000 m upstream of the south ferry causeway. The directional wings on the fyke net were 15 m long and were angled slightly towards the shore (i.e., to deter fish from circumventing the trap entrance). The traps were 3.7 m long and 0.9 m wide, contained two throats (15×25 cm each), and were constructed of 1.27 cm dark grey, knotless nylon mesh. Wings and lead were constructed of 2.54 cm dark grey, knotless nylon and were 1.7 m deep. Fyke nets were held in place by metal stakes driven into the river bed.

Fyke nets were checked once or twice daily, depending on the catch rates. On each fyke net lift, trapped fish were removed from the trap and transferred to plastic tubs filled with water. Fish were then measured and released. Sacrificed individuals or capture mortalities were examined internally and then provided to the local community.

Gill Nets

In addition to fyke nets, variable mesh size gill nets were used to capture fish at specific locations in the study area. Each net measured 60 m by 1.8 m, and consisted of two to five monofilament nylon mesh panels (15 m panel length). Mesh sizes included 3.8, 5.1, 6.4, 7.6, 8.9, and 10.2 cm (stretched measure). The nets were continuously monitored during the day (i.e., checked every hour or two); total set times ranged from 1 to 14 hours.

Beach Seine

A 9.1 m long beach seine (0.6 cm mesh with 0.3 cm mesh collection bag) was used to capture fish in shallow, shoreline habitat at several locations in the study area. Typically, a minimum of two seine hauls were performed at each sampling site.

Minnow Traps

GeeTM minnow traps were used to sample at several locations around the existing ferry causeways. The minnow traps (40 cm long, 23 cm in diameter at the middle, and 19 cm in diameter at each end) were two piece wire enclosures with inverted funnel-shaped openings. The traps were baited with cheese or pet food and either tethered to shore or attached to a float.

Boat Electrofishing

A shallow-draught aluminum riverboat (4.9 m) propelled by an outboard-jet motor was used during the fall field sampling session. The boat was equipped with a double-boom anode system and a Smith-RootTM Type VI electrofisher powered by a 4000 W generator. Amperage output produced during sampling ranged from 3.5 to 4.5 A, at a pulse rate of 60 Hz of direct current. The sampling procedure involved drifting downstream (at motor idle) while continuously outputting electricity. Two crew members were positioned on a netting platform on the bow of the boat. These individuals netted the immobilized fish and promptly placed them in a 400 L, onboard live-

well. Pertinent data recorded for each sampling run included UTM coordinates at the start and end locations, sampling time (s), electrofisher settings (amperes, volts, pulse width), and number of fish observed but not captured.

Fish Data Collection

All pertinent information regarding fishing effort, location, and habitat type, general water quality and habitat characteristics were recorded for all sampling events. Captured fish were identified and enumerated to species, measured to the nearest millimetre (fork length for most species, total length for species that lack a forked caudal fin), and weighed to the nearest gram (using a digital readout scale). Non-lethal ageing structures were collected from captured sportfish (pelvic fin rays from walleye and northern pike, and scales from whitefish species and Arctic grayling). Stomach content and sexual maturity data were obtained from a small number of fish that succumbed to capture or during processing. No fish were purposely killed in order to obtain life history information. Otoliths, used for aging, were collected from burbot that succumbed during capture.

To determine feeding habits, stomach contents were analyzed. The contents were described according to Thompson (1959), a modification of the numerical method used by Hynes (1950). Each stomach was examined and evaluated for fullness and allotted a certain number of fullness points (i.e., 20 points for a full stomach and 0 points for an empty stomach). After fullness points were allocated, the stomach was opened and the points were distributed among individual food categories observed based on contribution by volume.

4.0 INVENTORY RESULTS

4.1 Physical Habitat

4.1.1 River Hydrology and Geomorphology

Flow Regime

The proposed bridge is located approximately 65 km downstream of the outlet of Great Slave Lake, from which the majority of the Mackenzie River flow originates. According to Trillium (2002), flows are attenuated by lake storage. As such, the maximum recorded flow of 10 400 m³/s is approximately twice the mean annual flow of 5320 m³/s, and the minimum recorded flow of 1040 m³/s is approximately one-fifth of the mean annual flow.

Flows typically range between 1000 m³/s and 3000 m³/s from January to mid-April, and begin to increase in mid-April or early May. Open-water flows occur between early June and early November, peaking in June or July and ranging between 4000 m³/s and 9000 m³/s. In November, the river below the lake outlet typically begins to freeze over and flows fall to between 2000 m³/s and 3500 m³/s by the beginning of December; flows typically continue to decrease until April. The median annual flow is 5320 m³/s. The median open-water flow is 6600 m³/s, ranging from 3170 m³/s to 10 400 m³/s, and the median ice-covered flow is 2140 m³/s, ranging from 1160 m³/s to 4100 m³/s (Trillium 2002).

Wind can significantly affect river flows (Trillium 2002). Wind setup on Great Slave Lake can increase flow by hundreds of cubic metres per second. For example, a sustained wind of 60 km/h along the channel fetch in Beaver Lake can cause fluctuations in water level on the order of 0.4 m, and waves of up to 0.9 m in height.

Channel Characteristics

The reach of the Mackenzie River where the bridge is proposed is located between Beaver Lake (upstream) and Meridian Island (downstream). The river width in this reach varies from 1.1 to 1.6 km, and the river cross-section typically contains a 100 to 400 m wide deep channel, which meanders within the shallower full width of the channel. Under median open-water flow conditions ($6600 \text{ m}^3/\text{s}$), the mean and maximum channel depths are 3.0 and 7.2 m, respectively. The mean bed slope in the reach at the proposed crossing is 0.33 m/km (Trillium 2002).

Cross-channel depth profiles were collected at three transects on 19 September 2003 by Golder field crews (Figure 4.1). The transects were situated at the proposed bridge crossing (i.e., at the ferry crossing), upstream approximately 75 m, and downstream approximately 175 m. Main channel depths (i.e., the river section between the north and south ferry causeways), ranged from 1.2 to 7.9 m; mean water depths upstream, at the proposed crossing, and downstream of the

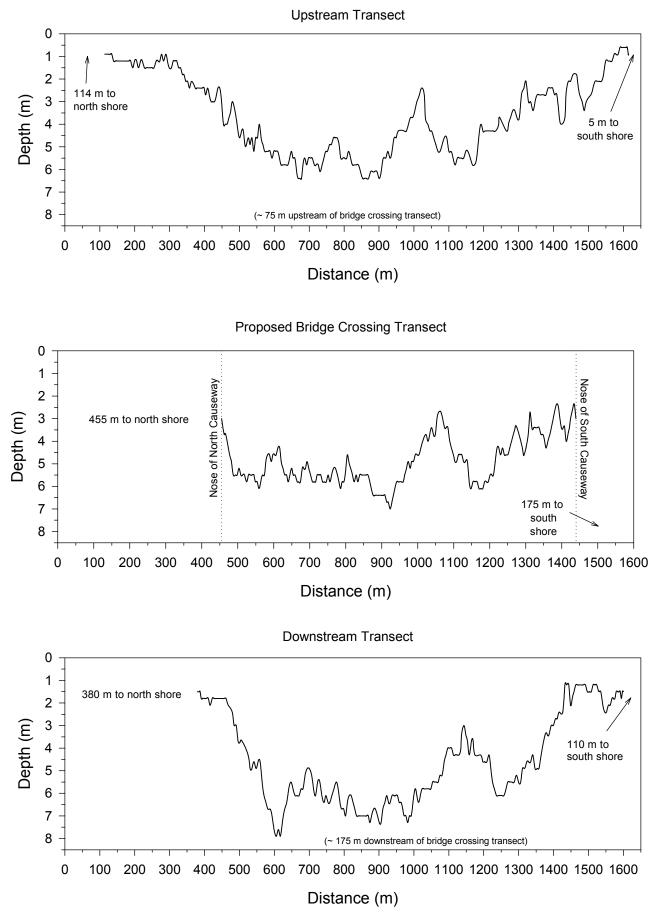


Figure 4.1 Channel depth distribution of the Mackenzie River, in the vicinity of the proposed Deh Cho Bridge, 19 September, 2003.

proposed crossing were similar (4.7, 4.9, and 5.1 m, respectively). The depth profiles exhibited a meandering thalweg and a corrugated river bottom that featured a mid-channel ridge.

Flow Velocity

Trillium (2002) indicated a mean channel velocity under median open-water flow conditions of 1.7 m/s, and a 100-year mean velocity in the bridge waterway (constricted section) of 1.8 m/s.

During the fisheries investigations conducted on 19 September 2003, a transect measured through the constricted section showed a flow area of 4912 m². The mean daily discharge, derived from Environment Canada stage data for 19 September 2003 and open water stage-discharge data for 2002, was 5820 m³/s; indicating a mean channel velocity of 1.2 m/s on the day.

During the fisheries investigation conducted on 1 August 2003, velocities were measured at various locations and depths, including along a transect through the constricted section (proposed bridge crossing section). The estimated mean daily discharge on the day was $6900 \text{ m}^3/\text{s}$. Mean water column velocities ranged from 0.9 to 1.4 m/s, and maximum velocities within the water column varied from 1.1 to 1.7 m/s (Appendix B, Table B-1).

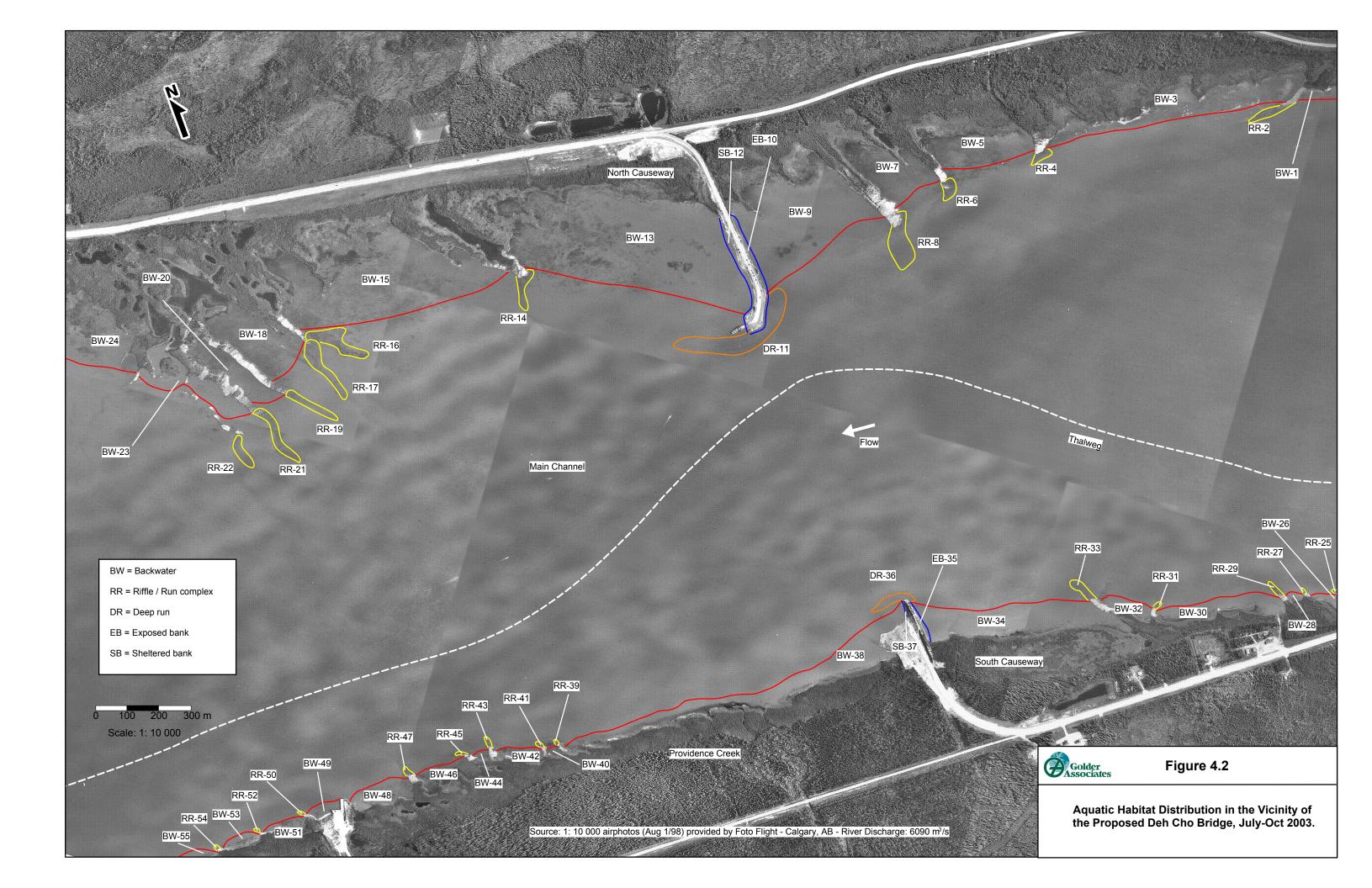
The constriction of flow by the existing approaches, and by the approach causeways on the proposed bridge, will increase local flow velocities and scour potential at the bridge abutments. The presence of instream piers will increase local flow velocities and scour potential by reducing local flow area and forming horseshoe vortices around the nose of each pier.

Bed Material and Scour Susceptibility

Trillium (2002) reported the river bed material as clay till overlain by a layer of alluvial material ranging in size from sand to small boulders and in thickness from 0 to 1.8 m. The channel section at the proposed crossing has been assessed as stable, and the clay till relatively non-erodible. Maximum scour depths due to the bridge and approach causeways are:

- maximum 1.4 m due to channel constriction;
- maximum 3.3 m in alluvium at piers;
- maximum 4.9 m in clay at piers (design to 2.0 m, with monitoring, recommended); and,
- maximum 3.0 m at abutments.

Ice Regime


The river is typically affected by ice from early November to early June. During spring breakup, ice jams at the downstream Providence Rapids increase the stage at the proposed crossing. Maximum water levels are experienced when ice from the upstream Beaver Lake meets this ice jam and backs up to the crossing (Trillium 2002).

In-situ ice at the proposed crossing has a 2-year return period thickness of 0.99 m and a 50-year return period thickness of 1.24 m; however, ice formed in Beaver Lake may lodge at the crossing and due to shoving and stacking of pans during freeze-up, this ice has a 2-year return period thickness of 1.54 m and a 50-year return period thickness of 1.83 m. The banks of the river channel are subject to ice shoving as ice floes drift down the channel during spring breakup (Trillium 2002).

4.1.2 General Fish Habitat Description

In general, the river within the 12 km study area can be characterized as predominantly a main channel type of habitat, characterized by high average velocities and depth. The main channel is bordered by low velocity, lake-like habitat (Figure 1.1). Within the study area, the widest part of the river was slightly over 2.5 km, and the narrowest part was just 0.8 km (at the downstream boundary of the study area). The nearshore area is characterized by a series of relatively shallow, protected backwaters (BW) (Figure 4.2). The substrate in these backwaters was comprised of silt and detritus, with abundant aquatic vegetation [pondweeds (*Potamogeton* spp.), rushes (*Scirpus* spp.), and cattails (*Typha* spp.)]. These backwaters were sheltered from the current by narrow fingers of land (peninsulas). The tips of these peninsulas (where they projected into the main channel) featured (gravel and cobble) substrate and formed riffle-run habitat complexes (RR).

At the ferry crossing, causeways extended from both the north and south shores. These causeways were characterized by a sheltered bank (SB) on the downstream side and an exposed bank (EB) on the upstream side. The nose (tip) of each causeway was characterized by moderate to high velocity, deep run (DR) habitat. Large boulders and cobble were common in the exposed bank and deep run habitats, while the substrate in the sheltered bank areas was primarily gravel and silt.

Towards the downstream end of the study area, the river parted around Meridian Island (Figure 1.1); in this region, the banks were steep with some evidence of slumping. The water depths were shallow along the south shore at the mouth of the Big Snye. This part of the river was dotted with small islands and rocky reefs. The downstream portion of the north shoreline study area was relatively straight as compared with upstream sections; water velocities were swift and there were only a few backwaters.

Although habitat characteristics within the study area on both the north and south shores were similar, particularly in the vicinity of the ferry crossing, the size distribution of habitats differed considerably (Table 4.1). The mean surface area of backwater (BW) habitats on the north shore was 6.03 ha, compared to 1.25 ha on the south shore, and riffle-run complexes (RR) varied from 0.50 ha (north shore) to 0.06 ha (south shore).

In sheltered bays and backwaters, the dominant nearshore rooted macrophytes were bulrush and horsetail (*Equisetum* spp.). Broad-leafed and narrow-leafed pondweeds flourished in the deeper water of most backwaters. Water milfoil (*Myriophyllum* spp.) also occurred; however, it had a patchy distribution. Both banks of the river were vegetated by spruce (*Pinus* spp.), aspen (*Populus* spp.), and willow (*Salix* spp.). Some overhanging willows occurred on the peninsulas that separated the backwaters.

Table 4.1 Distribution of aquatic habitat in the vicinity of the proposed Deh Cho Bridge, July to October 2003.

Habitat Type ¹	Number of Habitats			Total of Surface Area (ha)			Mean Surface Area (ha) ²		
	North	South	Combined	North	South	Combined	North	South	Combined
Backwater (BW)	11	15	26	66.29	18.77	85.07	6.03	1.25	3.27
Riffle-Run Complex (RR)	10	13	23	5.02	0.72	5.74	0.50	0.06	0.25
Exposed Bank (EB)	1	1	2	0.63	0.14	0.77	-	-	0.39
Sheltered Bank (SB)	1	1	2	0.62	0.03	0.65	-	-	0.33
Deep Run (DR)	1	1	2	2.36	0.36	2.72	-	-	1.36

¹ Mapped along a 4.2 km study reach; see Figure 4.2. ² Data is based on calculations from geo-referenced maps and air photographs.

4.2 Water and Bottom Sediment

4.2.1 Water Temperature

Water and air temperatures within the Deh Cho Bridge study area were continuously recorded between 1 July and 21 September 2003 (Figure 4.3; Appendix A, Tables A-3 to A-5). Mean daily air temperature ranged between 23.4°C (1 July) and 3.0°C (21 September). The mean daily water temperatures recorded during the corresponding periods were 22.8°C and 6.2°C, respectively. In general, water temperatures recorded at the north causeway site were slightly higher than at the south causeway site (e.g., averages of mean daily temperatures during August at the north and south sites were 16.7°C and 16.5°C, respectively). During August, mean daily water temperatures at the north site were higher than the south site on 22 of 31 days (71%). In September, the readings were higher at the north site on 19 of the 21 sampling days (91%). The maximum daily temperatures recorded during the survey at the north and south sites were 23.1°C and 21.4°C, respectively; both of these values were recorded on 1 July, the first day of recording.

The higher values recorded on the north side were likely due to the larger size, and greater isolation of the backwaters from the main river current (i.e., due to greater peninsula extension into the channel). Although only spot measurements of water temperature in the main channel were taken, it appears that nearshore habitats, regardless of their location (north or south shore), generally were warmer than the main channel (Appendix A, Table A-6). For example, on 1 August (late afternoon readings) water temperatures of 16.1°C and 16.8°C were recorded in the main channel off the south causeway. The minimum temperature reading on the continuous recorder (south site) on that date was 19.5°C, indicating that the main channel was at least 3°C cooler than the nearshore area on the south shore.

4.2.2 Water Quality

Field

Selected water quality constituents at sites upstream and downstream of each causeway, and within the main channel were measured (Appendix A, Table A-6). Dissolved oxygen concentrations (recorded only during summer survey) were generally high regardless of sampling location (8.6 to 11.9 mg/L). In general, turbidity levels were low in the study area (ranged between 8.0 and 13 NTU). Values appeared to be slightly higher along the south shore on most days. However, turbidity was considerably higher along the south shore during one of the fall sampling periods (values ranged between 25.3 and 71.0 NTU) relative to the north shore. It is assumed that the elevated turbidity on the south shore was due to the strong prevailing winds which re-suspended bottom sediments in Beaver Lake and in shallow, nearshore areas upstream. It is assumed that these areas accumulate substantial sediment delivered by tributaries entering the south shore of Great Slave Lake (i.e., Kakisa River, Buffalo River, Slave River). All pH

values were slightly alkaline (7.2 to 8.7 pH units). Conductivity values were low, ranging between 159 and 225 $\mu S/cm.$

Laboratory

Comprehensive water quality samples were collected at four locations in the vicinity of the proposed Deh Cho Bridge. These data will provide background reference for the proposed development. The samples were collected upstream and downstream of each ferry landing causeway on 18 September 2003. Most of the water quality constituents had reported concentrations or values that were below the Canadian Environmental Quality Guidelines (CEQG) for the Protection of Aquatic Life (CCME 1999); many constituents were below laboratory analytical detection limits (Appendix A, Table A-1).

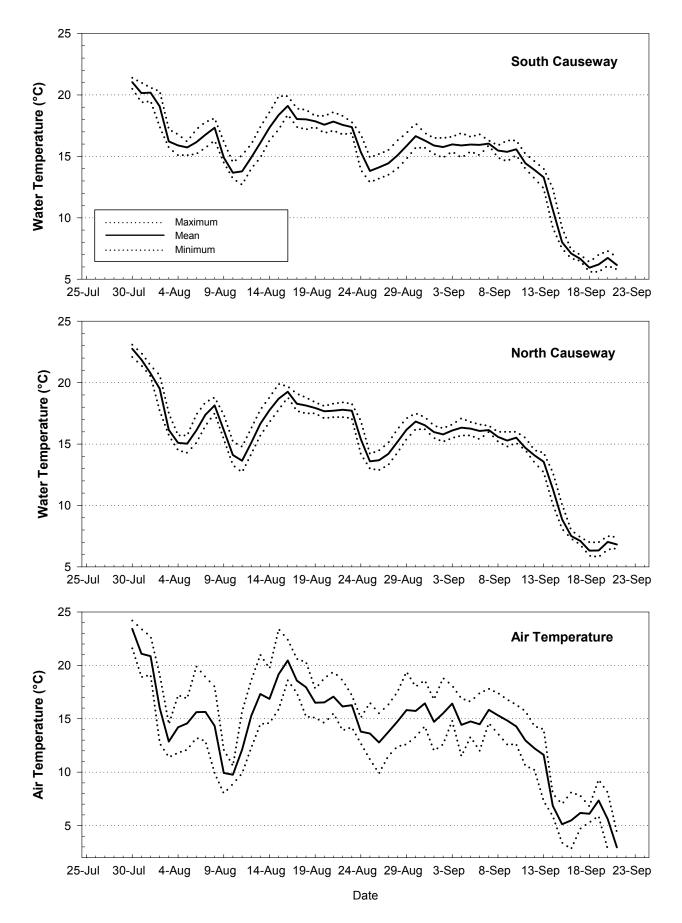


Figure 4.3 Water and air temperature recorded in the vicinity of the proposed Deh Cho Bridge, July - September 2003.

Constituents that were not compliant with CEQG included aluminum, copper, and iron (Table 4.2). Prior to sample collection, strong winds (generally greater than 50 km/h) persisted for several days. This disturbed sediments in shallow near shore areas and likely influenced the concentration of some water quality constituents. Ammonia, oil and grease, and total suspended solids (TSS) are water quality constituents of concern because they may be released during construction of the proposed bridge, as follows:

- ammonia occurs as a residue in blasted rock material;
- oil and grease is commonly encountered in transportation corridors, and is used to lubricate the wooden runners on the south ferry take-out area; and,
- elevated TSS concentrations generally occur during instream construction activities.

Table 4.2Selected water quality constituents of the Mackenzie River in the
vicinity of the Deh Cho Bridge, 18 September 2003.

Constituent ¹	Detection	North Ca	auseway	South C	auseway	CEQG ⁴
Constituent	Limit	u/s ²	d/s ²	u/s	d/s	CLQG
Aluminum	0.01	0.16	0.10	0.11	0.24	0.100
Copper	0.0006	0.0017	0.0017	0.0020	0.0035	0.002
Iron	0.005	0.379	0.240	0.531	2.12	0.300
Ammonia	0.05	<0.05	<0.05	<0.05	<0.05	1.04 ⁵
Oil and Grease	1	<1	<1	<1	<1	na ⁶
TSS	3	10 ³	13 ³	139	173	Background dependent ⁷

¹ All concentrations reported as mg/L. TSS = total suspended solids.

 2 u/s = upstream; d/s = downstream.

³ Collected on 20 September 2003.

⁴ CEQG = Canadian Environmental Quality Guidelines for the protection of aquatic life (CCME 1999).

⁵ Level for pH of 8.0 and water temperature of 10.0°C; ammonia guideline concentrations are pH and temperature dependent.

⁶ na = not applicable/available.

⁷ Total Suspended Sediment (TSS) guidelines

- 1) Clear flow conditions (TSS \leq 25 mg/L)
 - short-term exposure (≤ 24 h); levels not to exceed 25 mg/L above background.
 - long-term exposure (24 h 30 d); levels not to exceed 5 mg/L above background.

2) High flow conditions (TSS 25 - 250 mg/L)

- maximum allowable increase of 25 m/L above background.

3) Highflow conditions (TSS > 250 mg/L)

- maximum allowable increase of not more than 10% above background.

Concentrations of ammonia and oil and grease were below analytical detection limits. TSS concentrations at the north ferry landing causeway were low (collected on 20 September 2003), whereas the south ferry landing causeway exhibited high TSS concentrations (collected on 18 September 2003). This situation also was documented with field turbidity measurements (see Section 4.2.2).

4.2.3 Sediment Characteristics

Sediment samples were collected from four locations in the vicinity of the proposed Deh Cho Bridge (upstream and downstream of each causeway) on 18 September 2003. All of the sediment quality constituents had reported concentrations or values that were below the Canadian Environmental Quality Guidelines (CEQG) for the Protection of Aquatic Life (CCME 1999). Many constituents were below laboratory analytical detection limits (Appendix A, Table A-1). These data serve as background reference for the proposed development.

As described above for water quality (Section 4.2.2), ammonia and oil-gravimetric are sediment quality constituents of concern because they may be factors during construction activities. Ammonia concentrations were low at all sites. Oil and grease content was considerably higher (1200 mg/kg) in the sample collected downstream of the north ferry landing causeway, in comparison to the levels recorded in the samples from the remaining three sites (400 to 700 mg/kg). No explanation for this elevated reading is available; further testing would be required to extablish the relevance of the measurement. Median sediment particle size ranged from 6.892 to 9.437 μ m; values tended to be slightly higher in the downstream samples at both ferry landings (Table 4.3; Appendix A, Table A-7).

Table 4.3Selected sediment characteristics of the Mackenzie River in the
vicinity of the Deh Cho Bridge, 18 September 2003.

Constituent ¹	Detection	North Ca	auseway	South C	auseway	CEQG ³
Constituent	Limit	u/s ²	d/s ²	u/s ²	d/s ²	CEQG
Ammonia	1	3	3	4	5	na ⁴
Oil-Gravimetric	1	700	1200	600	400	Na
Median Particle		C 000	0.427	7 770	0 1 1 1	Ne
Size (µm)	na	6.892	9.437	7.779	8.111	Na

¹ All concentrations reported as mg/km, unless stated otherwise.

 2 u/s = upstream; d/s = downstream.

³ CEQG = Canadian Environmental Quality Guidelines for the protection of aquatic life (CCME 1999).

⁴ na = not applicable/available.

4.3 Fish Resources

4.3.1 Local Fisheries Knowledge and Harvest

During the present investigation it was determined that, from a domestic value perspective, the key fish species are lake whitefish and northern pike. Species such as walleye and inconnu, although they are captured less frequently and on a more seasonal basis, are highly valued as well. Residents of Ft. Providence make considerable use of the various backwater habitats in the vicinity of the proposed bridge. In this regard, gill nets are set on a routine basis on both the north

and south side of the river. The area upstream of the north ferry landing appears to be most heavily used. The results of the domestic fish harvest (1994 to 2001), were provided by DFO in Hay River (Table 4.4). As indicated, the catch year-over-year is comprised largely of lake whitefish and northern pike, followed by walleye and suckers. Arctic grayling, inconnu and burbot made only a minor contribution on an annual basis. The domination of the catch by lake whitefish and northern pike appears to persist throughout the open water season (Table 4.5). Sport fishing was not observed in the study area during the two survey periods; however, the upstream end of Providence Island is reported to be a favorite location for Arctic grayling. Providence Creek which historically has supported Arctic grayling spawning has been closed to angling for many years to protect the population. Angling for northern pike and walleye also occurs in the study area. Some local anglers indicated that the walleye catch has declined in recent years, particularly relative to the catch of northern pike.

Table 4.4	Summary of domestic fish harvest by residents of Ft. Providence,
	NT (1994 to 2001).

Fish Species	Mackenzie Towi		Horn	River	Comb	oined
	Mean Catch/year	Range	Mean Catch/year	Range	Mean Catch/year	Range
Lake Whitefish	487	0-1190	1206	10-1777	1693	0-1777
Northern Pike	174	0-337	477	138-853	651	0-853
Walleye	32	0-59	79	28-240	110	0-240
Inconnu	5	0-21	5	0-15	10	0-21
Longnose/White Suckers	41	0-101	1477	59-607	225	0-607
Arctic Grayling	12	0-30	163	0-66	33	0-66
Burbot	1	0-5	33	0-21	7	0-21

						Νι	umbers of Fig	sh Harves	sted					
Harvest	Lake Wh	itefish	Norther	n Pike	Walle	ye	Incor	nu	Suck	ers	Arctic Gr	ayling	Burb	ot
Intervals	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River
Jun 1-15														
1996	0	106	0	97	0	30	0	8	0	348	0	0	0	0
1997	0	68	0	32	0	6	0	4	0	8	0	7	0	0
1998	50	36	31	22	1	2	8	1	8	119	7	5	0	0
1999	14	32	9	17	3	0	0	0	2	15	1	0	0	0
2000	0	100	0	55	0	12	0	2	0	42	0	18	0	0
2001	78	74	21	38	6	3	0	0	5 13		2	4	0	0
MEAN	23.6	69.3	10.2	43.5	1.7	8.8	1.3	2.5	2.5	90.8	1.7	5.7	0.0	0.0
Jun 16-30														
1996	5	46	4	117	1	35	0	0	0	165	0	0	0	0
1997	0	161	0	59	0	20	0	1	0	42	0	13	0	0
1998	69	51	35	24	5	6	1	0	12	17	4	5	1	0
1999	62	63	21	27	8	4	0	0	13	17	8	4	0	0
2000	0	59	0	55	0	22	0	0	0	23	0	19	0	0
2001	46	63	20	28	2	5	0	0	5	9	0	2	0	0
MEAN	30.3	73.8	13.3	51.7	2.7	15.3	0.2	0.2	5.0	45.5	2.0	7.2	0.2	0.0
Jul 1-15														
1996	6	38	7	64	2	40	0	0	1	11	0	0	0	0
1997	150	72	42	33	8	8	0	0	16	58	13	3	0	0
1998	77	70	42	34	3	11	0	0	9	9	1	3	0	0
1999	53	38	26	16	6	12	1	0	10	4	7	6	0	0
2000	35	76	17	51	5	10	0	2	6	8	6	19	0	0
2001	68	69	24	30	11	7	0	0	5	9	3	2	0	0
MEAN	64.8	60.5	26.3	32.8	5.8	14.7	0.2	0.3	7.8	16.5	5.0	5.5	0.0	0.0

Table 4.5Seasonal fish harvest by residents of Ft. Providence, NT (1996 to 2001).

...Continued

Table 4.5 Seasonal fish harvest by residents of Ft. Providence, NT (1996 to 2001), continued.

						Nı	mbers of Fig	sh Harves	sted					
Harvest	Lake Wh	itefish	Norther	n Pike	Walle	ye	Incon	nu	Suck	ers	Arctic Gr	ayling	Burb	oot
Interval	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River
Jul 16-31														
1996	63	139	29	94	27	67	0	0	3	13	0	0	0	0
1997	139	79	56	36	15	9	0	0	17	34	9	10	0	0
1998	159	13	88	16	10	2			39	5	2	0	0	0
1999	0	112	0	46	0	22	0	0	0	16	0	7	0	0
2000	49	71	13	36	7	12	0	0	1	10	2	6	0	0
2001	44	40	16	24	4	6	2	0	6	4	0	0	3	0
MEAN	75.7	75.7	33.7	42.0	10.5	19.7	0.3	0.0	11.0	13.7	2.1	3.8	0.5	0.0
Aug 1-15														
1996	122	180	51	101	19	56	0	0	8	12	0	0	0	0
1997	78	66	39	35	9	9	0	0	4	13	8	0	0	0
1998	39	17	25	19	3	2	0	0	7	2	0	2	1	0
1999	36	103	18	46	2	11	0	0	8	14	4	8	0	0
2000	42	141	29	56	10	3	0	2	0	19	0	3	0	0
2001	38	72	10	48	2	12	0	0	6	17	1	1	0	0
MEAN	59.2	96.5	28.7	50.8	7.5	15.5	0.0	0.3	5.5	12.8	2.2	2.3	0.2	0.0
Aug 16-31														
1996	103	306	36	132	5	11	0	2	3	31	0	0	0	0
1997	37	74	16	35	6	4	0	0	0	10	0	0	0	0
1998	49	74	25	35	7	1	0	4	12	5	9	8	1	0
1999	62	148	47	76	1	5	0			16	3	1	0	0
2000	46	240	22	89	6	28	1	1	4	16	0	0	0	2
2001	85	165	36	72	5	1	0	0	14	18	0	0	0	0
MEAN	63.7	167.8	30.3	73.2	5.0	8.3	0.2	1.2	6.8	16.0	2.0	1.5	0.2	0.3

...Continued

Table 4.5Seasonal fish harvest by residents of Ft. Providence, NT (1996 to 2001) concluded.

Harvest						Nu	umbers of Fig	sh Harves	sted					
Interval	Lake Wh	itefish	Norther	n Pike	Walle	ye	Incon	nu	Suck	ers	Arctic Gr	ayling	Burb	oot
	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River	Townsite	Horn River
Sep 1-15														
1996	96	148	35	58	0	0	0	0	4	13	0	0	0	0
1997	74	176	18	44	0	7	0	0	6	8	0	0	0	0
1998	79	162	42	82	3	2	0	0	9	12	0	0	0	0
1999	16	161	9	91	0	0	0	0	2	8	0	0	0	0
2000	0	303	0	16	0	0	0	5	0	11	0	1	0	3
2001	54	123	9	43	0	1	0	0	0	7	0	0	0	0
MEAN	53.2	178.8	18.8	55.7	0.5	1.7	0.0	0.8	3.5	9.8	0.0	0.2	0.0	0.5
Sep 16-30														
1996	71	316	24	96	1	4	0	0	3	14	0	0	0	0
1997	0	214	0	63	0	0	0	0	0	6	0	0	0	0
1998	44	258	22	107	0	0	0	0	5	13	0	0	0	2
1999	0	491	0	134	0	0	0	0	0	28	0	0	0	0
2000	0	417	0	117	0	0	0	2	0	5	0	0	0	11
2001	72	184	15	61	0	0	0	0	4	0	0	0	0	0
MEAN	31.2	313.3	10.2	96.3	0.2	0.7	0.0	0.2	2.0	11.0	0.0	0.0	0.0	2.2
Oct 1-15														
1996	179	527	34	117	0	1	0	0	1	0	0	0	0	0
1997	0	413	0	85	0	4	0	0	0	6	0	0	0	0
1998	63	244	27	78	0	2	0	0	0	7	0	0	2	10
1999	0	254	0	40	0	0	0	0	0	4	0	0	0	0
2000	0	189	0	41	0	0	0	1	0	1	0	0	0	5
2001	26	59	14	19	0	0	0	1	0	0	0	0	0	0
MEAN	44.7	331.0	12.5	63.3	0.0	1.2	0.0	0.3	0.2	3.0	0.0	0.0	0.3	2.5

4.3.2 Species Occurrence (2003)

Twelve fish species, representing eight taxonomic families, were captured in the Mackenzie River within the Deh Cho Bridge study area in 2003 (Table 4.6). The combined catch from all sampling methods was 1044 fish (Table 4.7; Appendix C, Table C-1). Emerald shiners dominated the sample (i.e., contributed 62.8% to the total catch). Six sportfish species accounted for 21.0% of the total catch; these included northern pike (10.9%), lake whitefish (7.4%), walleye (0.9%), Arctic grayling (0.7%), round whitefish (0.6%), and burbot (0.6%). Other species frequently encountered were white sucker (1.8%), longnose sucker (0.4%), spottail shiner (11.3%), ninespine stickleback (1.4%), and trout-perch (1.2%).

Catch data for the same study area in 1977 (RRCS 1978) yielded a similar species composition. However, during the 1977 study, five species not recorded in the present study were encountered, including lake chub, longnose dace, spoonhead sculpin, slimy sculpin, and lake cisco. As was the case in 2003, the dominant sportfish species in 1977 were lake whitefish and northern pike.

Chum salmon (*Oncorhynchus keta (Walbaum*)) were not encountered during the present study, but are known to migrate upstream past the site (to Great Slave Lake and Slave River) during late fall, on a sporadic basis (McPhail and Lindsay, 1970).

Table 4.6Fish species recorded in the vicinity of the proposed Deh ChoBridge, July to Sept 2003.

Scientific Name	Common Name	South Slavey ¹ Name	Code
Family Salmonidae			
Coregonus clupeaformis (Mitchill)	Lake whitefish	Luh	LKWH
Prosopium cylindraceum (Pallas)	Round whitefish	Luh	RNWH
Thymallus arcticus (Pallas)	Arctic grayling	Ts'a'iah	ARGR
Family Percidae			
Stizostedion vitreum vitreum (Mitchill)	Walleye	Ehch'ue	WALL
Family Escoidae			
Esox lucius Linnaeus	Northern pike	Udaa	NRPK
Family Gadidae			
<i>Lota lota</i> (Linnaeus)	Burbot	Nohtthie	BURB
Family Catostomidae			
Catostomus catostomus (Forster)	Longnose sucker	Dedeli	LNSC
C. commersoni (Lacepède)	White sucker	Dedeli	WHSC
Family Cyprinidae			
Notropis atherinoides Rafinesque	Emerald shiner		EMSH
N. hudsonius (Clinton)	Spottail shiner		SPSH
Family Percopsidae			
Percopsis omiscomaycus (Walbaum)	Trout-perch		TRPR
Family Gasterosteidae			
Pungitius pungitius (Linnaeus)	Ninespine stickleback		NNST

South Slavey Topical Dictionary, Second Edition, 1993. Teaching and Learning Centre, Dehcho Divisional Board of Education, Ft. Simpson, NT 162 p.

4.3.3 Fyke Net Catches

The fyke net was installed perpendicular to shore in shallow water (less than 1.5 m) at two locations in the vicinity of the proposed Deh Cho bridge. During the July field sampling session the fyke net was installed downstream of the south ferry causeway. In September, it was installed upstream of the south ferry causeway. During the fall survey, the fyke net was equipped with two cod ends separated by a single 45 m lead to permit the separation of catches into upstream and downstream movements. Only one cod end was installed during the summer (due to river conditions); therefore, collection of directional data was not possible at this time.

Northern pike (75.5%) and burbot (10.2%) dominated the combined summer and fall catch (Table 4.7). Five other species (lake whitefish, white sucker, emerald shiner, spottail shiner, and trout-perch) made minor contributions to the catch (total of 14.2%).

The total fyke netting effort during the study was 136 hours, and the total catch was 49 fish (Table 4.8). The catch per unit effort (CPUE) for northern pike and burbot was 0.27 fish/h and 0.04 fish/h, respectively. The individual catch rates for the five remaining species were very low (CPUE values of 0.01 fish/h).

4.3.4 Gill Net Catches

Gill netting was conducted at 14 different locations in the study area; sets were made at one of these sites on two occasions (Figure 3.1). The combined catch was largely comprised of northern pike (41.9%) and lake whitefish (37.1%); other species recorded were white sucker (10.5%), walleye (7.3%), emerald shiner (2.4%), and longnose sucker (0.8%) (Table 4.7).

In total, 6.1 net-units (one net-unit equaled 100 m² of net set for 24 h) of gillnetting effort were expended; 124 fish were captured, providing a mean CPUE of 20.3 fish/net-unit (Table 4.9). The CPUE for the most frequently recorded species were: northern pike (8.5 fish/net-unit), lake whitefish (7.5 fish/net-unit), white sucker (2.1 fish/net-unit), and walleye (1.5 fish/net-unit). Emerald shiner (0.5 fish/net-unit) and longnose sucker (0.2 fish/net-unit) were encountered infrequently (Table 4.9).

In 1977, RRCS (1978) reported catches similar to those documented during the present study. As was the case in 2003, their gill net catch was made up primarily of northern pike (48%) and lake whitefish (35%). The percentage contribution of walleye to the catch also was similar between the two studies (7.3% in 2003 and 7.5% in 1977). The remainder of the catch in 1977 was comprised of longnose sucker (5%), round whitefish (3%), and white sucker (1.5%).

4.3.5 Beach Seine Catches

Beach seining was conducted at 10 representative sites located in shallow, nearshore habitat, upstream and downstream of the ferry crossing. Emerald shiner and spottail shiner were the dominant species recorded, contributing 81.9% and 14.7% respectively, to the total beach seine catch. Small numbers of ninespine stickleback (1.9%), trout-perch (1.4%), and northern pike (0.1%) also were collected (Tables 4.7 and 4.10).

Species	Boat Elec	trofishing	Gill	Nets	Fyke	Nets	Beach	Seines	Minnov	v Traps	То	tal
	п	%	n	%	n	%	n	%	п	%	п	%
Northern pike	23	28.0	52	41.9	37	75.5	1	0.1	1.0	100.0	114	10.9
Walleye			9	7.3							9	0.9
Arctic grayling	7	8.5									7	0.7
Burbot	1	1.2			5	10.2					6	0.6
Lake whitefish	30 36.6		46	37.1	1	2.0					77	7.4
Round whitefish	6	7.3									6	0.6
White sucker	5	6.1	13	10.5	1	2.0					19	1.8
Longnose sucker	3	3.7	1	0.8							4	0.4
Emerald shiner	7	8.5	3	2.4	1	2.0	645	81.9			656	62.8
Spottail shiner					2	4.1	116	14.7			118	11.3
Trout-perch					2	4.1	11	1.4			13	1.2
Ninespine stickleback							15	1.9			15	1.4
Total	82	100	124	100	49	100	788	100	1	100	1044	100

Table 4.7 Summary of fish captured in the vicinity of the proposed Deh Cho Bridge, July to September 2003.

Table 4.8Number of fish captured and effort (CPUE) in the fyke net located in the vicinity of the proposed Deh Cho Bridge,
July to September 2003.

						Numbe	er of Fis	h Captı	ured ²					CPUE	(Numb	er of F	ish / h)		
Set No. ¹	Set Date	Check Date	Effort (h)	NRPK	ГКМН	BURB	WHSC	EMSH	HSdS	TRPR	Total	NRPK	ГКМН	BURB	WHSC	EMSH	HSdS	TRPR	Total
1	31-Jul	1-Aug	18.5	11			1				12	0.59			0.05				0.65
1	1-Aug	2-Aug	24.3	1							1	0.04							0.04
1	2-Aug	3-Aug	24.5	5							5	0.20							0.20
2	17-Sep	18-Sep	21.0	6	1	1			1		9	0.29	0.05	0.05			0.05		0.43
2	18-Sep	19-Sep	24.5	10		3			1		14	0.41		0.12			0.04		0.57
2	19-Sep	20-Sep	23.3	4		1		1		2	8	0.17		0.04		0.04		0.09	0.34
	Total		136.0	37	1	5	1	1	2	2	49	0.27	0.01	0.04	0.01	0.01	0.01	0.01	0.36

¹All fyke net sets were in the vicinity of the south ferry causeway. Set 1 = UTM (11V) NAD 27, 471548E 6791735N;

Set 2 = UTM (11V) NAD 27, 472651E 6791061N. Net sets were in backwater habitats, 1.0 to 1.5 m water depth,

among silt/sand/boulder substrate.

² See Table 4.1 for explanation of fish species codes.

Table 4.9 Gillnet catches and CPUE in the vicinity of the proposed Deh Cho Bridge, July to September 2003.

		Location (UTM)	Pull	Set	Net	Water	Substrate			Ν	lumber	of Fis	sh Cap	tured	/ CPU	E (fish	/ 100 m	²/ 24 h)	
Set No.	Site ¹	(Datum NAD27)	Date	Duration (h)	Units ²	Temp (C°)	Type ³	NF	RPK	LK	WH	W	ALL	LN	ISC	Wł	ISC	EN	ЛSH	TOTAL
GN1	NC	11V E471928 N6792782	30-Jul	4.5	0.21	22.6	Si/Sa	5	23.9											5
GN2	NC	11V E472044 N6792765	30-Jul	4.0	0.23	22.6	Si/Sa	4	4 17.2		12.9							3	12.9	10
GN3	NC	11V E471882 N6792789	1-Aug	40.8	0.47	22.6	Si/Sa													0
GN4	NC	11V E472012 N6792684	1-Aug	40.7	0.47	22.6	Si/Sa	1	2.1											1
GN5⁴	SC	11V E471548 N6791578	31-Jul	4.5	0.21	23.2	Si/Sa	2	9.6	3	14.3	1	4.8			3	14.3			9
GN6 ⁵	SC	11V E471822 N6791542	31-Jul	4.4	0.25	23.2	Si/Sa/Gr	1	1 3.9											1
GN7 ⁵	SC	11V E471822 N6791542	3-Aug	67.0	0.78	19.3	Si/Sa/Bo	10	12.8	4	5.1	2	2.6							16
GN8 ⁴	SC	11V E471548 N6791578	3-Aug	65.6	0.76	19.3	Si/Sa/Bo	6	7.9	2	2.6	5	6.6			5	6.6			18
GN9	PC	11V E474826 N6791702	1-Aug	5.5	0.32	19.0	Bo/Co													0
GN10	NS	11V E474826 N6791489	1-Aug	3.7	0.17	17.9	Si/Sa/Bo	9	52.8	4	23.5	1	5.9			5	29.4			19
GN11	SS	11V E467205 N6794479	2-Aug	4.2	0.24	17.9	Si/Sa	1	4.1	1	4.1			1	4.1					3
GN12	SC	11V E472742 N6790996	20-Sep	22.3	0.52	6.0	Bo/Co	3	5.8	13	25.1									16
GN13	SC	11V E471615 N6791560	20-Sep	22.3	0.52	6.0	Bo/Co	3	5.8	1	1.9									4
GN14	NC	11V E472630 N6792608	21-Sep	21.4	0.50	6.5	Bo/Co	5	10.1	2	4.0									7
GN15	NC	11V E471340 N6793165	21-Sep	20.4	0.47	6.5	Bo/Co	2	4.2	13	27.4									15
TOTAL	TAL			331.2	6.13		-	52	8.5	46	7.5	9	1.5	1	0.2	13	2.1	3	0.5	124

¹ NC = north ferry causeway; SC = south ferry causeway; PC = near Providence Creek; NS = north shore upstream near groyne area; SS = south shore downstream near island. Catches were at a water depth of 1.0 m to 3.0 m.

 2 1 net unit = 100 m² of gill net set for an equivalent of 24 hours.

³ Si = silt; sa = sand; gr = gravel; co = cobble; bo = boulder.

⁴ Sets GN5 and GN8 at same location.

⁵ Sets GN6 and GN7 at same location.

UTM (11V) NAD27 CPUE (Number of Fish / 100 m²) Number of Fish Captured⁴ Max. Effort Set Site¹ Cover³ Date Time Substrate² Depth (m²) No. NRPK EMSH NRPK EMSH NNST SPSH TRPR NNST SPSH TRPR Total Total (m) Easting Northing BS-1 NC 471983 6792786 17-Sep 15:15 8 97 12.9 750 sa/gr/co/bo 1.1 Veg/Bo 89 11.9 1.1 BS-2 NC 471940 6792650 17-Sep 15:30 660 si/sa/gr 1.0 Veg 64 18 10 92 9.7 2.7 1.5 13.9 BS-3 472016 6792805 17-Sep 16:50 280 Veg/Bo 23 7.5 NC si/sa/co/bo 1.0 21 0.4 0.4 8.2 1 1 BS-4 472009 6792760 17-Sep 17:20 210 NC si/sa/bo 1.0 Veg/Bo 21 21 10.0 10.0 BS-5 SC 471746 6791548 19-Sep 14:15 280 8.9 si/sa/co/bo 0.7 Bo 25 1 4 30 0.4 1.4 10.7 BS-6 SC 471692 6791498 19-Sep 14:25 140 si/sa/co/bo 0.9 Во 2 2 4 1.4 1.4 2.9 BS-7 SC 472165 6791291 19-Sep 16:30 320 17 si/sa/bo 0.7 Veg/Bo 11 1 5 3.4 0.3 1.6 5.3 BS-8 SC 472255 6791257 19-Sep 16:40 350 si/sa/bo 7 7 2.0 2.0 0.8 Veg/Bo BS-9 475481 6787721 20-Sep 15:30 195 36 16.4 0.5 SIR si/sa/gr 1.0 Veg 32 1 3 1.5 18.5 **BS-10** SIR 475481 6787721 20-Sep 15:50 210 si/sa/gr 1.0 Veg 1 252 71 324 0.5 120.0 33.8 154.3 BS-11 477718 20-Sep 14:10 175 59 0.6 NIR 6788994 si/sa/gr/co Veg 60 33.7 34.3 1.0 1 477718 6788994 20-Sep 14:30 2 77 35.4 BS-12 NIR 195 si/sa/gr/co 1.0 Veg 69 5 1 1.0 2.6 0.5 39.5 11 Total 3765 1 645 15 116 788 0.03 17.1 0.4 3.1 0.3 20.9

 Table 4.10
 Beach seine catches and CPUE in the vicinity of the proposed Deh Cho Bridge

¹ NC = north causeway; NIR = north shore ice road crossing, SIR = south shore ice road causeway.

² Si = silt; sa = sand; gr = gravel; co = cobble; bo = boulder.

³ Veg = aquatic vegetation; Bo = boulder.

⁴ See Table 4.1 for explanation of fish species codes.

The total area sampled was approximately 3765 m^2 and the total catch was 788 fish (Table 4.10). The CPUE for emerald shiner and spottail shiner, the species which dominated the catch, were 17.1 fish/100 m² and 3.1 fish/100 m², respectively. Low catch rates were recorded for ninespine stickleback, trout-perch and northern pike (i.e., 0.4, 0.3, and 0.03 fish/100 m², respectively).

In contrast to the results obtained in 2003, RRCS (1978) captured few emerald shiners. In 1977, the catch was dominated by white and longnose sucker followed by spoonhead sculpin, spottail shiner, northern pike, slimy sculpin, lake chub, and longnose dace. Seine hauls in 1977 also included low numbers of Arctic grayling and burbot.

4.3.6 Minnow Trap Catches

Minnow traps were largely ineffective during the present study (Table 4.7). Thirty-five traps were set for a total effort of 957 hours, and only one northern pike (1.1 fish/24 h) was captured.

4.3.7 Boat Electrofishing

In total, 82 fish encompassing eight species were captured while boat electrofishing in the study area (Figure 3.1; Table 4.7). The electrofishing catch was comprised largely of lake whitefish (36.6%) and northern pike (28%). Arctic grayling and round whitefish made contributions to the catch of 8.5% and 7.3%, respectively. The two sucker species (longnose sucker and white sucker) together contributed 9.8% to the total catch. Other species recorded in the catch were emerald shiner (8.5%), and burbot (1.2%).

Catch-per-unit-effort (CPUE) values were calculated, based on time sampled (Table 4.11). The species combined CPUE was 3.25 fish/10 min. The CPUE values for lake whitefish and northern pike, the species that contributed most to the catch, were1.19 fish/10 min and 0.91 fish/10 min, respectively. Catch rates for Arctic grayling, round whitefish and burbot were considerably lower (ranging from 0.28 fish/10 min to 0.04 fish/10 min).

During the 1977 study (RRCS, 1978), boat electrofishing was conducted during spring and fall. Lake whitefish (57%) was the dominant species in the catch during the spring survey. Other species contributing to the spring catch included: longnose sucker (21%), northern pike (15%), and white sucker (7%). During the fall survey, lake whitefish and northern pike comprised the majority of the catch (55%) followed by Arctic grayling (14%), longnose dace (10%), round whitefish (7%), and burbot (4%). Longnose and white suckers contributed 10% to the fall 1977 catch.

																			, ,					
		Start UT NAI	M (11V) 027		TM (11V) AD27		N	lumbe	er of I	ish (Cap	ure	d²					CPUE	E (Numl	ber of F	ish / 10	min)		
Site	Location ¹	Easting	Northing	Easting	Northing	Effort (s)	NRPK	LKWH	ARGR	RNWH	BURB	LNSC	WHSC	EMSH	Total	NRPK	LKWH	ARGR	RNWH	BURB	LNSC	WHSC	EMSH	Total
ES-1	NS-upst	474716	6791585	469735	6793939	5244	12	7	6	6			1		20	1.37	0.80	0.69	0.69			0.11		3.66
ES-2	NS-dnst	469735	6793939	471967	6792794	4384	5	8					1		9	0.68	1.1					0.14		1.92
ES-3	SS-upst	474122	6790309	471648	6791498	3024	3	8	1			2	3	1	15	0.6	1.59	0.2			0.4	0.6	0.2	3.57
ES-4	SS-dnst	471648	6791498	469079	6792209	2488	3	7			1	1		6	15	0.72	1.69			0.24	0.24		1.45	4.34
	Total					15140	23	30	7	6	1	3	5	7	59	0.91	1.19	0.28	0.24	0.04	0.12	0.20	0.28	3.25

Table 4.11 Boat electrofishing catches and CPUE in the vicinity of the proposed Deh Cho Bridge, July to September 2003.

¹ NS-upst = north shore usptream of north ferry causeway, NS-dnst = north shore downstream of north ferry causeway, SS-upst = south shore upstream of south ferry causeway, SS-dnst = south shore downstream of south ferry causeway. Substrate consisted of silt, sand, gravel, and cobble. Habitat type was a mixture of Runs and Backwaters with aquatic vegetative cover.

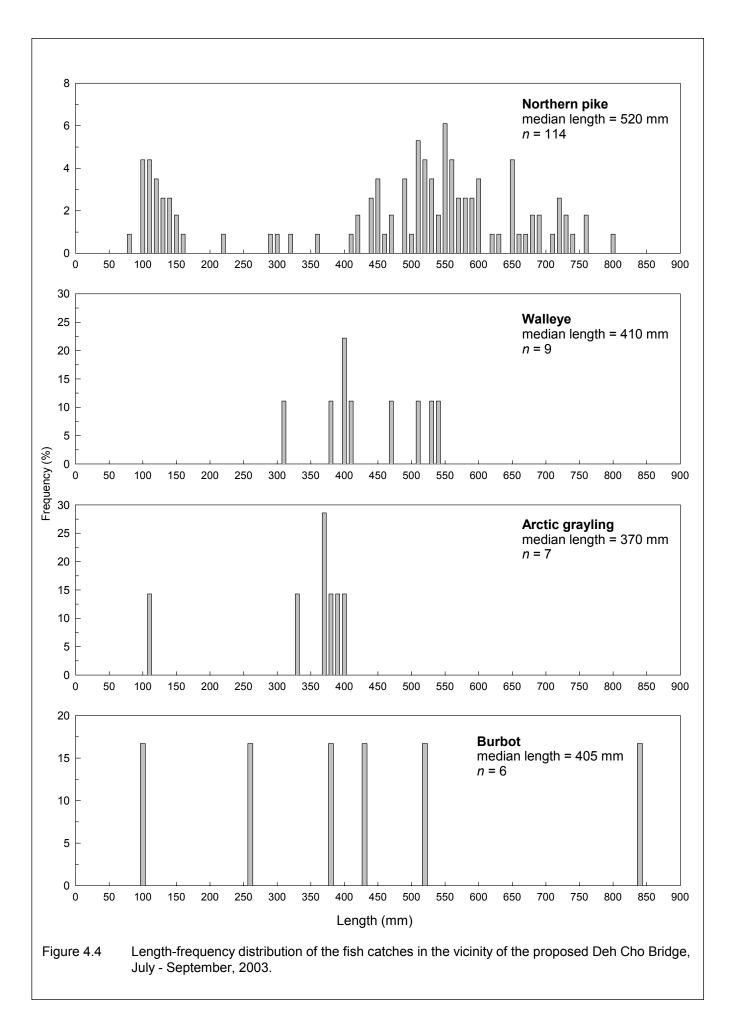
² See Table 4.1 for explanation of fish species codes.

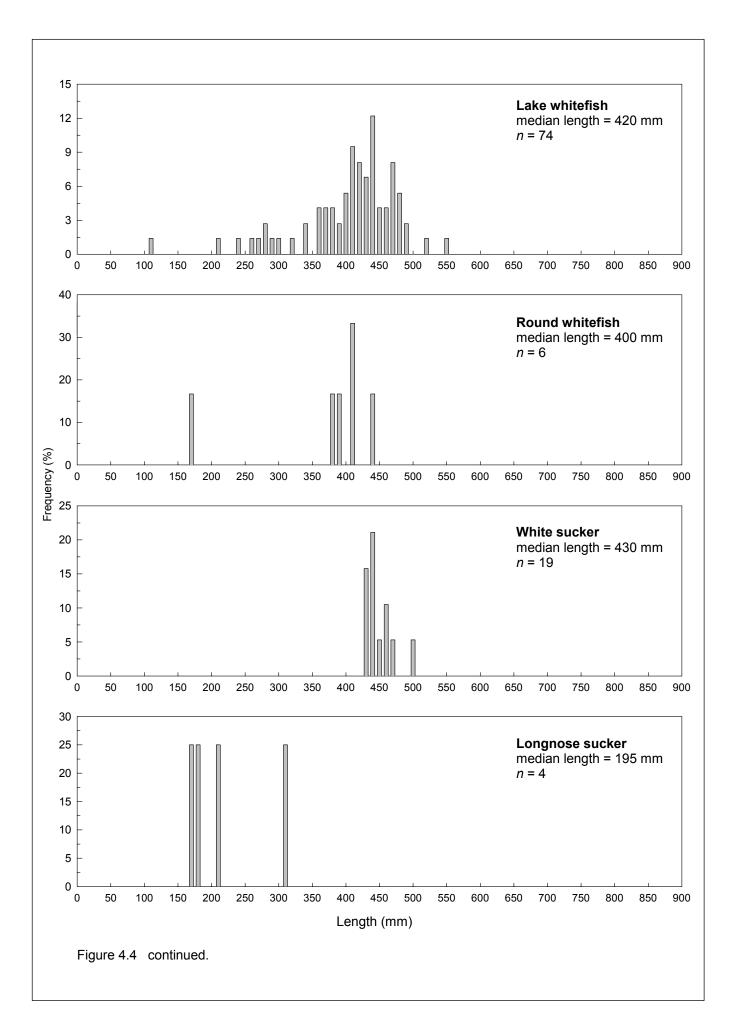
4.3.8 Life History Data

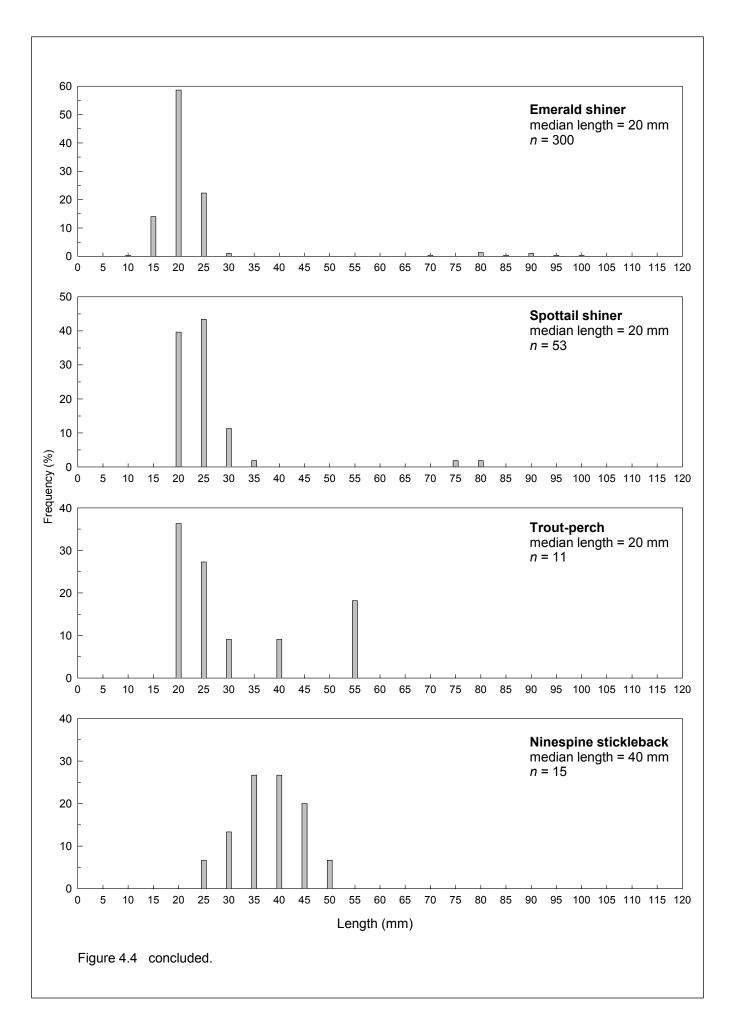
Northern pike

Size Distribution

The size distribution of northern pike in the catch (n=114) was widespread (fork lengths ranged between 88 and 928 mm). The distribution exhibited several distinct modes, indicating the presence of a range of age classes in the sample (Figure 4.4). A considerable portion of the catch (21%) consisted of fish smaller than 160 mm in fork length (modal length of 125 mm). The capture of immature individuals confirms that the study area is providing rearing habitat for northern pike, and could indicate that spawning is occurring in the vicinity as well. Fish larger than 420 mm contributed 72% to the catch. The median length of the total measured sample was 520 mm.


Age


Sampled fish were not systematically aged during the present study (ageing structures archived for future reference). However, based on the size of northern pike captured, in comparison to aged samples reported by other investigators (RRCS, 1978; Roberge et al, 1985), northern pike captured in 2003 likely ranged in age from age-0 to age-15+. Several smaller specimens (100-125 mm, fork length) were aged using scales to confirm the presence of young-of-the-year pike in the study area; all were considered to be fish spawned in spring 2003.


Diet

Six of the 23 northern pike stomachs examined contained food items (Appendix C, Table C-1). The mean fullness index was low (23.9%). Northern pike diet consisted primarily of fish; identifiable fish species in the diet included northern pike, burbot, lake whitefish, and shiners. One individual had a whole mouse in the stomach, which accounted for 18.2% of the total food volume.

Stomach analysis conducted during 1977 (RRCS 1978) also determined that the diet was primarily composed of fish (lake cisco, round whitefish, sculpin, etc.). A small percentage (less than 1%) of the food content was comprised of invertebrates including beetle (Coleoptera) and dragonfly (Anisoptera) larvae.

Walleye

Size Distribution

The catch of walleye (n=9) ranged in fork length between 318 and 540 mm; the median length of the sample was 410 mm. Length-classes between 400 and 540 mm contributed 77.8% to the total catch. Individuals less than 380 mm were poorly represented, contributing only 22.2% to the total catch (Figure 4.4).

Age

Walleye sampled in 2003 were not aged although the ageing structures were archived for future use. Based on age-length data for walleye in nearby Kakisa Lake (Roberge et al. 1986), it is assumed that walleye captured in Deh Cho Bridge study area ranged in age from age-6 to age-15+.

Diet

Two of the seven walleye stomachs examined contained food items (Appendix C, Table C-1). The mean fullness index was 17.1%. The diet consisted entirely of fish; although most food items were unidentifiable to species, northern pike were present. Stomach analysis during the 1977 study (RRCS 1978) also determined that fish were the primary food source; identifiable fish in the diet included Arctic grayling, whitefish, and sculpin.

Arctic grayling

Size Distribution

The catch of Arctic grayling (n=7) ranged in fork length between 115 and 403 mm (Figure 4.4); the median length of the sample was 370 mm. Only one young-of-the-year individual was captured during the study (115 mm fork length individual recorded on 18 September).

Age

The age of Arctic grayling in the 2003 sample was estimated based on a comparison to aged samples reported by RRCS (1978), for the Mackenzie River near Ft. Providence and by Falk et al (1982), for Providence Creek. Based on these sources, the 2003 sample was comprised of individuals ranging in age from age-0 to age-7.

Diet

During the present study, Arctic grayling stomach contents were not examined internally (i.e., all fish released). However, in 1977 (RRCS 1978) 11 young-of-the-year Arctic grayling stomachs were analyzed. Diet consisted primarily of invertebrates, including midges (Chironomidae), blackflies (Simuliidae), caddisflies (Trichoptera), mayflies (Ephemeroptera), biting midges (Ceratopogonidae), and true bugs (Hemiptera).

Burbot

Size Distribution

The catch of burbot (n=6) ranged between 102 and 844 mm in total length, with a median length of 405 mm (Figure 4.4). Length-classes between 260 and 520 mm contributed 66.7% to the total catch. Only one young-of-the-year individual was captured during the study (102 mm total length individual recorded on September 18).

Age

Based on the size of burbot captured in 2003, in comparison to an aged sample from the west end of Great Slave Lake (Roberge et al. 1985), it is assumed that burbot encountered in the present study ranged in age from age-0 to age-17+.

Diet

Only one burbot stomach was examined during the present study; it contained one burbot and one lake whitefish (Appendix C, Table C-1). RRCS (1978) analyzed stomach contents from six young-of-the year burbot; they determined that the primary food source was invertebrates [mayflies, dragonflies, blackflies, water fleas (Cladocera), scuds (Amphipoda) and seed shrimp (Ostracoda)].

Lake whitefish

Size Distribution

The median fork length of lake whitefish in the catch (n=74) was 420 mm (range from 117 to 555 mm). A considerable proportion (36.5%) of the catch was composed of fish less than 400 mm in length. Individuals greater than 480 mm were poorly represented, contributing only 10.8% to the total catch (Figure 4.4).

Age

Based on the size of lake whitefish captured during the present study, in comparison to an aged sample from the west end of Great Slave Lake (Roberge et al., 1985), it is likely that fish in the sample ranged in age from age-0 to age-18+. Several adult lake whitefish (females and males) in pre-spawning condition were captured in the study area during the fall survey (18-21 September), indicating that spawning may occur in the area. Alternatively, these individuals may have been on route to spawning areas located elsewhere.

Diet

Only 18 of the 42 lake whitefish stomachs examined contained food items (Appendix C, Table C-1). The mean fullness index was 35.7%. Lake whitefish diet consisted primarily of invertebrates (94.3% of total food volume), including water boatmen (Corixidae), clams (Sphaeridae), back swimmers (Notonectidae), caddisflies, mayflies, scuds, snails (Gastropoda), and beetles. Aquatic vegetation was also recorded in lake whitefish stomachs, accounting for 5.7% of the total food volume. Stomach analysis during 1977 (RRCS 1978) produced similar results; the primary food source was invertebrates, with a small (1%) fish component (sculpins).

Round whitefish

Size Distribution

The catch of round whitefish (n=6) ranged in fork length from 173 to 445 mm; the median length of the sample was 400 mm (Figure 4.4). Only one round whitefish smaller than 350 mm was captured in the study (individual with a fork length of 173 mm, captured on September 17).

Age

Based on the size of round whitefish captured, in comparison to an aged sample from Great Slave Lake (Roberge et al. 1985), it is likely that the 2003 catch ranged in age from age-1 to age-18+. Two of the round whitefish captured were in pre-spawning condition (a male and female captured on 17 September), indicating that spawning may occur in the area. Alternatively, these individuals may have been on route to spawning areas located elsewhere.

Diet

Round whitefish stomachs were not examined during the present study. However, RRCS (1978) analyzed the contents of two round whitefish stomachs; they determined that the primary food source was invertebrates (caddisflies and mayflies).

White sucker

Size Distribution

White suckers in the catch (n=19) ranged between 350 and 507 mm in fork length, with a median length of 430 mm (Figure 4.4). The length-frequency distribution was characterized by one distinct mode centered around 460 mm. Young-of-the-year and juvenile individuals were not encountered in the present study.

Diet

Two white sucker stomachs were examined for food contents during the present study; both were empty. RRSC (1978) examined the contents of white sucker stomach; they determined that it contained clams, caddisflies, mayflies, and midge larvae.

Longnose sucker

Size Distribution

Longnose suckers in the catch (n=4) ranged between 175 and 313 mm in fork length; the median length of the sample was 195 mm (Figure 4.4).

Diet

Longnose sucker stomachs were not examined for food contents during the present study. However, RRCS (1978) reported that the stomachs of three longnose suckers contained primarily filamentous green algae and caddisflies.

Minnow species

Size Distribution

Emerald shiners in the sample (n=300) varied between 12 and 100 mm in fork length (median length of 20 mm). Most (96.3%) of the catch was less than 30 mm in fork length. It is assumed that these individuals (which were all captured between 17-21 September) were young-of-theyear fish. Specimens greater than 70 mm also were encountered, but they contributed only 3.7% to the total catch (Figure 4.4). Although specimens were not aged, it is likely that the larger individuals were primarily age-1 with a smaller contribution of age-2 fish. The largest individuals would be age-3 during the coming spring/summer; three years of age is considered to be the maximum life expectancy for emerald shiners (Scott and Crossman, 1973).

January 2004

The catch of spottail shiners (n=53) ranged between 21 and 80 mm in fork length; the median length of the sample was 20 mm. Most spottail shiners (96.2%) were less than 30 mm (Figure 4.4). As was the case for emerald shiners, it is assumed that the captured specimens were primarily age-0 (young-of-the-year), with a minor contribution of age-1 individuals.

The trout-perch catch (n=11) ranged between 21 mm and 56 mm in fork length; the median length of the sample was 20 mm (Figure 4.4). Most trout-perch (72.7%) were less than 30 mm; these individuals were assumed to be young produced during spring/ early summer of the current year.

Ninespine stickleback in the catch (n=15) ranged between 27 and 50 mm in fork length, with a median length of 40 mm (Figure 4.4).

4.3.9 Important/Critical Fish Movements

The fish capture results (fyke net, gill nets, electrofishing) did not detect any distinct seasonal movements in the study area during the two survey periods. It is assumed that any movements in the area were localized and feeding-related rather than being specifically to and from important and critical habitats (i.e., spawning, overwintering areas). The inability to detect defined movements during the survey periods may have been influenced by the timing of the field sampling. In this regard, the late July sampling event occurred after the spring spawning related movement period, and the fall sampling event may have taken place prior to major fall spawning and overwintering related movements. However, based on the fish (species, life stage, maturity) captured, and known to inhabit the area according to traditional knowledge, defined movements past the proposed bridge site on an annual basis can be assumed.

During spring (mid-April through May), spawning-related movements by Arctic grayling can be expected due to the presence of known spawning areas in the lower reach of Providence Creek (Bishop 1971; Falk *et al* 1982). Fish tagged during the spawning run were later recaptured by anglers in the Mackenzie River near Ft. Providence and as far away as Brabant Island in Great Slave Lake, indicating that Arctic grayling from the Providence Creek spawning population contribute to the sport fishery over a wide area (Falk *et al* 1982). Movements of pre-spawning adult Arctic grayling directed towards Providence Creek can be expected to occur in early spring (late April to mid-May). Post-spawning adults are likely to depart Providence Creek in late May and disperse to summer feeding areas in the Ft. Providence area and Great Slave Lake. For adults that remain in the area, or move in from other spawning sites, the focus of feeding activity over the summer would be in the vicinity of the riffle-run complexes situated off the tips of peninsulas.

Northern pike are also known to spawn in Providence Creek during the spring (Bishop 1971; Falk et al 1982). Therefore, movements of adult pike towards Providence Creek can be expected in

early to mid-May; post-spawning movements to summer feeding areas in the Mackenzie River can be anticipated in late May. Spawning by northern pike has not been confirmed in the mainstem Mackenzie River near Ft. Providence. However, the likelihood of it occurring is high based on the abundance of northern pike in the area and the presence of extensive potentially suitable spawning habitat in the nearshore zone along both the north and south banks.

Spawning movements by other spring spawning species inhabiting the area (walleye, longnose sucker, white sucker) are not well-understood. Walleye are captured in nearshore habitats in the vicinity of the proposed bridge, particularly along the south shore. The extent of use of the rocky areas off the tips of the various peninsulas which extend into the channel for spawning is unknown. Walleye were captured in small numbers during the late July/early August 2003 survey, but were not encountered during the fall sampling period (Table 4.9). The domestic harvest data (Table 4.5) indicates that the local catch of walleye is relatively low during the early part of the season (June 1-15) and increases to its maximum level in mid-summer (July 16-31). Thereafter, the catches decline and reach their minimum levels during fall. Based on the information available (i.e., low numbers of walleye in the late spring early summer domestic harvest) it appears that walleye spawning may not occur in the study area. This being the case, it follows that there is a post-spawning dispersal of walleye into the area beginning in early summer from spawning sites outside the study area, and an out-migration in late summer/early fall to overwintering sites. Walleye are known to spawn in the Kakisa River during late May and early June (Falk and Dahlke 1975). This spawning population may be the source of the walleve inhabiting the Ft. Providence study area during the summer months.

Spawning, feeding and overwintering-related movements by key fall spawning species in the study area (lake whitefish, round whitefish, inconnu) are not well-understood. However, based on trends apparent in the domestic harvest data (Table 4.5), previously collected data and the 2003 results, it is evident that lake whitefish movements in the area are likely to be extensive. The data suggests that there may be a dispersal into the area during the summer for feeding purposes, followed by an outmigration in the fall (perhaps to spawning areas located elsewhere). However, based on the capture of several pre-spawning adults in suitable spawning habitat, it is possible that lake whitefish spawn, and may be resident in the area.

Very little is known about the distribution, biology and movements of round whitefish in the upper Mackenzie River mainstem. However, round whitefish utilize the riffle/run complexes located at the offshore ends of peninsulas for feeding during the summer months, and may spawn there as well. Whether these individuals are year-round residents or move into the area from Great Slave Lake for part of their life-cycle is unknown.

Inconnu, although they are highly regarded by the residents of Ft. Providence, do not appear to make a large contribution to the domestic harvest near the townsite (Table 4.5). The few that are

encountered on an annual basis are apparently captured in the early part of the season (June). These individuals are likely part of an overall movement towards spawning areas located outside the study area. Spawning areas for inconnu have been documented in several tributaries to Great Slave Lake, particularly the Buffalo River and the Slave River (Fuller 1955, McLeod *et al* 1985). Based on the low numbers of inconnu in the domestic harvest and their absence in the 2003 survey catch, it is assumed that this species is an occasional migrant past the site. Individuals encountered in the vicinity of Ft. Providence may be downstream migrants from Great Slave populations or perhaps strays form riverine-based populations in the Ft. Simpson/Liard River areas.

Burbot were captured during the fall 2003 survey in directional fyke nets, indicating that these individuals were moving through the nearshore zone along the south shore. The extensive backwater habitats in the study area are assumed to be highly suited to burbot feeding (i.e., based on large numbers and diversity of fish prey). While the riffle-run complexes, which feature coarse substrate, would appear to be suitable for spawning, the extent of use of these areas is unknown. Because burbot are mid-winter spawners (January – March) their spawning distribution and biology is not well understood.

5.0 IMPACT ASSESSMENT AND MITIGATION OPPORTUNITIES

5.1 Key Fish Species and Important / Critical Habitat Availability

Based on the Ft. Providence domestic harvest and the capture results obtained during the present study, it is apparent that the key fish species inhabiting the Mackenzie River in the vicinity of the proposed Deh Cho Bridge are northern pike and lake whitefish. These species accounted for the largest percentage of fish captured in the domestic fishery near the townsite (over 85 % of harvest between 1994 and 2001; Table 4.4), which extends throughout the open water season. Other highly valued species include Arctic grayling, walleye, burbot, and inconnu; however, they are captured on a more seasonal and site specific basis. Fish groups such as suckers (white and longnose) and minnows (emerald shiners, spottail shiners, etc.) are also important members of the fish community due to their importance as a food source for predatory fish species (e.g., northern pike, walleye, inconnu, and burbot).

The magnitude and significance of the proposed Deh Cho Bridge on the various species is dependent on the type and quality of the habitat available, and the project activities that are applied. Table 5.1 summarizes the suitability and use (when known) of habitat for the various life requisite activities (spawning, rearing, etc.). Following a review of this material it is apparent that the "high" suitability ratings are associated with the "backwater", "riffle-run" and (to a lesser extent) "sheltered bank" habitats. These nearshore habitats, were developed, and are currently maintained, naturally (in association with the peninsulas that extend into the channel) and by man-made structures (i.e., ferry approaches).

With respect to spawning, backwater habitats are considered to be highly suitable for northern pike, and several minnow species (emerald shiner, spottail shiner, ninespine stickleback) that are very important to the overall food chain in the study area. These habitats provide ideal spawning conditions for these species due primarily to the extensive availability of areas with low velocity and aquatic vegetation. Backwater areas also provide ideal rearing conditions for a wide range of species including northern pike, lake whitefish, burbot, suckers and several types of minnows. These habitats are also used extensively for adult feeding during the open water season (northern pike, lake whitefish, suckers, burbot, minnows).

Riffle-run complexes, located at the offshore ends of peninsulas, provide highly suitable spawning habitat for species that require coarse bed material (gravel, cobble) situated in moderate velocity settings. This includes both spring spawning (Arctic grayling, white sucker, longnose sucker, and possibly walleye) and fall/winter spawning species (lake whitefish, round whitefish, burbot). The sheltered bank areas, which are formed on the leeward side of the north and south ferry landings, provide high quality rearing and adult feeding habitat for northern pike and a range of minnow species.

5.2 Short Term Effects (Construction)

The construction of the Deh Cho bridge may result in a number of impacts on the aquatic environment at, and within the downstream zone of influence. The extent and severity of the impacts will depend on the type and quality of the habitat affected, the timing of the construction activity and, of course, the nature of the instream construction and the effectiveness of the mitigation plan implemented.

The construction will result in an increase in boat/barge traffic at the site, with attendant increases in noise associated with the equipment. While this activity may deflect some fish from the immediate areas of the construction, these disturbances are expected to be short term and not harmful to the local fish populations. This conclusion is based on the large size of the river in relation to the availability of alternate habitats for rearing and feeding. However, this also assumes that construction scheduling is sensitive to timing issues with respect to spawning. For example, it would be prudent to avoid instream construction activity at, or immediately upstream of sites that are known (or suspected) to be spawning sites, during critical periods.

It is inevitable that suspended sediment will be introduced into the river during the bridge construction phase. The amount of sediment that will be released is difficult to predict. However, it is possible to adjust the intensity and timing of instream activity on a daily basis to regulate the amount of sediment released and ultimately the concentrations reached in the water column (feedback monitoring). Also, it may be possible to schedule some of construction activities during non-sensitive time periods for fish and other aquatic life. The background level of natural sediment in the river should also be taken into account. For example, it may be possible to conduct some instream activity during periods when suspended sediment levels are running at seasonally high levels. Guidelines for sediment release can also be set and monitored during construction to ensure that suspended sediment levels do not exceed accepted water quality guidelines (an example of a construction monitoring program is provided in Appendix D). During construction there will be an increased risk of a contaminant spill, primarily associated with the heavy equipment operating in the area. With proper planning and supervision this risk can be minimized.

	В	Backwater (BW)			ackwater (BW) Riffle-Run (RR)				Deep F	tun (Dl	R)	Sheltered Bank (SB)			Ex	posed	Bank	(EB)	Main Channel (MC)					
Fish Species	S	R	AF	WO	S	R	AF	ow	S	R	AF	ow	S	R	AF	ow	S	R	AF	ow	S	R	AF	OW
Northern Pike	habi north exter but t south	H amount f itat is hi shore d nsion of the suita shore c s was s north s	gher o lue to g penin ability o on a ur imilar f	n the greater sulas, of the nit-area	at bott	L s may h om end jacent b	of run	s, or in	p velocit	N ome ad otential ies ger to supp	but wa erally f	ater too high	to abu (sever y-o- re pres	H feeding andance al spec y and ju aring hi ence of abitat wi veget	e of mi ies ava uvenile igh due	nnows iilable); pike to locity	limited	d reari	M t feeding ng) in s ty locat	pecific	lower perin ove	velocity neter of rwinteri	L Ilt feedin habita backwa ng pose ocity ma	t along aters; sible
Walleye	N	L	Μ	М	М	L	М	Ν	Ν	Ν	Μ	Ν	Ν	L	М	Ν	Ν	L	Μ	Ν	Ν	Ν	L	L
Comments:	south to elev to nort input fr du subse	shore, ated tu	possib bidity (i.e.se kisa Ri shet, a wind-in	relative ediment ver etc. and iduced	spa inha from o pope River	entially awning, biting a ther kno ulations). Reari ue to go veloc	but ad rea ma own sp (ie. Ka ng suit enerall <u>y</u>	ults ly be awning akisa ability	poter	ome ad tial but n for ov	velocit	ties too	abund suitat	It feedir ance of bility rec clarity ye	f minno luced b	ws, but y high	certa	ain per ed on a	ng use iods of availabi ile fish.	year,		, ocity a	vinter in reas alc neter.	
Arctic grayling	N	N	, L	Ľ	Н	М	Н	L.	Ν	Ν	М	L	Ν	Ν	Ν	Ν	N.	L	L	N	Ν	Ν	Μ	М
Comments:	and prima	ible use overwin ary habi sociated compl	ntering itat foc d riffle-	, but us on	rearing likely f popu	tial for s g, but gr rom kno lation ir k: adult	ayling own sp Provid	in area awning lence	potent		high ve	ding elocities ing use.	too lo	r veloci ow, and northerr suita	l prese	nce of	poss red velocit	sible, b uced b ties an	adult f but suita by low w d prese ern pike	ability vater ence of	overv from	/interin riffle-ru	eding ar g may e n comp innel ma	extend lexes
Lake whitefish	N	Н	Н	М	Н	М	М	N	Ν	Ν	М	Ν	Ν	М	М	Ν	Ν	М	М	Ν	Ν	Ν	Ν	М
Comments:		quality a venile re confir	earing		cap sp	spawnin oture of awning dicates spawni	fish in condit possib	ore- ion le				es may		ntial for d juven					⁻ adult fe nile rear		ve	ocity a	vinter in reas alc f backw	ong
Round whitefish	N	L	L	L	Н	М	Н	N	Ν	Ν	М	L	Ν	L	L	Ν	Ν	L	L	Ν	N	N	L	L
Comments:	and	e potenti l adult fe higher (riffle	eeding		noted; cc in	spawni fish in ondition dicating spawni	pre-spa captur possit	awning ed	poten use	ome ad tial, but may be high ve	overw restric	intering ted by		at large low wa			rearing site-sp	g pote ecific	t feedin ntial, bu use dep velocit	ut likely bending	overw margi	intering ns betv	eding ar I may o veen rif s and m nnel.	ccur in fle/run
Burbot	N	Н	Н	М	Н	Ν	М	Ν	Ν	Ν	L	L	Ν	М	М	Ν	Ν	L	М	Ν	Ν	Ν	Ν	М
Comments:		quality and rearing throug	ng hab		dowr	awning nstream lere dep	end of	runs	overw	ie adult intering igh wat	, but re	estricted		ie adult bossible			(possil	ble rea	lult feed aring), b accordin acties.	ut site-	ve	, ocity a	vinter in reas alc margin	ong

Table 5.1 Aquatic Habitat Suitability¹ of the Mackenzie River for key fish species, in the vicinity of the proposed Deh Cho Bridge

	Backwater (BW)			R	iffle-R	un (RF	२)	[Deep R	lun (DR	R)	Sheltered Bank (SB)				Ex	posed	Bank (EB)	Main Channel (MC)			
Fish Species	S R AF OW		S	R	ÂF	ÓW	S	Ŕ	ÂF	ÓW	S	R	AF	ÓW	S	R	AF	ÓW	S	R	AF	ów	
White sucker	N	н н	М	Н	М	М	Ν	Ν	Ν	L	L	Ν	М	М	Ν	Ν	L	М	Ν	Ν	Ν	Ν	М
Comments:	and re	ality adult fe earing hab proughout.		Spa shallov				overw	/intering	feeding g; will d velociti	epend		e adult ossible			rearin	feeding g. Likel vater ve	y depe	nds on	vel	overw ocity ar nannel r	eas alo	ng
Longnose sucker	N	н н	М	Н	М	М	Ν	Ν	Ν	L	М	Ν	М	М	Ν	Ν	L	М	Ν	Ν	Ν	Ν	М
Comments:	• •	ality feedir abitat throu	•	Spa shallov				overw	/intering	feeding g; will d velociti	epend		e adult ossible			rearin	feeding g. Likel vater ve	y depe	nds on	vel	overw ocity ar nannel	eas alo	ng
Emerald shiner	н	н н	Н	Ν	Ν	L	Ν	Ν	Ν	L	L	L	Н	Н	Ν	Ν	L	L	Ν	Ν	Ν	Ν	М
Comments:	in abund	the year p dance, ind e spawning	cates	and lac	ally hig k of pr	gh velo	ocities d cover			of area gh velo		rea presen	quality ring hat ice of p th and l	oitat du referred	e to l cover	rearin	e adult g; likely vater ve	y deper	nds on		ome pot overwir		or
Spottail shiner	H I	н н	Н	Ν	Ν	L	Ν	Ν	Ν	Ν	Ν	L	Н	Н	Ν	Ν	L	L	Ν	Ν	Ν	Ν	М
Comments:	year ind	of young- licates pro	bable	and lac (low ve	ally high k of pr locity,	gh velo eferreo	ocities d cover sitional,	-	e to ger	il use of nerally h cities.		rea presen (low v	quality ring hal ice of pi relocity, uatic ve	oitat du referred deposi	e to l cover tional,	rearin	e adult g; likely vater ve	y deper	nds on		nited us hannel		
Trout-perch	N	H M	Н	Н	L	Н	N	Ν	Ν	L	L	N	Н	М	N	Ν	L	М	Ν	Ν	Ν	Ν	М
Comments:	• •	ality feedir nabitat ava	•	Poter feeding			0	overw	/intering	feeding g; will d velociti	epend	. .	uality re some a	•		rearin	feeding g; likely vater ve	y deper	nds on		nited us hannel		
Ninespine stickleback	H I	н н	Н	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Н	Н	Ν	Ν	L	L	Ν	Ν	Ν	Ν	М
Comments:	rearing ha	ality feedir abitat throu g likely oc tic vegetati	ighout. curs in	Water	veloci	ties toc	o high.	Wate	r veloci	ties too	high.	•	quality ult feedi			рс	feeding ssible, cities g hig	but wa	ter		nited us hannel		

Table 5.1 Aquatic Habitat Suitability	of the Mackenzie River for ke	v fish species, in the vicinit	v of the proposed Deh Cho Bridge

¹S = spawning; R = rearing; AF = adult feeding; OW = overwatering; N = nil; L = low; M = medium; H = high.

5.3 Operational Effects (Footprint)

Bridge projects have the potential to impact fish resources through direct loss, or alteration, of habitat associated with the physical footprint of the bridge, and through changes to surrounding (peripheral) habitat. Direct habitat losses generally occur when causeways and abutments are extended into the river, and at the locations where the bridge piers are installed. In certain situations, the bridge projects result in habitat gains associated with removal of existing structures. Because the footprint of bridges constructed in large river settings is quite small in comparison to the amount of habitat available, the resulting impacts are generally minimal. These impacts can be significant, however, if sensitive habitat (e.g., spawning areas) is present directly under the footprint of these structures, or immediately downstream. In some situations, design modifications to the structures can provide new, productive habitat, thereby compensating partially or wholly for the original losses. Alterations to habitat in peripheral areas can occur through changes to the river-hydraulic setting or water quality. These effects can also be mitigated through properly designing the bridge, protecting the channel and banks against erosion, and following best practices during construction and maintenance to prevent sediment release or spills.

During the operational period of the bridge, the bridge structure and footprint may provide more diverse habitat in the area of the bridge through the formation of scour holes and velocity breaks in association with the causeways, abutments and bridge piers (e.g., refugia for feeding or migrating fish).

The remainder of Section 5.3 below discusses these issues in greater detail.

5.3.1 North Approach Footprint and Peripheral Habitats

The nose of the north causeway will be reduced in length by 80 m and widened (Figure 5.1); fill will be removed from an area of approximately 4300 m² (Figure 5.1). Overall, habitats peripheral to the north causeway will be reduced in size (Table 5.2). Backwater BW-9, situated immediately upstream of the causeway, will be reduced in size by approximately 1800 m². The downstream-situated backwater would be reduced by 4900 m². The resultant changes to habitat areas, however, are small relative to the availability of habitat encountered in the study area (see Section 4.1.2).

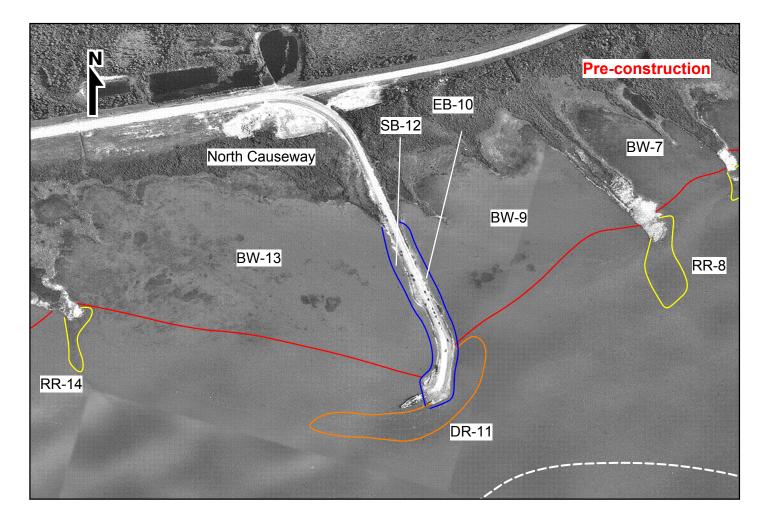
	north ap	proach.					
	Pre-	Habitat	Permanent	Post-	Net		abitat sfer ²
Habitat unit ¹	Construction (m ²)	Transfer Losses (m²)	Loss (m ²)	Construction (m ²)	Change (m ²)	From BW Habitat (m ²)	To MC Habitat (m ²)
BW9	102700	-1000	-800	100900	-1800	800	1000
EB10	6300	-2100	-	4200	-2100	-	2100
DR11	23600	-4200	-	19400	-4200	-	4200
SB12	6200	-1500	-	4700	-1500	-	1500
BW13	208300	-4100	-800	203400	-4900	800	4100
Totals	347100	-12900	-1600	332600	-14500		

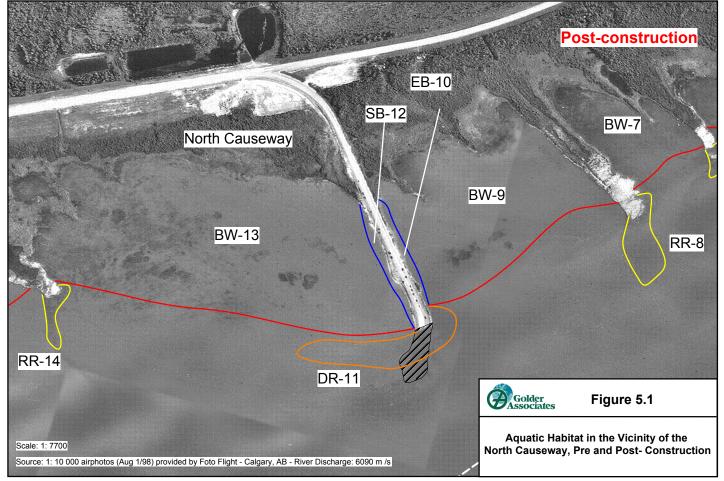
Table 5.2Projected changes in nearshore habitats due to modification of the
north approach.

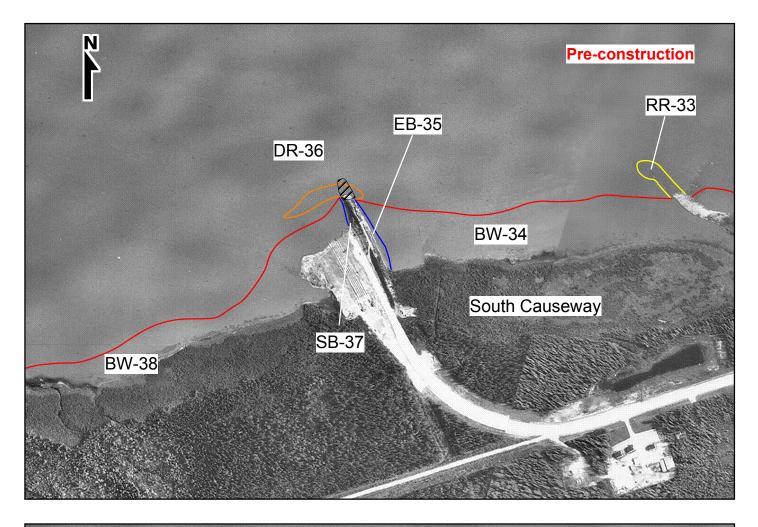
¹ Refer to Figures 4.2 and 5.1 for locations. MC = main channel; BW = backwater; EB = exposed bank; DR = deep run; SB = sheltered bank. Areas calculated from geo-referenced maps and air photographs.

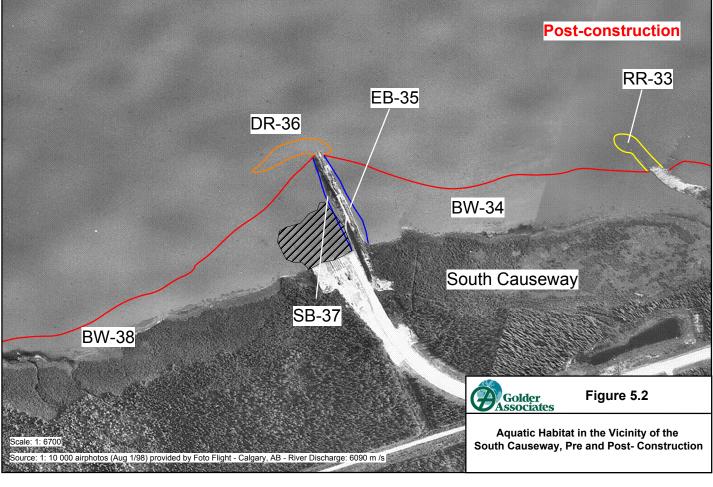
² Net Habitat Transfer: Shows breakdown leading to Net Change habitat numbers.

5.3.2 South Approach Footprint and Peripheral Habitats


The south causeway will be lengthened by 60 m and widened (Figure 5.2); the increase in area will be 5600 m^2 . In general, habitats peripheral to the south causeway will be increased, primarily due to the removal of the ferry haul-out area (9500 m^2) (Table 5.3). The backwater area situated immediately upstream of the south causeway (BW-34) will be increased in area by 2550 m^2 and BW-38, situated immediately downstream would experience a gain of 12 650 m². The resultant changes to habitat areas, however, are small relative to the availability of habitat encountered in the study area (Section 4.1.2).


Table 5.3Projected changes in nearshore habitats due to modification of the
south approach.


	Pre-	Habitat	Permanent	Post-	Net		labitat Tran	
Habitat unit ¹	Construction (m ²)	Transfer Gains (m²)	Loss (m ²)	Construction (m ²)	Change (m ²)	From MC Habitat (m ²)	To SB Habitat (m ²)	To BW Habitat (m ²)
BW34	55300	4900	-2350	57850	+2550	2550	-	-
EB35	1400	400	-	1800	+400	400	-	-
DR36	3600	-	-	3600	-	-	-	-
SB37	300	800	-	1100	+800	300	500	-
BW38	59900	15000	-2350	72550	+12650	5500	-	7150
Totals	120500	21100	4700	136900	+16400	8750	500	7150


¹Refer to Figures 4.2 and 5.1 for locations. MC = main channel; BW = backwater; EB = exposed bank; DR = deep run; SB = sheltered bank. Areas calculated from geo-referenced maps and air photographs.

² Net Habitat Transfer: Shows breakdown leading to Net Change habitat numbers.

5.3.3 Footprint of Instream Bridge Abutments and Piers

Instream structures such as bridge piers and abutments cause local flow velocity increases which result in local scour. The proposed bridge abutments will be constructed on the end of relatively long approach embankments. In this situation, a vertical wake vortex forms at the downstream end of the abutment, and a horizontal vortex forms along the toe of the abutment, as shown in Figure 5.3. The vortex action increases local velocities, and can remove bed material and create a scour hole.

In rivers with large seasonal fluctuations in water level, projections into the flow such as the proposed bridge approaches might form scour holes during flood events that have the potential to create/provide cover or overwintering habitat. However, a recent bathymetric survey (Trillium 2002) found only 1.0 m of possible scour against sheet piles at the north approach, and none at the south approach. This is in contrast to the 1 to 3 m of scour that are predicted by equations for alluvial material. This may be due to the cohesive bed material that underlies a relatively thin layer of alluvium. The relatively deep water and small seasonal variation in water level makes a shallow scour hole less important as habitat.

Zones of deep run habitat presently exist across the nose and downstream of each ferry approach, and given that the configuration of the bridge approaches are similar to the ferry approaches, it is reasonable to expect that the future conditions will be approximately equivalent to existing conditions.

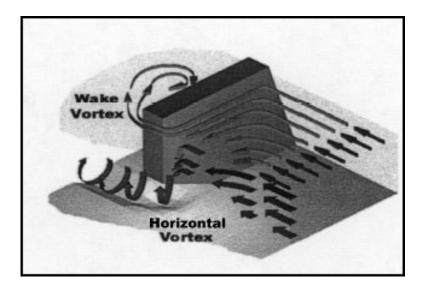
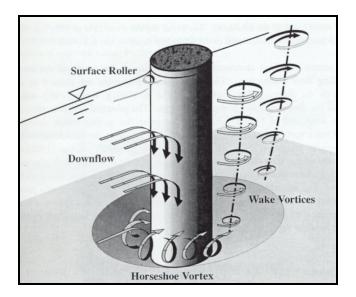



Figure 5.3 Schematic of typical flow configuration and scour hole location at bridge abutments (adapted from FHWA 2001).

The proposed bridge has eight instream piers. At each pier, the river flow will produce a horseshoe vortex, as shown in Figure 5.4. As for the abutments, the vortex action increases local velocities, and can remove bed material and create a scour hole which is deepest at the nose of the pier.

Figure 5.4 Schematic of typical flow configuration and scour hole location at bridge piers (adapted from Melville and Coleman 2000).

Again, in rivers with large seasonal fluctuations in water level, instream piers might form scour holes during flood events that have the potential to create/provide cover or overwintering habitat. The design pier scour depth for the bridge is 3.3 m in alluvium and 4.9 m in clay, though the bridge may be designed for a scour depth of 2 m, with monitoring and mitigation by rip rap placement if required (Trillium 2002). This is because scour in clay may occur slowly and is unlikely to occur due to a single flood event. To prevent scour adjacent to the footing an apron of blasted armour rock (300 mm diameter granite) will be placed; the apron will extend out 11 m (\pm) in all directions (Pier Design Clarification, 6 January 2004). As for abutments, the relatively deep water and small seasonal variation in water level makes a shallow scour hole less important as habitat.

The piers will marginally increase local flow velocities, but since they are generally located in deep, fast-flowing water, these increases are unlikely to have any significant effects on fish habitat.

5.4 Effects of Bridge Structures on Migrations and Movements

The construction and operation of a bridge has the potential to limit the migration or movements of fish in the river. During bridge construction, the river channel will be narrowed when cofferdams are placed around pier construction zones. However, fish passage will still be able to occur, as construction will only block off a small portion of the channel and considerable river velocity changes, that may impede fish, are not predicted (Section 5.3.3). The Deh Cho is too large a river to restrict flows to any great extent. There will still be an increase in boat/barge traffic during construction and noise associated with equipment. This activity may deter some fish from areas of the river where construction is occurring.

5.5 Discontinuing Ferry and Ice Road Operations

The following sections discuss issues related to existing ferry and ice road operations. The negative effects of these operations will cease or tend to be tempered greatly once the Deh Cho Bridge is in operation.

5.5.1 Present Ferry and Ice Road Impacts to Fish Habitat

Water Quality

A considerable amount of sand and gravel is used annually as part of maintaining the ferry landing areas at Ft. Providence. This material is regularly washed into the river and must be routinely replaced; discussed in detail below (Section 5.5.2). In addition, sand and gravel currently enter the river at the ice road crossing from traffic crossing the river and from maintenance of the crossing area. During the operation period for the bridge, the amount of sediment released annually to the river will likely be less than that released by the operation of the ferry/ice road infrastructure.

Recently, the GNWT, Department of Transportation commissioned an investigation on the effects of ferry operations on river water quality (GeoNorth 2003). Four ferry landing sites were monitored for TSS concentrations: Mackenzie River (at Tsiigehticchic and Inuvik), and Peel River [west bank (Yukon side) and McPherson]. The authors found that increases in suspended sediment concentration and turbidity between "at rest" (i.e., 5 min after ferry departure) and during ferry "departure" (i.e., propeller wash) was less than 15% and that natural variation in TSS and turbidity in the rivers overshadowed these results. They concluded that ferry landings and departures did not have a significant effect on turbidity levels in the river, and that water quality was not negatively altered.

In the present study, the TSS samples were collected in the vicinity of the south ferry causeway on 30 July 2003. One sample was collected immediately upstream of the causeway, whereas the second sample was collected approximately 10 m offshore (perpendicular) to the ferry docking spot and 30 seconds following ferry departure. TSS upstream of the causeway was 6 mg/L, whereas the propeller wash sample was 8 mg/L (Appendix A, Table A-6). These preliminary investigations indicate that present ferry operations at the location of the proposed Deh Cho Bridge negatively affect the water quality of the Mackenzie River, albeit at a minimum level.

Ferry operations are conducted during January and February, until ice road conditions can accommodate large, heavy trucks. During winter a backhoe is used to break ice and flows of the Mackenzie River often are very low, such that the ferry carries one truck at a time and periodically bottoms-out (field crew discussions with anonymous ferry operators). Ice-breaking activities and ferry bottom-out incidences undoubtedly disturb river bottom material, which negatively affects water quality through the introduction and re-settling of sediments.

The community has expressed concerns over the possibility of trucks going through the ice especially at the beginning and end of the season (Golder 2003). They feel that if a spill incident were to occur on the bridge, it might be easier to clean up than if it occurred on a ferry or on the ice road. The ferry has emergency spill response equipment and trained staff immediately available. However, until the equipment is employed, the material spilled would disperse in the river and could not be recovered. Spills on ice are easily cleaned up as long as the material does not enter moving water. Major spills on a bridge would present a clean-up challenge. However, the bridge design could incorporate features to facilitate spill containment and clean up.

Bridge installation would remove the possibility of a spill incident related to ferry and winter road operations. However, there would still be a possibility of contaminants entering the water, and the bridge would be subject to poor weather conditions. Provisions will be made to collect and treat contaminated run-off from the bridge deck to the extent possible; the approach will be outlined in a spill contingency plan which will be reviewed by the environmental consultants under contract to DCBC.

Fish Habitat / Populations

Sediment released from the existing ferry/ice road infrastructure may have an effect on fish habitat. Potential spawning and confirmed rearing habitat for northern pike has been identified immediately downstream of the ferry landings, particularly the south approach (Sections 4.3 and 5.1). However, the potential for a fisheries impact due to bridge construction would be of a similar scope. By avoiding sensitive time periods and following good construction techniques the potential to adversely affect fish is very small. The possibility for a fish mortality impact to occur during operations is smaller. The possibility of a spill during construction will be higher than

current conditions but will be similar during operations and will be traffic dependent. In all cases, the possibility of a spill occurring can be reduced by good planning and preparation.

In general, the large size of the ferry boat has the potential to directly affect fish, particularly in nearshore areas. Fish in the immediate vicinity of the ferry boat may be affected by one or more of the following:

- noises may deter some fish from utilizing habitats of the river where ferry operations are occurring;
- sudden noises (e.g., engine revving, dropping of vehicle ramp) cause fish to bolt for cover;
- direct contact of boats or propellers may be a source of mortality for certain fish species, such as minnow species and immature northern pike;
- boat movement can affect individual fish directly by disturbing normal activities such as spawning or feeding;
- increased turbidity from boats may interfere with sight based feeding or success of eggs or fish spawning; and,
- on a population level, boats may affect fish through habitat alteration caused by waves or propeller damage.

5.5.2 Impacts of Gravel Fill Placement

The existing ferry landings at the Ft. Providence crossing require the placement of approximately 1000 m^3 of silty gravel each year to build up the river bed at the two ferry landings. It is assumed that since this quantity of gravel is placed each year, the same quantity is transported downstream over the course of the year. The method for estimating annual sediment deposition follows:

- samples of silty gravel fill were collected from the north and south ferry stockpiles and a grain size analysis was undertaken;
- flow data and bathymetry were examined to characterize river depths and velocities in the area subject to deposition;
- a sediment transport calculation tool was used to calculate particle settling times. This was combined with flow depths and velocities to estimate particle settling distances; and,
- estimated widths of settling zones were combined with settling distances and gravel placement quantities to estimate annual sediment deposition depths.

Grain Size Analysis of Fill Material

One sample of silty gravel fill was collected from each of the north and south stockpiles, during the summer field sampling session of 2003. Material from the surface of each stockpile, that may

have been affected by wind and rain, was removed and samples were collected from the freshly exposed area. These samples were transported to the Golder materials laboratory and sieved to determine their particle size distribution.

The results of the analysis of the two samples are fairly consistent (Table 5.4; Appendix E, Figures E1 and E2). A mean of the two samples was calculated and used as input to the subsequent analyses.

Sieve Diameter (mm)	North Ferry Percent Passing	South Ferry Percent Passing	Mean Percent Passing
150	100.0	100.0	100.0
75.0	100.0	100.0	100.0
37.5	97.9	95.7	96.8
20.0	75.6	82.0	78.8
10.0	57.4	66.9	62.2
5.00	43.2	48.6	45.9
2.00	29.0	33.2	31.1
0.850	19.5	22.4	20.9
0.425	11.8	14.3	13.0
0.150	6.4	7.5	7.0
0.075	4.7	5.5	5.1

Table 5.4Grain size analyses of gravel fill material from the Highway #3 Ferry
operations on the Mackenzie River, 30 July 2003.

Flow Data and Bathymetry

Physical characteristics of the study reach of the Mackenzie river were described in Section 4.1 of the present report. Both of the ferry landings are located in the lee of the approach causeways. Based on sediment plume observations from the upstream confluence with the Kakisa River, it was assumed that sediment deposited in at the ferry landings and transported downstream would be deposited in the relatively shallow, slower-flowing zones along the banks of the Mackenzie River.

Bathymetry and extent of the bank zones was measured from the Government of Canada Navigation Chart 6453 (Mackenzie River Kilometre 58-90). The south left downstream bank zone is approximately 200 m wide, with a mean flow depth of 2.0 m, and the north right downstream bank zone has a mean flow depth of 1.5 m, and the depositional area is approximately 600 m wide. For the calculation of sediment deposition depths on the RDB, a 200 m wide bank zone was used to account for the influence of natural spurs that project into the river. Based on flow velocities measured during the fisheries field investigation and those calculated by Trillium (2002), a mean flow velocity in the bank zone was estimated to be 0.9 m/s.

It must be noted that values of flow depth, depositional zone width and flow velocity used in this analysis are approximate, and the results of the analysis should be treated only as coarsely representative of actual conditions.

Sediment Transport

The sediment deposition zone of influence is the estimated extent of settling particles downstream of the ferry landing. The exact nature of deposition depends on microhabitat, sediment particle sizes, flow velocity, water depth, and flow turbulence. The zone of influence was estimated by settling velocity calculations according to Rubey (1933). The zone of influence calculation includes an additional turbulence adjustment factor, which increases the downstream travel distance over that which would apply to quiescent conditions.

The results of the analysis show that the gravel and cobble components of the fill are expected to settle within 50 to 60 m of the ferry landing (Table 5.5). Medium to coarse sands would typically be deposited within 100 to 500 m of the ferry landing, and fine sands and silts could persist for several kilometres. Calculated differences between the left and right banks are due to different mean flow depths (1.5 m on the RDB and 2.0 m on the LDB).

Particle	Particle	Maximum Downstream Sedimentation Distance					
Description	Size Range	Left Bank Zone	Right Bank Zone				
Silt/Clay	< 0.02 mm	remains in suspension ¹	remains in suspension ¹				
Coarse Silt	0.02 – 0.06 mm	38,000 m	28,000 m				
Fine Sand	0.06 – 0.2 mm	4,200 m	3,200 m				
Medium Sand	0.2 – 0.6 mm	460 m	350 m				
Coarse Sand	0.6 – 2 mm	140 m	100 m				
Fine Gravel	2 – 6 mm	63 m	47 m				
Gravel	6 – 60 mm	36 m	27 m				
Cobble	> 60 mm	8 m	6 m				

Table 5.5Expected downstream sediment transport distances, Highway #3ferry operations on the Mackenzie River near Ft. Providence.

¹ Particles that remain in suspension will be dispersed and diffused in both the lateral and longitudal direction, but will eventually settle in local depositional areas.

Sediment Deposition

The mean annual sediment deposition depth with distance was estimated for each bank zone, based on the calculated sedimentation distances and the estimated width of the bank zone. These quantities were based on an estimate of 500 m^3 of fill placed per year per ferry landing, and are

based on loose gravel density estimates of 1.44 t/m^3 dry and 1.46 t/m^3 wet (Holtz and Kovacs 1981).

The results of the analysis indicate that the effects of sedimentation due to fill placement at the existing ferry landings are essentially limited to 500 m downstream, with deposition rates greater than 1 mm/a limited to 100-150 m downstream of the crossing (Table 5.6). The present analysis is coarse and subject to the stated assumptions, but is physically-based and incorporates project-specific material and river characteristics, and should thus be representative of actual conditions.

Distance	Derived Annual Sedin	nent Deposition Depth
Downstream of Ferry Landing	Left Bank Zone	Right Bank Zone
0 - 20 m	46 mm	61 mm
20 - 30 m	46 mm	45 mm
30 - 40 m	30 mm	14 mm
40 - 50 m	10 mm	11 mm
50 – 75 m	6.9 mm	4.2 mm
75 – 100 m	3.2 mm	4.2 mm
100 – 150 m	2.4 mm	0.7 mm
150 – 200 m	0.5 mm	0.6 mm
200 – 300 m	0.5 mm	0.6 mm
300 – 500 m	0.4 mm	0.2 mm
500 – 1000 m	<0.1 mm	<0.1 mm

Table 5.6Expected downstream sediment deposition distances, Highway #3ferry operations on the Mackenzie River.

5.6 Availability of Alternate Habitats in Vicinity of Bridge Crossing

A wide range of information was reviewed in the present study (bathymetry data, habitat mapping results, fisheries data, information obtained during community consultation process, etc.). Based on this information, it is apparent that nearshore habitat similar to that in the immediate vicinity of the proposed bridge occurs extensively along both the north and south shores, upstream and downstream of the site. Indeed, the present ferry causeways were constructed on natural peninsulas (Jivko Jivkov, Jivko Engineering, Yellowknife, NT, personal communication). Field surveys indicated that similar nearshore habitats extend approximately 6.0 km upstream and downstream of the proposed bridge site. These habitats include extensive backwater, riffle-run complexes, exposed and sheltered banks focused around natural peninsulas. Within this 12 km reach, there are 14 natural peninsulas on the north shore and 13 on the south shore.

5.7 Summary of Impacts / Mitigation Opportunities

Tables 5.7 to 5.11 summarize the major impacts due to construction and operation of the proposed Deh Cho bridge on aquatic resources; mitigation opportunities that may be available for implementation are also identified.

Table 5.7 Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Construction Phase.

Project Action	Type of Impact		Potential Effec	ts on Fish (N	on-Mitigated Ca	se)	Rationale/Comments	Mitigation Techniques/Opportunities
• • • •		Direction ¹			Significance ²		1	
1) Modification of North Approach	•	-	· •	•		•	·	·
a) Removal of outermost section of causeway (80 m) (i.e., reduced perpendicular extension into channel by 108.5 m (Attachment 8A)	Increased suspended sediment/deposition	N	L-M	S	M	M-H	Probable spawning (confirmed rearing use of habitat unit (BW-13) immediately downstream; sediment travel into and subsequent deposition in). BW-13 may be minimal (i.e., majority of sediment expected to enter main channel (i.e., bypass nearshore habitats). Potential impact on BW-13 on two occasions; removal expected to generate more sediment.	Avoidance of instream activity during northern pike spawning/ incubation/ early rearing period (May, June). Sediment monitoring with construction feedback objective.
b) Addition of blasted rock into channel on downstream perimeter of causeway for detour road; removal of same following completion of bridge construction.	Increased suspended sediment/deposition	N	M	S	M-H	M-H	Potential impact on BW-13 on two occasions; removal expected to generate more sediment.	Avoidance of May/ June period (northern pike spawning/ incubation/ early rearing). Feedback monitoring.
 c) Widening of the bridge approach; involving placement of clean blasted rock into the channel 	Increased suspended sediment/deposition	N	L	S	L	Н	Material added will have low sediment content; one time only event.	Avoidance of spring spawning/ incubation/ early rearing period for northern pike. Feedback monitoring.
2) Modification of South Approach	· · · · ·					 		
a) Linear extension of causeway by 30 m and widening of causeway. Involving placement of clean limestone into the channel. Total area of displacement: 5600 m ² .	Increased suspended sediment/deposition	N		S		Н	Probable spawning and confirmed rearing by northern pike in backwater habitat unit downstream (BW-38). This unit encompasses the confluence area of Providence Creek, which supports spawning run of northern pike and Arctic grayling. However, the rock material added will have low sediment content. The placement is a one time only event and the majority of the fines will likely settle out within 500 m of the construction site.	Avoidance of construction during spring spawning and early rearing period for northern pike and Arctic grayling (May to June).
b) Removal of 11,000 m ³ of granular backfill and 90 m ³ of structural timber from the ferry haul out area. Material to be removed from an area of 9500 m ² , situated primarily in backwater habitat unit BW-38.	Increased suspended sediment/deposition	N	M-H	S	M-H	Н	Removal of this volume of material will release a considerable volume of sediment, much of which is expected to accumulate in the nearshore zone. This area is potentially used for northern pike spawning; rearing has been confirmed. The confluence area of Providence Creek is situated approximately 600 m downstream ; this system supports a known spawning run of Arctic grayling and northern pike. Any disturbance that affects access or movement timing delays during the spring spawning period would be particularly significant.	Avoidance of construction during pre-spawning movement period for Arctic grayling and northern pike into Providence Creek and spawning/early rearing period for northern pike in downstream nearshore habitats (e.g., BW- 38). (i.e., May to June).
3) Installation of Instream Piers (8)	J	1		1	1			1
a) Cofferdams (sheet piling driven into riverbed) will be installed at each pier site. The sheet piling will be extracted after the footings are completed, using vibrating equipment.	Increased suspended sediment/deposition	N	N-L	S	N-L	Н	The amount of sediment released at each of the pier sites is anticipated to be very small, and will be rapidly entrained and diluted due to the large flow volume and high average velocity. It is expected that very little sediment generated at the pier construction sites will settle in important/critical habitats located in the nearshore zone. There may be a slightly higher risk of sediment generated at the two inner pier sites (i.e., 90 m off both the north and south approaches) depositing in nearshore habitats. Sediment will be generated on two occasions (i.e., during installation and removal).	Selection and use of equipment during installation and extraction that will minimize the amount of sediment generated and the duration of the sediment event. Consideration could be given to avoiding construction/extraction of the two outside piers during the spring spawning period (May to June). If construction at these sites is scheduled to occur during the critical spring period, feedback monitoring should be in place.
b) After the cofferdams are installed, the bed material will be augered and removed. Dewatering (pumping to river) will then be carried out; this water will contain significant amounts of suspended sediment.	Increased suspended sediment/deposition	N	N-L	S	N-L	Н	The method of disposal of excavated spoil and sediment-laden water will depend on the timing of construction. If in winter, the spoil will be disposed of in a nearby gravel pit and water will be pumped into a confined area on the ice. After freezing the frozen material will be removed and disposed of in a nearby gravel pit. In summer, the spoil will be loaded into a barge and disposed of in the designated gravel pit; the water will be pumped into the river. In either case, the intent will be to minimize sediment input into the river and maintain input at levels not considered to be harmful to aquatic life.	If the disposal of the excavated spoil material in areas adjacent to the river was considered to have higher environmental risk than returning it to the river (i.e., out of concern for birds or other wildlife) it may be possible to schedule a controlled release of the material into the river. A scheduled, controlled release would take into account the location, and timing of use, of important nearshore habits. It would also incorporate a feedback monitoring component (i.e., rate of release dependent upon results of strategic water sampling).

Continued

Table 5.7 Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Construction Phase (concluded).

Project Action	Type of Impact				on-Mitigated Ca		Rationale/Comments	Mitigation Techniques/Opportunities	
-		Direction ¹	Magnitude ²	Duration ³	Significance ²	Confidence ²		- · · · ·	
3) Installation of Instream Piers (8) (cont.									
c) The riverbed will be excavated to a depth of not less than 2.5 m below the natural level in order to construct the footings. Between 750 and 800 m ³ of material will be excavated at each pier site (i.e., piers 4 and 5 require 800 m ³ and remaining six piers require 750 m ³). Rock aprons (300 mm granite rip rap) will be placed around the perimeter of the footings (±11 m radius) to prevent scour (total volume placed: 4790 m ³).	Increased suspended sediment/deposition	N	N-L	S	N-L	Н	In winter, the excavated material will be stockpiled on the ice until frozen; it will then be scraped from the ice surface, and trucked to a nearby gravel pit for disposal. In summer, the material will be placed in a barge and then hauled to the gravel pit disposal site. In either case, the intent will be to minimize sediment input into the river (i.e., attempt to maintain at levels not considered harmful to aquatic life).	The benefits and associated adverse effects of placing the material in a land disposal site would have to be weighed against the same for a river material disposal (possible wildlife effects versus fisheries concerns). If it was considered to be most appropriate to return the material to the river, this could likely be accomplished with very little negative effects (i.e., through scheduled, controlled release). Given the discharge and velocities in the main channel it is anticipated that the material will be assimilated by the river within a short period of time.	
4) Placement of blasted rock in river.									
a) Blasted rock, with possible ammonia residue and uncertain regulated metal content, will be used in the construction of several of the bridge-related structures within the wetted channel. These include the North Approach detour road (6000 m ³), which will be removed following completion of the bridge, the South Approach extension and the widening of both approaches (22,000 m ³), and the protective aprons around the 8 instream piers (4790 m ³).	Altered water quality (ammonia, regulated metals)	Ν	N-L	S-L	N-L	M-H	The ammonia content of the blasted rock to be used at the site is unknown. Ammonia has a high chronic toxicity to aquatic organisms (e.g., fish and invertebrates). However, it is unlikely to be problematic in the current setting due to the large dilutional capacity at the site (high, sustained hand flows), generally high dissolved oxygen levels (which result in a rapid decline in ammonia levels), relatively cold water temperatures throughout the summer months and the presence neutral to basic pH (which reduce the toxicity). Ammonia toxicity is generally observed in southern latitudes and in situations where there is a constant input of ammonia into a low flow-through setting (e.g., drainage from rock dumps at mining facilities, releases from sewage treatment facilities). The proponent submitted three samples of limestone/bedrock from local quarries to determine geochemistry. It was determined that none of the regulated parameters (arsenic, cadmium, chromium, copper, lead, zinc) exceeded the applicable guidelines (EBA, Dec. 2003).	The proponent has developed a specific strategy to monitor ammonia levels at the site during and following the placement of blasted rock. Representative samples of blasted rock will be tested to determine ammonia residue content prior to placement in the channel. If significant ammonia residue is detected a water quality monitoring program will be put into place. Particular attention will be paid to tracking ammonia levels in the backwater habitats immediately adjacent to the north and south causeways (habitat units BW-9, BW-13, BW-34, BW-38). The monitoring plan is outlined in Appendix D. With respect to regulated metal content, it appears that limestone rip rap/fill material should not pose a concern to aquatic life.	
5) Placement of concrete in the channel	·			•			·	· · ·	
a) Cast in-place concrete flat footings will be installed inside the cofferdams at the 8 instream piers (approx. 3600 m ³ of concrete). Concrete pedestals will be constructed on top of the footings (approx. 2700 m ³ of concrete). During construction, it will likely be necessary to de-water the contained site. Water that has been in contact with fresh concrete (which is typically alkaline) may have exhibit elevated pH levels (relative to river background levels).	Altered water quality (pH)	N	N-L	S	N-L	Н	Water with elevated pH levels can be harmful to aquatic and terrestrial life. The contained water will be treated prior to returning to the river (e.g., efforts applied to neutralize the pH).	Prior to releasing the affected water, it will be tested and treated as necessary to balance the pH.	

 1 N = negative; P = positive 2 N = nil; L = low; M = medium; H = high 3 S = short-term; L = long-term

Table 5.8 Potential fisheries impacts to the footprint of the Proposed Deh Cho Bridge – Operational Phase

Project Action	Type of Impact		Potential Effect	ts on Fish (N	Non-Mitigated Ca	se)	Rationale/Comments	Mitigation Techniques/Opportunities
	. Jbe et impact	Direction ¹			Significance ²			
1) Modification of North Approach		•						
a) Shortening of causeway, resulting in increase of 4300 m ² of natural river channel.	Footprint	P	M	L	M-H	M-H	The removal of the ferry landing (including associated sheet-piling and concrete pad) will restore a portion of main channel habitat that was lost when the causeway was initially constructed. The deep-run habitat that was available along the outer perimeter of the causeway will be reformed off the tip of the new bridge abutment. However, the size of the habitat unit (DR-11) may be reduced slightly because the causeway will not extend as for into the main channel. The backwater habitat unit (BW-13) immediately downstream will be reduced in areas slightly (i.e., approx. 2% reduction, occurring on outer perimeter). Northern pike spawning potential and use not likely to be effected (i.e., spawning likely occurs along inside perimeter of habitat units along causeway perimeter (i.e., 33% reduction in area of EB-10 and 24% reduction in SB-12).	Ensure that the restored portion of channel is shaped and formed to a condition resembling the natural channel. The rip rap bank protection that will be employed on the outer perimeter of the abatement should be designed and placed to maximize its value as fish feeding habitat.
 b) Widening of the bridge approach; involving placement of clean blasted rock into the channel 	Increased footprint	N	L	L	L	Н	The widening will result in minor losses of backwater habitat in units BW-9 (upstream) and BW-13 (downstream).	No mitigation opportunities available (i.e., involves permanent loss of stream channel).
2) Modification of South Approach		-	-	· -	•		· ·	-
a) Lengthening of the causeway by approximately 60 m and widening of the causeway will result in the loss of 5600 m ² of riverine habitat. The majority of the loss of habitat will be at the expense of deep, main channel habitat, although a small portion of adjacent backwater habitat (BW-34 and BW-38) will be affected directly by the new footprint. Additional backwater habitat in both units will be formed as a result of the increased outward extension of the south approach. The lengthening of the approach will increase the availability of exposed (EB-35) and sheltered (SB-37) banks. The deep run habitat off the tip of the causeway will be reformed further offshore; the size of the habitat unit (DR-36) will increase slightly due to the increased penetration of the approach into the main channel.	Footprint	N	L	L	L	M-H	The overall effects of the lengthening and widening of the approach is expected to be negative, but of low magnitude and significance. The direct footprint losses will occur to main channel type habitat which is considered to be less important and sensitive to key fish species. These physical losses will be partially offset by the gain of higher quality backwater and exposed/sheltered bank habitat.	Ensure that extended section (sides and outside portion of abutment) is designed and built with fisheries objectives in mind.
b) Removal of the ferry landing and haul-out area (includes associated concrete pad and timber). This action will result in the gain of 9500 m ² of backwater habitat downstream of the south causeway. This represents a 16% increase in the area of habitat unit BW-38, and a return to habitat conditions that prevailed before the ferry service was initiated.	Footprint	P	M-H	L	M-H	M-H	The increased availability of nearshore, backwater habitat will benefit northern pike (spawning, rearing, adult feeding) additional adult feeding habitat for other key fish species (such as lake whitefish and walleye) will also be available.	The morphometry of the restored area should be adjusted to resemble the conditions in the adjacent backwater.
The bed material contained in the ferry haul out area may harbor harmful concentrations of hydrocarbons or other contaminants (e.g., creosote).	Water Quality	N	М	S	M-H	L	The magnitude and severity of this concern will be investigated by the NT government, the current operator of the facility.	The NT government will carry out rehabilitation of the site as required.
3) Installation of Instream Bridge Piers	Contariat	N	1.				It is autromaly difficult to appage the use of main channel hebitat in large	No mitigation apparturities or
The superstructure of the bridge will be supported on eight piers located in the active channel. The footings for the piers will cover a surface area of 630 m^2 . The nearshore piers will be placed 90 m off the north and south approaches. Thereafter, they will be placed at 112.5 m intervals, with the exception of the main span which will feature a 190 m pier spacing (navigation channel for large tug-barge configurations). The protective rip rap aprons will alter an additional 5800 m ² of main channel habitat.	Footprint	N			N-L		It is extremely difficult to assess the use of main channel habitat in large rivers (i.e., due to deep water and high velocities). However, based on previous experience and fish distribution data for nearshore habitats in the area, we assume that the major use of the main channel is for fish migration and movements (upstream/downstream or bank to bank). As such, the footprint of the piers will have no significant adverse impact on spawning, rearing, adult feeding or overwintering for the range of fish species inhabiting the river in the vicinity of the proposed bridge. The instream piers and associated rip rap aprons may provide some useable adult feeding/holding habitat for fish (e.g., walleye, lake whitefish, burbot, etc.). However, the associated velocities and turbulence may limit their usefulness. These habitats are unlikely to be suitable for overwintering due to the relatively high velocities in place.	No mitigation opportunities or requirements. Any loss of habitat due to footprint or habitat alteration due to the rip rap aprons will be adequately replaced by new holding/feeding habitat created.

¹N = negative; P = positive ²N = nil; L = low; M = medium; H = high ³S = short-term; L = long-term

Table 5.9 Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – De-commissioning of Ferry and Ice Crossing.

Project Action	Type of Impact		Potential Effect	ts on Fish (N	Ion-Mitigated Ca	ise)	Rationale/Comments	Mitigation Techniques/Opportunities
-		Direction ¹	Magnitude ²	Duration ³	Significance ²	Confidence ²		
1) De-commissioning of Ferry/Ice Crossi	ng							
a) Discontinued placement of gravel fill (with significant fines content) on an annual basis, to upgrade and maintain the north and south ferry landings.	Decreased suspended sediment/deposition	P	L	L	L-M	M-H	Approximately 1000 m ³ of silty gravel material is placed in the channel at the ferry landings each year (500 m ³ per approach assumed). The finer grained materials (such as silt/clay, coarse silt and fine sand) are expected to move considerable distance downstream (i.e., in excess of 4.2 km on the south bank and 3.2 km on the north bank). However, in terms of sediment deposition the majority of the sediment is predicted to deposit within a short distance (100 to 150 m) of the ferry landings. The habitats most affected by the entrained and deposited sediment are the backwaters located immediately downstream of the causeways (BW-13 on the north and BW-38 on the south). These habitats are potentially important for spawning by northern pike, and are known to be use for rearing and feeding by this species. A wide range of other species (including walleye, lake whitefish, and several types of minnows) are known to inhabit these areas on a seasonal basis.	None required; discontinuing the input of silty gravel on an annual basis is considered to be beneficial to the aquatic environment in the area
b) Discontinuing the use of the Ice Crossing, resulting in: reduced contamination of ice with silt and oil imported by traveling vehicles, and ending of risks associated with the accidental sinking of vehicles and attendant risks for a major fuel spill.	Altered water quality	P	L-H	S	L-H		The type and extent of input of sediment and petroleum products at the lce Crossing is unknown. However, it is assumed that the amounts added are relatively small. While the likelihood of a major fuel-spill occurring as the result of a vehicle capsized at the crossing is difficult to assess, the potential for serious environmental damage is extremely high. The section of river downstream of the lce Crossing, on both banks, is characterized by high habitat diversity and supports a complex fish species assemblage. Particularly susceptible are the numerous protected, backwater habitats in the nearshore zone which are heavily used by fish and for fishing by Ft. Providence residents.	None required; discontinuing the use of the Ice Crossing and eliminating the risk of a major fuel- spill in the future is considered to be a major benefit of the project.

 1 N = negative; P = positive 2 N = nil; L = low; M = medium; H = high 3 S = short-term; L = long-term

Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Availability of Near-shore Habitats. Table 5.10

Project Action	Type of Impact		Potential Effec	ts on Fish (N	on-Mitigated Ca	se)	Rationale/Comments	Mitigation Techniques/Opportunities
-		Direction ¹	Magnitude ²	Duration ³	Significance ²	Confidence ²]	
1) Availability of Alternate Habitats								
a) Construction of the proposed Deh Cho Bridge will modify the type and availability of nearshore habitat on a localized basis. This will be reflected by site-specific gains and losses, but the overall integrity and make-up of the site will remain largely unchanged. The impact of the bridge can also be assessed by investigating the availability of habitats of similar type and quality upstream and downstream of the bridge site.	Effect on nearshore habitat availability in the reach	P	M-H	L	M-H	M-H	High quality nearshore habitats focused around peninsula-like landforms that extend into the river channel (comprised of riffle/run complexes of the tips of the peninsulas and extensive backwaters in the protected lee of the peninsulas) are a common, yet highly productive feature of the reach surrounding the proposed bridge. Within the section 6 km upstream and 6 km downstream of the bridge (12 km in total) there are a total of 27 habitat complexes (14 on the north bank and 13 on the south bank). Apart from the differences that exist between the north and south habitats (peninsulas longer and backwaters more extensive on the north side and turbidity somewhat higher on the south side due o the influence of the Kakisa River), there appears to be little difference between the individual habitat units. The backwater habitats formed behind the causeways are somewhat more extensive due to the greater length of the extension into the main channel. However, this aspect will remain relatively unchanged.	None required; the original causeways were built on existing peninsulas. Overall, the changes in the availability nearshore habitat will serve to restore the conditions that existed prior to the construction of the ferry operation.

 1 N = negative; P = positive 2 N = nil; L = low; M = medium; H = high 3 S = short-term; L = long-term

Table 5.11 Potential fisheries impacts on the Mackenzie River due to the proposed Deh Cho Bridge – Fish Movements/Migrations.

Project Action	Type of Impact		Potential Effect	ts on Fish (N	Ion-Mitigated Ca	se)	Rationale/Comments	Mitigation Techniques/Opportunities	
	Direction ¹ Magnitude ² Duration ³		Significance ²	Confidence ²					
Causeway Modifications/Instream Pier	rs								
 a) Instream construction activities will result in short term increases in suspended sediment levels. 	Increased suspended sediment	N	L	S	L	M-H	Fish migrating upstream or downstream in the Mackenzie River may encounter increased suspended sediment. Elevated levels are expected to be short term in duration and fish will have the opportunity to avoid the sediment plume due to the size of the river.	Avoidance of major instream construction during active movement periods for the key fish species this would include late April/May for spring spawners and mid Sept/October for fall spawner This would apply mainly to work along the perimeter of the channel. An alternative would be carry out feedback monitoring during active movement periods.	
 b) Changes to the extension of the approaches and placement of 8 instream piers will alter the present situation with respect to migrating fish. 	Movement deflection/delays	N/P	N-L	L	N-L	Н	Due to the size and complexity of the channel, it is unlikely that migrations or movements will be significantly affected (negatively or positively). Protected areas behind the bridge piers may provide some temporary holding habitat. of the channel	None required or available.	

 1 N = negative; P = positive 2 N = nil; L = low; M = medium; H = high 3 S = short-term; L = long-term

6.0 "NO NET LOSS" ACCOUNTING AND STRATEGY

The construction phase of the proposed Deh Cho Bridge will result in the disturbance and alteration of aquatic habitat, particularly in nearshore habitats located in close proximity to the construction activity (Table. 5.7). With effective scheduling instream (e.g., avoidance of major instream activity during the critical spring spawning period) and mitigation techniques (e.g., feedback monitoring to maintain satisfactory water quality) it is anticipated that these effects will be of short term duration (i.e., hours to days in length), of low magnitude and significance. However, because of the footprint of the bridge, and the permanent loss or alteration of habitat associated with the development, the development will be required to meet the requirements of DFO's NNL policy. Strategically, the "no net loss" strategy employed by the Deh Cho Bridge Corporation should identify and account for the beneficial and adverse effects associated with the physical footprint and the related operational aspects which are more difficult to quantify (benefits of reduced risk of fuel spill at the present ice crossing).

6.1 Footprint

The proposed Deh Cho Bridge will result in a net gain of 5970 m² of aquatic habitat (Table 6.1). This overall gain will be accomplished largely through the shortening of the causeway on the North Approach, and the removal of the ferry haul-out area immediately downstream of the South Approach. Other project actions (lengthening of the south causeway, widening of the north and south causeways, installation of instream piers) will remove aquatic habitat. However, these losses are considerably smaller than the associated gains. The net gain of habitat (5970 m²) would be achieved through contributions on both approaches (north side: increased by 2700 m², and south side: increased by 3900 m²). The footprint of the eight instream piers will result in a combined loss of 630 m² of aquatic habitat. The protective rip rap aprons located around the instream piers, will alter an additional 5800 m² of main channel habitat. As such, this area was not included in the "no net loss" calculations.

Although the availability of aquatic habitat would increase following bridge construction, a redistribution of habitat between nearshore and main channel types would occur (Table 6.2). Nearshore habitats adjacent to the north approach (two backwaters; one exposed bank, one sheltered bank, and one deep run) would be reduced by 14 500 m² due to the hydraulic changes associated with the reduced penetration of the causeway into the main channel. Of this total, 6700 m^2 will be a loss of backwater habitat, which is considered to be of higher value than other habitat types. A portion of the 14 500 m² (i.e., 12 900 m²) of habitat would, in effect, be transferred to the main channel habitat type rather than being lost to the system. Main channel habitat is considered to be less important in terms of providing spawning, rearing and feeding habitat, although it may be important for other life-requisite activities (movements,

overwintering). The habitat alteration at the north approach can be viewed as a partial return to conditions that existed prior to development of the north causeway.

In contrast to the situation that would develop at the north approach, nearshore habitats adjacent to the south approach will experience a substantial gain (Table 6.2). This gain (16 400 m²) would be due primarily to the removal of the ferry haul out area and the extension of the causeway. The reclaimed area would be applied to the backwater habitat unit immediately downstream of the causeway. The total increase in backwater habitat associated with the bridge modifications around the south approach would be 15 200 m².

The net result of the habitat modifications at the proposed bridge crossing, in terms of backwater habitat would be a gain of 8500 m² (i.e., 15 200 m² gain at south approach and 6700 m² loss at north approach) (Table 6.2).

Table 6.1Summary of aquatic habitat gains and losses at the site of the
proposed Deh Cho Bridge¹.

Location	Gains (m²)	Losses (m²)	Net Change (m²)
North Approach	4300 ²	-1600 ³	+2700
South Approach	9500 ⁴	-5600 ⁵	+3900
Instream Piers	NA	-630 ⁶	-630
Combined	13800	-7830	+5970

¹ Gains and losses irrespective of habitat type (i.e., backwaters, riffle-run complexes, main channel, sheltered bank, exposed bank).

²Gain due to removal of outer end of causeway.

 3 Loss due to widening of causeway (800 m^2 loss to BW-9 and 800 m^2 to BW-13)

⁴ Gain due to removal of ferry haul out area.

⁵ Loss due to extension and widening of causeway.

 6 Loss due to footprint of instream piers (2 x 90 m^{2} and 6 x 75 m^{2}).

The bridge development would result in a net gain of 5970 m² of habitat overall (i.e., irrespective of habitat type) (Table 6.1). As such, the "no net loss of productive fish habitat" objective appears to have been met, when evaluated on the basis of square meters of habitat lost and gained.

6.2 Operational Habitat Gains (Non-Footprint)

Proceeding with the proposed Deh Cho Bridge would result in a number of benefits apart from the footprint gains. These benefits, which are not really quantifiable, but appear to be legitimate, include the following:

1) Decommissioning of the current ferry operation will result in discontinuing the practice of placing approximately 1000 m^3 of silt-laden gravel annually in the Mackenzie River. Much of

this sediment is likely being deposited within the backwater habitats immediately downstream of the north and south approaches.

2) Decommissioning the Ice Crossing will result in reduced contamination of the ice with silt and oil deposited by traveling vehicles, although the extent of this problem is unknown. More importantly, perhaps is the reduced risk of a major fuel spill at the crossing that will result from the construction of a bridge.

			Total	Nearshore H	labitat (n	n²)			Backwater Habitat (m ²)					
				Net Habitat Transfer ¹								Net Habitat Transfer ¹		
Location	Pre-Con.	Post-Con.	Net (m ²)	Permanent Loss (m ²)	To MC Habitat (m ²)	To EB Habitat (m ²)	To SB Habitat (m ²)	To BW Habitat (m ²)	Pre-Con.	Post-Con.	Net (m ²)	Permanent Loss (m²)	To MC Habitat (m ²)	To BW Habitat (m ²)
North Approach	347100	332600	-14500	1600	12900	-	-	-	311000	304300	-6700	1600	5100	-
South Approach	120500	136900	16400	-	-	400	800	15200	115200	130400	15200	-	-	15200
Combined	467600	469500	1900	1600	1600				426200	434700	8500			8500
Nearshore														

Table 6.2 Pre and post-construction habitat distribution according to habitat type, proposed Deh Cho Bridge.

¹MC = main channel; BW = backwater; EB = exposed bank; SB = sheltered bank. Areas calculated from geo-referenced maps and air photographs.

7.0 COMPENSATION REQUIREMENTS / OPTIONS

Based on the fisheries assessment data currently available, it appears that the "no net loss of productive fish habitat" requirements will be met by the project. This assumes that an effective mitigation strategy is employed during the construction phase (strategic scheduling, feedback monitoring, etc.) and that the footprint of the project develops as outlined. However, if the regulatory agencies require additional compensation we would recommend the following:

1) Because of the large size and flow characteristics of the Mackenzie River (which might make it very difficult and costly to achieve a lasting and meaningful habitat gain), and the already high habitat diversity in the area, consideration should be given to directing habitat improvement efforts at Providence Creek. Prior to proceeding with this initiative it would be necessary to seek the approval of the community of Ft. Providence. The stream, which is located immediately downstream of the south bridge approach, is known to have supported an Arctic grayling (and northern pike) spawning run in previous years. Upstream spawning runs, numbering approximately 1000 fish in 1966 (Bishop 1967) and between 601 and 805 in 1979 (Falk et. al., 1982), were recorded near the confluence during May. Although the stream has been protected by special regulations for many years, and there are reports that Arctic grayling continue to use the system for spawning, there are indications that the size of the spawning population has declined. During the present study, we investigated and photographed the lower reach of Providence Creek and determined that riffle/run habitat suitable for spawning and rearing was largely absent, having been flooded out by numerous beaver dams. The stream should be investigated during the spring to confirm the physical availability of suitable spawning habitat, to assess the accessibility of the stream to upstream migrants (i.e., due to numerous beaver dams), and to determine the current status of the spawning population. Depending on the results of this site visit, consideration could be given to carrying out a habitat rehabilitation project (selective beaver dam removal, spawning area development, etc.). A project of this nature close to the community would be advantageous from a cost-benefit point of view and would favor inclusion of Ft. Providence residents in the project (during the initial phases and for future follow-up).

2) If a project on Providence Creek is not considered feasible, or doesn't meet the approval of the community, an option would be to approach the regulatory agencies to identify a small stream/river in the area that would benefit from a targeted habitat improvement/rehabilitation project (bank stabilization, spawning area development, improved fish passage at culvert crossing, etc.).

8.0 CLOSURE

This report was prepared by Golder Associates Ltd. (Golder) for Jivko Engineering. The material in it reflects Golder's best judgment in light of information available to it at the time of preparation. Any use which a third party makes of this report or any reliance on or decisions to be made based on it, are the responsibility of such third party. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or action based on this report.

We trust the information contained in this report is sufficient for your present needs. Should you have any questions regarding the project, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Author:

Mark Dunnigan, M.Sc., P.Biol.

Jim Campbell, B.Sc.

Author:

Author:

Author/Reviewer:

Nathan Schmidt, Ph.D., P.Eng.

Jim O'Neil, B.Sc., P.Biol.

9.0 LITERATURE CITED

- Bishop, F.G. 1971. Observations on spawning habits and fecundity of the Arctic grayling. Prog Fish-Cult. 33(1): 12-19.
- Bond, W.A. and R.N. Erickson. 1989. Summer studies of the nearshore fish community at Phillips Bay, Beaufort Sea coast, Yukon. Canadian Technical Report of Fisheries and Aquatic Science 1676: vi + 102 p.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian water quality guidelines. Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Ministers of the Environment, Inland Water Directorate, Ottawa, Ontario. Includes updates through to 2002.
- FHWA (Federal Highway Administration). 2001. Evaluating Scour at Bridges, Fourth Edition. Hydraulic Engineering Circular No. 18 (HEC-18), Publication No. FHWA NHI 01-001, May 2001.
- Falk, M.R., and L.W. Dahlke. 1975. Creel and biological data from streams along the south shore of Great Slave Lake, 1971 1974. Data Report Series No. CEN/D-75-8: 87 p.
- Falk, M.R., M.M. Roberge, D.V. Gillman, and G. Low. 1982. The Arctic grayling, Thymallus arcticus (Pallas), in Providence Creek, Northwest Territories, 1976-79. Can. MS Rep. Fish. Aquat. Sci. 1665: vi + 27 p.
- GeoNorth. 2003. Aquatic effects study for the ferrry crossings near Tsiigehtchic and Ft. McPherson, NT. 2002-2003 Final Report. A project by GeoNorth-Ross-AMEC, prepared for the Department of Transportation, Government of the Northwest Territories. 119 p. + 6 app.
- Golder Associates Ltd. 2002. Fisheries assessment of the proposed marine docking facility at Kugluktuk, Nunavut 2002. Prepared for the Department of Public Works and Services, and the Department of Community Government Transportation, Cambridge Bay, Nunavut. Golder Report No. 022-7022. 73 p. + 5 app.
- Golder Associates Ltd. 2003. Environmental scoping for the Deh Cho Bridge crossing at Ft. Providence. Prepared for Andrew Gamble and Associates, Yellowknife, Northwest Territories. Golder Report No. 012-2319. 53 p. + 1 app.

- Holtz, R.D. and W.D. Kovacs. 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, Englewood Cliffs, New Jersey. 733 p.
- Hynes, H.B.N. 1950. The food of freshwater sticklebacks (*Gasterosteus aculeatus* and *Pygosteus pungitius*) with a review of methods used in studies of the food of fishes. Journal of Animal Ecology 19(1): 36-58.
- McPail, J.D. and C.C. Lindsay. 1970. Freshwater fishes of northwestern Canada and Alaska. Fish. Res. Board of Canada. 173:381 p.
- Melville, B.W. and S.E. Coleman. 2000. Bridge Scour. Water Resources Publications LLC, Highlands Ranch, Colorado. 550 p.
- RRCS (Renewable Resources Consulting Services Ltd.). 1978. Environmental review and assessment proposed Mackenzie River dredging project, Volume 2. Prepared for Public Works Canada and Department of Transportation. 838 p.
- RL&L Environmental Services Ltd. 1993. Izok Project Aquatic Studies, 1993. Prepared for Metall Mining Corporation. RL&L Report No. 371F: 227 p. + 8 app.
- Roberge, M.M., G. Low, and C.J. Read. 1985. Data from an experimental gill-netting program on Great Slave Lake, Northwest Territories, 1980-81. Canadian Data Report of Fisheries and Aquatic Science 537: vii + 156 p.
- Roberge, M.M., G. Low, and C.J. Read. 1986. An assessment of the commercial fishery and population structure of walleye in Kakisa Lake, Northwest Territories, 1977-1985. Canadian Technical Report of Fisheries and Aquatic Science 1435: v + 59 p.
- Rubey, W.W. 1933. Settling Velocities of Gravel, Sand and Silt Particles. American Journal of Science 25(148): 325-338.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Board Can., Bull. 184: 966 p.
- Thompson, R.B. 1959. Food of squawfish, *Ptychocheilus oregonensis* (Richardson) of the Columbia River. U.S. Department of the Interior, Fish and Wildlife Services Fisheries Bulletin 158(60): 43-58.

- Trillium (Trillium Engineering and Hydrographics Inc.). 2002. Updated hydrotechnical information for Mackenzie River Bridge at Ft. Providence. Prepared for JIVKO Engineering Ltd., 25 November 2002. 33 p.
- U.S. Environmental Protection Agency (USEPA). 1998. Test methods for evaluating solid wastes physical/chemical methods 3rd edition. SW-846 On-Line. Greater than 200 documents.
- Water Environment Federation (WEF). 1998. Standard methods for the examination of water and wastewater – 20th edition. A joint publication of the Water Environment Federation, the American Water Works Association, and the American Public Health Association. Greater than 1000 p.

PHOTOGRAPHIC PLATES

Plate 1 30 July 2003. Exposed bank (EB-10) and backwater (BW-9) habitat, upstream of the north causeway (Section 4, Figure 4.2).

Plate 3 30 July 2003. View of main channel and steel plate armouring on nose of north causeway.

Plate 2 30 July 2003. Sheltered bank (SB-12) and backwater (BW-13) habitat downstream, of the north causeway.

Plate 4 *30 July 2003.* View of backwater (BW-13) habitat and ferry docking area downstream of the north causeway.

Plate 5 *1 August 2003*. View of the south causeway from ferry. Note: amour plating on causeway nose and ferry haul-out area on right.

Plate 7 30 July 2003. View of ferry haul-out area and stockpile material used for maintaining ferry docking approach.

Plate 6 *30 July 2003*. Backwater (BW-34) and riffle-run (RR-33, see arrow) habitat on the upstream side of the south causeway.

Plate 8 *30 July 2003*. View of ferry docking area and backwater (BW-38) habitat on the downstream side of the south causeway.

Plate 9 19 September 2003. Adult northern pike captured in the fyke net. This specimen was 928 mm in fork length and weighed 5.48 kg.

Plate 11 18 September 2003. Children from Fort Providence departing for an outdoor adventure on the Mackenzie River.

Plate 10 19 September 2003. Louie Lacorne holding an adult burbot (loche) captured in the fyke net (fork length = 844 mm, weight = 3.08 kg).

Plate 12 30 July 2003. Checking gill net set in large backwater (BW-9) upstream of the north causeway.

Plate 13 21 September 2003. View of extensive backwater (BW-24) habitat downstream of the north causeway (Section 4, Figure 4.2).

Plate 15 21 September 2003. Downstream section of backwater (BW-15), approximately 1.2 km west of the north causeway.

Plate 14 21 September 2003. Backwater area popular for gill netting by locals, approximately four kilometres upstream of ferry crossing.

Plate 16 30 July 2003. Upstream view of Providence Creek from bridge, note the large beaver dam (~2.0 m high) in center of photo.

Plate 17 20 September 2003. Edwin Sabourin beach seining in backwater habitat at the south ice road causeways.

Plate 19 19 September 2003. Fyke net set in backwater (BW-30) habitat, approximately one kilometre upstream of south ferry causeway.

Plate 18 *1 August 2003*. North ice road causeways (downstream view), about 7 km upstream of the ferry crossing. Note children swimming.

Plate 20 20 September 2003. View of riffle-run (RR-17) habitat approximately 1.4 km downstream of the north causeway.

APPENDIX A

WATER AND SEDIMENT

Table A-1

Enviro-Test Chemical Analysis Report

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-1 SITE NE								
Sample Date: 18-SEP-03 14:20								
Matrix: WATER								
BTEX, F1 (C6-C10) and F2 (>C10-C16)								
F2 (>C10-C16)	<0.05		0.05	mg/L	25-SEP-03	26-SEP-03	AAT	R145752
BTEX and F1 (C6-C10)			0.00	<u>9</u> / _			,	
Benzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
Toluene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
EthylBenzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
Xylenes	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
F1(C6-C10)	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
F1-BTEX	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
Extractable Metals								
Extractable Trace Metals (Low Level)								
Silver (Ag)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Aluminum (Al)	0.16		0.01	mg/L		23-SEP-03	JY	R145050
Arsenic (As)	<0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Boron (B)	0.013		0.002	mg/L		23-SEP-03	JY	R145050
Barium (Ba)	0.0463		0.0001	mg/L		23-SEP-03	JY	R145050
Beryllium (Be)	<0.0005		0.0005	mg/L		23-SEP-03	JY	R145050
Bismuth (Bi)	0.00018		0.00005	mg/L		23-SEP-03	JY	R145050
Cadmium (Cd)	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Cobalt (Co) Chromium (Cr)	0.0003		0.0001	mg/L		23-SEP-03	JY	R145050
Copper (Cu)	0.0015		0.0004	mg/L		23-SEP-03	JY	R145050
Molybdenum (Mo)	0.0017		0.0006	mg/L		23-SEP-03	JY	R145050
Nickel (Ni)	0.0008		0.0001 0.0001	mg/L		23-SEP-03 23-SEP-03	JY JY	R145050 R145050
Lead (Pb)	0.0013		0.0001	mg/L mg/L		23-SEP-03 23-SEP-03	JY	R145050
Antimony (Sb)	0.0004		0.0001	mg/L		23-SEP-03	JY	R145050
Selenium (Se)	0.0008		0.0004	mg/L		23-SEP-03	JY	R145050
Tin (Sn)	<0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Strontium (Sr)	0.150		0.0001	mg/L		23-SEP-03	JY	R145050
Titanium (Ti)	0.0047		0.0003	mg/L		23-SEP-03	JY	R145050
Thallium (TI)	0.00014		0.00005	mg/L		23-SEP-03	JY	R145050
Uranium (U)	0.0004		0.0001	mg/L		23-SEP-03	JY	R145050
Vanadium (V)	0.0008		0.0001	mg/L		23-SEP-03	JY	R145050
Zinc (Zn)	0.010		0.002	mg/L		23-SEP-03	JY	R145050
Extractable Major Metals				0				
Calcium (Ca)	30.3		0.5	mg/L		24-SEP-03	HAS	R145296
Potassium (K)	1.1		0.1	mg/L		24-SEP-03	HAS	R145296
Magnesium (Mg)	6.68		0.01	mg/L		24-SEP-03	HAS	R145296
Sodium (Na)	8.0		0.5	mg/L		24-SEP-03	HAS	R145296
Iron (Fe)	0.379		0.005	mg/L		24-SEP-03	HAS	R145296
Manganese (Mn)	0.018		0.001	mg/L		24-SEP-03	HAS	R145296
Mercury (Hg)-Extractable	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Silicon (Si)-Extractable	1.6		0.1	mg/L		24-SEP-03	HAS	R145296
Cyanide, Total	<0.002		0.002	mg/L		24-SEP-03	SEN	R145625
Phosphorus, Total	0.04		0.02	mg/L		24-SEP-03	JTV	R145154
Ammonia-N	<0.05		0.05	mg/L		23-SEP-03	TL	R144913
Oil and Grease	<1		1	mg/L		25-SEP-03	ZOW	R145358
Phenols (4AAP)	0.011		0.001	mg/L		26-SEP-03	STW	R145583
Total Kjeldahl Nitrogen				-		20-SEP-03 24-SEP-03		
Total Organic Carbon	<0.2		0.2	mg/L			TL	R145102
I DIALUTOADIC LAIDOD	4	1	1	mg/L	1	26-SEP-03	STW	R145696

Sample Detail	s/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-1	SITE NE								
Sample Date:									
Matrix:	WATER								
CCME F	PAHs								
	Naphthalene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Quinoline	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Acenaphthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Fluorene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Phenanthrene	<0.00001	RAMB	0.00001	mg/L	23-SEP-03		FWC	R144969
	Anthracene	<0.00001		0.00001	mg/L	23-SEP-03 23-SEP-03		FWC	R144969
	Acridine Fluoranthene	< 0.00001		0.00001	mg/L	23-SEP-03 23-SEP-03		FWC	R144969
	Pyrene	<0.00001 <0.00001		0.00001	mg/L mg/L	23-SEP-03		FWC FWC	R144969 R144969
	Benzo(a)anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Chrysene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(b)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(k)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(a)pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Indeno(1,2,3-cd)pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Dibenzo(a,h)anthracene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	Nitrobenzene d5	72		50-112	%	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	2-Fluorobiphenyl	68		53-98	%	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	p-Terphenyl d14	91		70-118	%	23-SEP-03	24-SEP-03	FWC	R144969
Routine	Water Analysis								
	Chloride (CI)	9		1	mg/L		24-SEP-03	SHC	R145187
	Nitrate+Nitrite-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrate-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrite-N	<0.05		0.05	mg/L		23-SEP-03	JTV	R144881
pH, Cor	nductivity and Total Alkalinity								
	рН	8.2		0.1	pН		23-SEP-03	PTT	R144945
	Conductivity (EC)	236		0.2	uS/cm		23-SEP-03	PTT	R144945
	Bicarbonate (HCO3)	103		5	mg/L		23-SEP-03	PTT	R144945
	Carbonate (CO3)	<5		5	mg/L		23-SEP-03	PTT	R144945
	Hydroxide (OH)	<5		5	mg/L		23-SEP-03	PTT	R144945
Ism Dale	Alkalinity, Total (as CaCO3) ance Calculation	84		5	mg/L		23-SEP-03	PTT	R144945
ION Bala	Ion Balance	100			%		25-SEP-03		
	TDS (Calculated)	129			mg/L		25-SEP-03		
	Hardness (as CaCO3)	103			mg/L		25-SEP-03		
ICP met	als and SO4 for routine water				5				
	Calcium (Ca)	29.9		0.5	mg/L		23-SEP-03	DES	R144764
	Potassium (K)	1.2		0.1	mg/L		23-SEP-03	DES	R144764
	Magnesium (Mg)	6.8		0.1	mg/L		23-SEP-03	DES	R144764
	Sodium (Na)	8		1	mg/L		23-SEP-03	DES	R144764
	Sulfate (SO4)	23.4		0.5	mg/L		23-SEP-03	DES	R144764
L131493-2	SITE NW								
Sample Date:	18-SEP-03 15:00								
Matrix:	WATER								
	(C6-C10) and F2 (>C10-C16)								
	F2 (>C10-C16)	<0.05		0.05	mg/L	25-SEP-03	26-SEP-03	AAT	R145752
BTEX a	nd F1 (C6-C10)				-				
	Benzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Toluene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-2 SITE NW								
Sample Date: 18-SEP-03 15:00								
Matrix: WATER								
BTEX, F1 (C6-C10) and F2 (>C10-C16)								
BTEX, 11 (00-010) and 12 (2010-010) BTEX and F1 (C6-C10)								
EthylBenzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
Xylenes	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
F1(C6-C10)	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
F1-BTEX	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
Extractable Metals	\$0.1		0.1	iiig/E				
Extractable Trace Metals (Low Level)								
Silver (Ag)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Aluminum (Al)	0.10		0.01	mg/L		23-SEP-03	JY	R145050
Arsenic (As)	<0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Boron (B)	0.012		0.002	mg/L		23-SEP-03	JY	R145050
Barium (Ba)	0.0444		0.0001	mg/L		23-SEP-03	JY	R145050
Beryllium (Be)	<0.0005		0.0005	mg/L		23-SEP-03	JY	R145050
Bismuth (Bi)	0.00020		0.00005	mg/L		23-SEP-03	JY	R145050
Cadmium (Cd)	0.0003		0.0001	mg/L		23-SEP-03	JY	R145050
Cobalt (Co)	0.0002		0.0001	mg/L		23-SEP-03	JY	R145050
Chromium (Cr)	0.0011		0.0004	mg/L		23-SEP-03	JY	R145050
Copper (Cu)	0.0017		0.0004	mg/L		23-SEP-03	JY	R145050
Molybdenum (Mo)	0.0008		0.0001	mg/L		23-SEP-03	JY	R145050
Nickel (Ni)	0.0011		0.0001	mg/L		23-SEP-03	JY	R145050
Lead (Pb)	0.0003		0.0001	mg/L		23-SEP-03	JY	R145050
Antimony (Sb)	0.0007		0.0001	mg/L		23-SEP-03	JY	R145050
Selenium (Se)	< 0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Tin (Sn)	<0.0004		0.0002	mg/L		23-SEP-03	JY	R145050
Strontium (Sr)	0.144		0.0001	mg/L		23-SEP-03	JY	R145050
Titanium (Ti)	0.0025		0.0003	mg/L		23-SEP-03	JY	R145050
Thallium (TI)	0.00015		0.00005	mg/L		23-SEP-03	JY	R145050
Uranium (U)	0.0004		0.0001	mg/L		23-SEP-03	JY	R145050
Vanadium (V)	0.0006		0.0001	mg/L		23-SEP-03	JY	R145050
Zinc (Zn)	0.011		0.002	mg/L		23-SEP-03	JY	R145050
Extractable Major Metals	0.011		0.002	iiig/E		20 021 00	01	11140000
Calcium (Ca)	28.4		0.5	mg/L		24-SEP-03	HAS	R145296
Potassium (K)	1.0		0.1	mg/L		24-SEP-03	HAS	R145296
Magnesium (Mg)	6.31		0.01	mg/L		24-SEP-03	HAS	R145296
Sodium (Na)	7.9		0.5	mg/L		24-SEP-03	HAS	R145296
Iron (Fe)	0.240		0.005	mg/L		24-SEP-03	HAS	R145296
Manganese (Mn)	0.013		0.000	mg/L		24-SEP-03	HAS	R145296
	0.010		0.001				1	11110200
Mercury (Hg)-Extractable	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Silicon (Si)-Extractable	1.4			-		23-SEP-03		R145050
			0.1	mg/L			HAS	
Cyanide, Total	<0.002		0.002	mg/L		24-SEP-03	SEN	R145625
Phosphorus, Total	0.04		0.02	mg/L		24-SEP-03	JTV	R145154
Ammonia-N	<0.05		0.05	mg/L		23-SEP-03	TL	R144913
Oil and Grease	<1		1	mg/L		25-SEP-03	ZOW	R145358
Phenols (4AAP)	0.010		0.001	mg/L		26-SEP-03	STW	R145683
Total Kjeldahl Nitrogen	0.3		0.2	mg/L		24-SEP-03	TL	R145102
Total Organic Carbon	4		1	mg/L		26-SEP-03	STW	R145696
CCME PAHs	T		.	g / L				
Naphthalene	0.00002		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Quinoline	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
				····9, ⊑				

Sample Detail	s/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-2	SITE NW								
Sample Date:	18-SEP-03 15:00								
Matrix:	WATER								
CCME	ΡΔΗς								
	Acenaphthene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Fluorene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Phenanthrene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Anthracene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Acridine	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(a)anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Chrysene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(b)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(k)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(a)pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Indeno(1,2,3-cd)pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Surr:	Dibenzo(a,h)anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Surr: Surr:	Nitrobenzene d5	55	н	50-112	%	23-SEP-03 23-SEP-03		FWC	R144969
Surr:	2-Fluorobiphenyl p-Terphenyl d14	53 85		53-98 70-118	% %	23-SEP-03 23-SEP-03		FWC FWC	R144969 R144969
	Water Analysis	60		70-116	70	23-3EF-03	24-3EF-03	FVVC	R 144909
Routine	Chloride (Cl)	9		1	mg/L		24-SEP-03	SHC	R145187
	Nitrate+Nitrite-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrate-N	<0.1		0.1	Ŭ		23-SEP-03 23-SEP-03		
	Nitrite-N				mg/L			JTV	R144881
		<0.05		0.05	mg/L		23-SEP-03	JTV	R144881
рп, со	nductivity and Total Alkalinity pH	8.2		0.1	рH		23-SEP-03	PTT	R144945
	Conductivity (EC)	232		0.1	uS/cm		23-SEP-03	PTT	R144945
	Bicarbonate (HCO3)	100		5	mg/L		23-SEP-03	PTT	R144945
	Carbonate (CO3)	<5		5	mg/L		23-SEP-03	PTT	R144945
	Hydroxide (OH)	<5		5	mg/L		23-SEP-03	PTT	R144945
	Alkalinity, Total (as CaCO3)	82		5	mg/L		23-SEP-03	PTT	R144945
Ion Bala	ance Calculation								
	Ion Balance	99.9			%		25-SEP-03		
	TDS (Calculated)	127			mg/L		25-SEP-03		
	Hardness (as CaCO3)	100			mg/L		25-SEP-03		
ICP me	tals and SO4 for routine water								
	Calcium (Ca)	29.1		0.5	mg/L		23-SEP-03	DES	R144764
	Potassium (K)	1.1		0.1	mg/L		23-SEP-03	DES	R144764
	Magnesium (Mg) Sodium (Na)	6.7 8		0.1	mg/L		23-SEP-03 23-SEP-03	DES DES	R144764 R144764
	Sulfate (SO4)	23.5		0.5	mg/L mg/L		23-SEP-03	DES	R144764
L131493-3	SITE SE								
	18-SEP-03 15:50								
Matrix:	WATER								
	I (C6-C10) and F2 (>C10-C16)								
	F2 (>C10-C16)	<0.05		0.05	mg/L	25-SEP-03	26-SEP-03	AAT	R145752
BTEX a	nd F1 (C6-C10)								
	Benzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Toluene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	EthylBenzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Xylenes	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-3 SITE SE								
Sample Date: 18-SEP-03 15:50								
Matrix: WATER								
BTEX, F1 (C6-C10) and F2 (>C10-C16)								
BTEX and F1 (C6-C10)								
F1(C6-C10)	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
F1-BTEX	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
Extractable Metals								
Extractable Trace Metals (Low Level)								
Silver (Ag)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Aluminum (Al)	0.11		0.01	mg/L		23-SEP-03	JY	R145050
Arsenic (As)	0.0005		0.0004	mg/L		23-SEP-03 23-SEP-03	JY	R145050
Boron (B) Barium (Ba)	0.009 0.0398		0.002	mg/L mg/L		23-SEP-03 23-SEP-03	JY	R145050 R145050
Beryllium (Be)	<0.0005		0.0001	mg/L		23-SEP-03	JY	R145050
Bismuth (Bi)	0.00019		0.00005	mg/L		23-SEP-03	JY	R145050
Cadmium (Cd)	0.0001		0.0000	mg/L		23-SEP-03	JY	R145050
Cobalt (Co)	0.0003		0.0001	mg/L		23-SEP-03	JY	R145050
Chromium (Cr)	0.0012		0.0004	mg/L		23-SEP-03	JY	R145050
Copper (Cu)	0.0020		0.0006	mg/L		23-SEP-03	JY	R145050
Molybdenum (Mo)	0.0005		0.0001	mg/L		23-SEP-03	JY	R145050
Nickel (Ni)	0.0014		0.0001	mg/L		23-SEP-03	JY	R145050
Lead (Pb)	0.0005		0.0001	mg/L		23-SEP-03	JY	R145050
Antimony (Sb)	0.0007		0.0004	mg/L		23-SEP-03	JY	R145050
Selenium (Se)	<0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Tin (Sn)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Strontium (Sr)	0.0932		0.0001	mg/L		23-SEP-03	JY	R145050
Titanium (Ti)	0.0024		0.0003	mg/L		23-SEP-03	JY	R145050
Thallium (TI)	0.00015		0.00005	mg/L		23-SEP-03	JY	R145050
Uranium (U)	0.0003		0.0001	mg/L		23-SEP-03	JY	R145050
Vanadium (V) Zinc (Zn)	0.0006		0.0001	mg/L		23-SEP-03 23-SEP-03	JY	R145050
Extractable Major Metals	0.013		0.002	mg/L		23-3EF-03	JT	R145050
Calcium (Ca)	31.8		0.5	mg/L		24-SEP-03	HAS	R145296
Potassium (K)	1.0		0.1	mg/L		24-SEP-03	HAS	R145296
Magnesium (Mg)	6.35		0.01	mg/L		24-SEP-03	HAS	R145296
Sodium (Na)	4.3		0.5	mg/L		24-SEP-03	HAS	R145296
Iron (Fe)	0.531		0.005	mg/L		24-SEP-03	HAS	R145296
Manganese (Mn)	0.033		0.001	mg/L		24-SEP-03	HAS	R145296
Mercury (Hg)-Extractable	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Silicon (Si)-Extractable	1.9		0.1	mg/L		24-SEP-03	HAS	R145296
Cyanide, Total	<0.002		0.002	mg/L		24-SEP-03	SEN	R145625
Phosphorus, Total	0.06		0.02	mg/L		24-SEP-03	JTV	R145154
Ammonia-N	<0.05		0.05	mg/L		23-SEP-03	TL	R144913
Oil and Grease	<1		1	mg/L		25-SEP-03	ZOW	R145358
Phenols (4AAP)	0.011		0.001	mg/L		26-SEP-03	STW	R145683
Total Kjeldahl Nitrogen	0.3		0.2	mg/L		24-SEP-03	TL	R145102
Total Organic Carbon	8		1	mg/L		26-SEP-03	STW	R145696
CCME PAHs	-			5				
Naphthalene	<0.00001	RAMB	0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Quinoline	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Acenaphthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Fluorene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969

Sample Detai	ls/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	Ву	Batch
L131493-3	SITE SE								
Sample Date:	18-SEP-03 15:50								
Matrix:	WATER								
00115	D411-								
CCME	PAHs Phenanthrene	<0.00001	RAMB	0.00001	mg/L	23-SEP-03	24 SED 03	FWC	R144969
	Anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Acridine	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(a)anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Chrysene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(b)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Benzo(k)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Benzo(a)pyrene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Indeno(1,2,3-cd)pyrene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Dibenzo(a,h)anthracene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	Nitrobenzene d5	61		50-112	%	23-SEP-03		FWC	R144969
Surr:	2-Fluorobiphenyl	61		53-98	%	23-SEP-03		FWC	R144969
Surr:	p-Terphenyl d14	98		70-118	%	23-SEP-03	24-SEP-03	FWC	R144969
Routine	Water Analysis								
	Chloride (Cl)	3		1	mg/L		24-SEP-03	SHC	R145187
	Nitrate+Nitrite-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrate-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrite-N	<0.05		0.05	mg/L		23-SEP-03	JTV	R144881
pH, Co	nductivity and Total Alkalinity								
	рН	8.2		0.1	pН		23-SEP-03	PTT	R144945
	Conductivity (EC)	215		0.2	uS/cm		23-SEP-03	PTT	R144945
	Bicarbonate (HCO3)	114		5	mg/L		23-SEP-03	PTT	R144945
	Carbonate (CO3)	<5		5	mg/L		23-SEP-03	PTT	R144945
	Hydroxide (OH)	<5		5	mg/L		23-SEP-03	PTT	R144945
In Del	Alkalinity, Total (as CaCO3)	93		5	mg/L		23-SEP-03	PTT	R144945
ION Bai	ance Calculation Ion Balance	104			%		25-SEP-03		
	TDS (Calculated)	121			mg/L		25-SEP-03		
	Hardness (as CaCO3)	108			mg/L		25-SEP-03		
ICP me	tals and SO4 for routine water								
	Calcium (Ca)	32.2		0.5	mg/L		23-SEP-03	DES	R144764
	Potassium (K)	1.2		0.1	mg/L		23-SEP-03	DES	R144764
	Magnesium (Mg)	6.7		0.1	mg/L		23-SEP-03	DES	R144764
	Sodium (Na)	5		1	mg/L		23-SEP-03	DES	R144764
	Sulfate (SO4)	17.1		0.5	mg/L		23-SEP-03	DES	R144764
L131493-4	SITE SW								
	18-SEP-03 16:20								
Matrix:	WATER								
	1 (C6-C10) and F2 (>C10-C16)								
•	F2 (>C10-C16)	<0.05		0.05	mg/L	25-SEP-03	26-SEP-03	AAT	R145752
BTEX a	and F1 (C6-C10)								
	Benzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Toluene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	EthylBenzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Xylenes	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	F1(C6-C10)	<0.1	1	0.1	mg/L		27-SEP-03	FWA	R145747
	F1-BTEX	<0.1		0.1	iiig/ L		27-SEP-03	1	R145747

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-4 SITE SW								
Sample Date: 18-SEP-03 16:20								
Matrix: WATER								
Extractable Metals								
Extractable Trace Metals (Low Level)								
Silver (Ag)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Aluminum (Al)	0.24		0.01	mg/L		23-SEP-03	JY	R145050
Arsenic (As)	0.0011		0.0004	mg/L		23-SEP-03	JY	R145050
Boron (B)	0.010		0.002	mg/L		23-SEP-03	JY	R145050
Barium (Ba)	0.0535		0.0001	mg/L		23-SEP-03	JY	R145050
Beryllium (Be)	<0.0005		0.0005	mg/L		23-SEP-03	JY	R145050
Bismuth (Bi)	0.00019		0.00005	mg/L		23-SEP-03	JY	R145050
Cadmium (Cd)	0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Cobalt (Co)	0.0010		0.0001	mg/L		23-SEP-03	JY	R145050
Chromium (Cr)	0.0012		0.0004	mg/L		23-SEP-03	JY	R145050
Copper (Cu)	0.0035		0.0006	mg/L		23-SEP-03	JY	R145050
Molybdenum (Mo)	0.0005		0.0001	mg/L		23-SEP-03	JY	R145050
Nickel (Ni)	0.0025		0.0001	mg/L		23-SEP-03	JY	R145050
Lead (Pb)	0.0017		0.0001	mg/L		23-SEP-03	JY	R145050
Antimony (Sb)	0.0006		0.0004	mg/L		23-SEP-03	JY	R145050
Selenium (Se)	0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Tin (Sn)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Strontium (Sr)	0.123		0.0001	mg/L		23-SEP-03	JY	R145050
Titanium (Ti)	0.0072		0.0003	mg/L		23-SEP-03	JY	R145050
Thallium (TI)	0.00016		0.00005	mg/L		23-SEP-03	JY	R145050
Uranium (U)	0.0004		0.0001	mg/L		23-SEP-03	JY	R145050
Vanadium (V)	0.0014		0.0001	mg/L		23-SEP-03	JY	R145050
Zinc (Zn)	0.016		0.002	mg/L		23-SEP-03	JY	R145050
Extractable Major Metals Calcium (Ca)	38.4		0.5	mg/L		24-SEP-03	HAS	R145296
Potassium (K)	30.4 1.1		0.5	mg/L		24-SEP-03 24-SEP-03	HAS	R145296 R145296
Magnesium (Mg)	7.54		0.01	mg/L		24-SEP-03	HAS	R145296
Sodium (Na)	5.0		0.5	mg/L		24-SEP-03	HAS	R145296
Iron (Fe)	2.12		0.005	mg/L		24-SEP-03	HAS	R145296
Manganese (Mn)	0.183		0.003	mg/L		24-SEP-03	HAS	R145296
	0.105		0.001	mg/E			TIAO	1145250
Mercury (Hg)-Extractable	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Silicon (Si)-Extractable	2.2		0.1	mg/L		24-SEP-03	HAS	R145296
Cyanide, Total	<0.002		0.002	mg/L		24-SEP-03	SEN	R145625
Phosphorus, Total	0.13		0.02	mg/L		24-SEP-03	JTV	R145154
Ammonia-N	<0.05		0.05	mg/L		23-SEP-03	TL	R144913
Oil and Grease	<1		1	mg/L		25-SEP-03	ZOW	R145358
Phenols (4AAP)	0.012		0.001	mg/L		26-SEP-03	STW	R145683
Total Kjeldahl Nitrogen	0.7		0.2	mg/L		24-SEP-03	TL	R145102
Total Organic Carbon	8		1	mg/L		26-SEP-03	STW	R145696
CCME PAHs	Ŭ						0111	11110000
Naphthalene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Quinoline	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Acenaphthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Fluorene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Phenanthrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Acridine	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
				-				
L		+			1	1		I

Sample Detai	ils/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-4	SITE SW								
Sample Date	: 18-SEP-03 16:20								
Matrix:	WATER								
00115	DALL								
CCME	Pyrene	<0.00001		0.00001	mg/L	23-SEP-03	24-SED-03	FWC	R144969
	Benzo(a)anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Chrysene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(b)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(k)fluoranthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Benzo(a)pyrene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
	Indeno(1,2,3-cd)pyrene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
	Dibenzo(a,h)anthracene	<0.00001		0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	Nitrobenzene d5	66		50-112	%	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	2-Fluorobiphenyl	63		53-98	%	23-SEP-03	24-SEP-03	FWC	R144969
Surr:	p-Terphenyl d14	92		70-118	%	23-SEP-03	24-SEP-03	FWC	R144969
Routine	Water Analysis								
	Chloride (CI)	4		1	mg/L		24-SEP-03	SHC	R145187
	Nitrate+Nitrite-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrate-N	<0.1		0.1	mg/L		23-SEP-03	JTV	R144881
	Nitrite-N	<0.05		0.05	mg/L		23-SEP-03	JTV	R144881
pH, Co	nductivity and Total Alkalinity								
	рН	8.2		0.1	pН		23-SEP-03	PTT	R144945
	Conductivity (EC)	217		0.2	uS/cm		23-SEP-03	PTT	R144945
	Bicarbonate (HCO3)	110		5	mg/L		23-SEP-03	PTT	R144945
	Carbonate (CO3)	<5		5	mg/L		23-SEP-03	PTT	R144945
	Hydroxide (OH)	<5		5	mg/L		23-SEP-03	PTT	R144945
	Alkalinity, Total (as CaCO3)	90		5	mg/L		23-SEP-03	PTT	R144945
Ion Bal	lance Calculation	405			0/				
	Ion Balance	105			%		25-SEP-03 25-SEP-03		
	TDS (Calculated) Hardness (as CaCO3)	122 106			mg/L		25-SEP-03 25-SEP-03		
	etals and SO4 for routine water	100			mg/L		23-3LF-03		
ICF IIIe	Calcium (Ca)	31.6		0.5	mg/L		23-SEP-03	DES	R144764
	Potassium (K)	1.2		0.0	mg/L		23-SEP-03	DES	R144764
	Magnesium (Mg)	6.7		0.1	mg/L		23-SEP-03	DES	R144764
	Sodium (Na)	6		1	mg/L		23-SEP-03	DES	R144764
	Sulfate (SO4)	18.6		0.5	mg/L		23-SEP-03	DES	R144764
L131493-5	TRIP BLANK				-	-			
	: 18-SEP-03 17:20								
Matrix:	WATER								
	1 (C6-C10) and F2 (>C10-C16)								
,.	F2 (>C10-C16)	<0.05		0.05	mg/L	25-SEP-03	26-SEP-03	ААТ	R145752
RTFY :	and F1 (C6-C10)	\$0.00		0.00					1140102
5.270	Benzene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Toluene	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	EthylBenzene	< 0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	Xylenes	<0.0005		0.0005	mg/L		27-SEP-03	FWA	R145747
	F1(C6-C10)	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
	F1-BTEX	<0.1		0.1	mg/L		27-SEP-03	FWA	R145747
	able Metals								
Extract	table Trace Metals (Low Level)								
	Silver (Ag)	< 0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
	Aluminum (Al)	<0.01		0.01	mg/L		23-SEP-03	JY	R145050

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-5 TRIP BLANK								
Sample Date: 18-SEP-03 17:20								
Matrix: WATER								
Extractable Metals								
Extractable Trace Metals (Low Level)								
Arsenic (As)	<0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Boron (B)	<0.002		0.002	mg/L		23-SEP-03	JY	R145050
Barium (Ba)	0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Beryllium (Be)	<0.0005		0.0005	mg/L		23-SEP-03	JY	R145050
Bismuth (Bi)	0.00017		0.00005	mg/L		23-SEP-03	JY	R145050
Cadmium (Cd)	< 0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Cobalt (Co)	0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Chromium (Cr) Copper (Cu)	0.0010 <0.0006		0.0004	mg/L mg/L		23-SEP-03 23-SEP-03	JY	R145050 R145050
Molybdenum (Mo)	<0.0008		0.0008	mg/L		23-SEP-03	JY	R145050
Nickel (Ni)	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Lead (Pb)	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Antimony (Sb)	0.0009		0.0004	mg/L		23-SEP-03	JY	R145050
Selenium (Se)	<0.0004		0.0004	mg/L		23-SEP-03	JY	R145050
Tin (Sn)	<0.0002		0.0002	mg/L		23-SEP-03	JY	R145050
Strontium (Sr)	0.0002		0.0001	mg/L		23-SEP-03	JY	R145050
Titanium (Ti)	<0.0003		0.0003	mg/L		23-SEP-03	JY	R145050
Thallium (TI)	0.00015		0.00005	mg/L		23-SEP-03	JY	R145050
Uranium (U)	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Vanadium (V)	0.0002		0.0001	mg/L		23-SEP-03	JY	R145050
Zinc (Zn)	0.010		0.002	mg/L		23-SEP-03	JY	R145050
Extractable Major Metals								D. 45000
Calcium (Ca)	<0.5		0.5	mg/L		24-SEP-03	HAS	R145296
Potassium (K) Magnesium (Mg)	<0.1 <0.01		0.1	mg/L		24-SEP-03 24-SEP-03	HAS	R145296
Sodium (Na)	<0.01		0.01 0.5	mg/L mg/L		24-SEP-03 24-SEP-03	HAS HAS	R145296 R145296
Iron (Fe)	<0.005		0.005	mg/L		24-SEP-03	HAS	R145296
Manganese (Mn)	<0.003		0.000	mg/L		24-SEP-03	HAS	R145296
	0.001		0.001				11/10	11110200
Mercury (Hg)-Extractable	<0.0001		0.0001	mg/L		23-SEP-03	JY	R145050
Silicon (Si)-Extractable	<0.1		0.1	mg/L		24-SEP-03	HAS	R145296
Cyanide, Total	<0.002		0.002	mg/L		24-SEP-03	SEN	R145625
Phosphorus, Total	<0.02		0.02	mg/L		24-SEP-03	JTV	R145154
Ammonia-N	<0.05		0.05	mg/L		23-SEP-03	TL	R144913
Oil and Grease	<1		1	mg/L		25-SEP-03	ZOW	R145358
Phenols (4AAP)	0.002		0.001	mg/L		26-SEP-03	STW	R145683
Total Kjeldahl Nitrogen	<0.2		0.2	mg/L		24-SEP-03	TL	R145102
Total Organic Carbon	3		1	mg/L		26-SEP-03	STW	R145696
CCME PAHs				-				
Naphthalene	<0.00001	RAMB	0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	R144969
Quinoline	<0.00001		0.00001	mg/L		24-SEP-03	FWC	R144969
Acenaphthene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Fluorene	< 0.00001	D	0.00001	mg/L	23-SEP-03		FWC	R144969
Phenanthrene	<0.00001	RAMB	0.00001	mg/L	23-SEP-03		FWC	R144969
Anthracene	<0.00001		0.00001	mg/L	23-SEP-03		FWC	R144969
Acridine Fluoranthene	<0.00001		0.00001	mg/L mg/l	23-SEP-03	24-SEP-03 24-SEP-03	FWC	R144969
Pyrene	<0.00001 <0.00001		0.00001	mg/L mg/L	23-SEP-03 23-SEP-03		FWC FWC	R144969 R144969
Benzo(a)anthracene	<0.00001		0.00001	mg/L		24-SEP-03 24-SEP-03	FWC	R144969
	NO.0000		0.00001	ing/L			1 100	11177303
L					1	1		

CCME PAH C Ba Ba In D Surr: N Surr: 2- Surr: p- Routine Wa	/ATER Hs hrysene enzo(b)fluoranthene enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 ·Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 66 61 88	0.00001 0.00001 0.00001 0.00001 0.00001	mg/L mg/L mg/L mg/L	23-SEP-03 23-SEP-03 23-SEP-03 23-SEP-03	24-SEP-03 24-SEP-03	FWC FWC FWC	R144969 R144969 R144969
Sample Date: 18 Matrix: W CCME PAR C Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba Ba	/ATER Hs hrysene enzo(b)fluoranthene enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 ·Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 66 61	0.00001 0.00001 0.00001	mg/L mg/L	23-SEP-03 23-SEP-03	24-SEP-03 24-SEP-03	FWC FWC	R144969
Matrix: W CCME PAR C Ba Ba Ba In D Surr: N Surr: 2- Surr: p- Routine Wa	/ATER Hs hrysene enzo(b)fluoranthene enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 ·Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 66 61	0.00001 0.00001 0.00001	mg/L mg/L	23-SEP-03 23-SEP-03	24-SEP-03 24-SEP-03	FWC FWC	R144969
CCME PAH C Ba Ba In D Surr: N Surr: 2- Surr: p- Routine Wa	Hs hrysene enzo(b)fluoranthene enzo(a)pyrene adeno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 66 61	0.00001 0.00001 0.00001	mg/L mg/L	23-SEP-03 23-SEP-03	24-SEP-03 24-SEP-03	FWC FWC	R144969
C B B B B In D Surr: D Surr: P Surr: P Surr: P Surr: P Surr: P Surr: P	hrysene enzo(b)fluoranthene enzo(k)fluoranthene enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 66 61	0.00001 0.00001 0.00001	mg/L mg/L	23-SEP-03 23-SEP-03	24-SEP-03 24-SEP-03	FWC FWC	R144969
Ba Ba In D Surr: N Surr: 2- Surr: p- Routine Wa	erzo(b)fluoranthene enzo(k)fluoranthene enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 <0.00001 66 61	0.00001 0.00001 0.00001	mg/L mg/L	23-SEP-03 23-SEP-03	24-SEP-03 24-SEP-03	FWC FWC	R144969
Ba In D Surr: N Surr: 2- Surr: p- Routine Wa	enzo(k)fluoranthene enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 <0.00001 66 61	0.00001 0.00001	mg/L	23-SEP-03	24-SEP-03	FWC	
Burn: D Surr: N Surr: 2- Surr: p- Routine Wa	enzo(a)pyrene ideno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 tter Analysis	<0.00001 <0.00001 <0.00001 66 61	0.00001	Ũ				R144969
In D Surr: N Surr: 2- Surr: p- Routine Wa	adeno(1,2,3-cd)pyrene ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 t ter Analysis	<0.00001 <0.00001 66 61		mg/L	23-SEP-03			1
D Surr: N Surr: 2- Surr: p- Routine Wa	ibenzo(a,h)anthracene itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 t ter Analysis	<0.00001 66 61	0.00001				FWC	R144969
Surr: N Surr: 2- Surr: p- Routine Wa	itrobenzene d5 -Fluorobiphenyl -Terphenyl d14 - ter Analysis	66 61		mg/L	23-SEP-03		FWC	R144969
Surr: 2- Surr: p- Routine Wa	Fluorobiphenyl Terphenyl d14 t ter Analysis	61	0.00001	mg/L	23-SEP-03		FWC	R144969
Surr: p- Routine Wa	Terphenyl d14 tter Analysis	-	 50-112	%	23-SEP-03		FWC	R144969
Routine Wa	ter Analysis	88	53-98	%	23-SEP-03		FWC	R144969
	•		70-118	%	23-SEP-03	24-SEP-03	FWC	R144969
C						04.055.55		
	hloride (Cl)	<1	1	mg/L		24-SEP-03	SHC	R145187
	itrate+Nitrite-N	<0.1	0.1	mg/L		23-SEP-03	JTV	R144881
	itrate-N	<0.1	0.1	mg/L		23-SEP-03	JTV	R144881
N	itrite-N	<0.05	0.05	mg/L		23-SEP-03	JTV	R144881
	ctivity and Total Alkalinity							
pł		5.9	0.1	pН		23-SEP-03	PTT	R144945
	onductivity (EC)	0.7	0.2	uS/cm		23-SEP-03	PTT	R144945
	icarbonate (HCO3)	<5	5	mg/L		23-SEP-03	PTT	R144945
	arbonate (CO3)	<5	5	mg/L		23-SEP-03	PTT	R144945
	ydroxide (OH)	<5	5	mg/L		23-SEP-03	PTT	R144945
	Ikalinity, Total (as CaCO3)	<5	5	mg/L		23-SEP-03	PTT	R144945
	ce Calculation							
	n Balance	Low TDS		%		25-SEP-03		
	DS (Calculated)	<1		mg/L		25-SEP-03		
	ardness (as CaCO3)	<1		mg/L		25-SEP-03		
	s and SO4 for routine water	0.5	0.5					DAAATCA
	alcium (Ca)	<0.5	0.5	mg/L		23-SEP-03	DES	R144764
	otassium (K)	<0.1	0.1	mg/L		23-SEP-03	DES	R144764
	lagnesium (Mg)	<0.1	0.1	mg/L		23-SEP-03 23-SEP-03	DES	R144764
	odium (Na) ulfate (SO4)	<1 <0.5	1 0.5	mg/L		23-SEP-03 23-SEP-03	DES DES	R144764 R144764
		<0.5	 0.5	mg/L		23-3EP-03	DES	K144704
L131493-6	SITE NE							
Sample Date: 18	B-SEP-03 15:00							
	EDIMENT							
CCME TVH								
	al Hydrocarbons			-				
	1 (C6-C10)	<5	5	mg/kg		29-SEP-03		
	1-BTEX	<5	5	mg/kg		29-SEP-03		
	2 (C10-C16)	19	5	mg/kg		29-SEP-03		
	2-Naphth	19	5	mg/kg		29-SEP-03		
	3 (C16-C34)	90	5	mg/kg		29-SEP-03		
	3-PAH	90	5	mg/kg		29-SEP-03		
	4 (C34-C50)	6	5	mg/kg		29-SEP-03		
	otal Hydrocarbons (C6-C50)	120	5	mg/kg		29-SEP-03		
	hromatogram to baseline at nC50	NO				29-SEP-03		
	al Extractable Hydrocarbons rep/Analysis Dates				25-SEP-03	26-SEP-03	CTL	R145615
CCME BTE					20 001 -00		UIL	111-3013
	EA enzene	0.02	0.04	mg/kg	28-SEP-03	29-SEP-03	TKP	R145900
	oluene	0.02	0.04	mg/kg	28-SEP-03		TKP	R145900

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-6 SITE NE								
Sample Date: 18-SEP-03 15:00								
Matrix: SEDIMENT								
CCME TVHs and TEHs								
CCME BTEX								
Ethylbenzene	<0.01		0.04	mg/kg	28-SEP-03	29-SEP-03	TKP	R145900
Xylenes	0.07		0.04	mg/kg	28-SEP-03	29-SEP-03	TKP	R145900
Note: raise DL due to moisture content								
Cyanide, Total	0.56		0.1	ug/g		30-SEP-03	SEN	R146339
% Moisture	62		0.1	%		23-SEP-03	BDH	R144772
Ammonia-N	3		1	mg/kg		25-SEP-03	TL	R145389
Mercury (Hg)	<0.05		0.05	mg/kg		25-SEP-03	мх	R145372
Oil-Gravimetric	700		100	mg/kg		26-SEP-03	JME	R145555
Phenols (4AAP)	0.09		0.03	mg/kg		26-SEP-03	STW	R145683
Silicon (Si)	900		50	mg/kg		29-SEP-03	HAS	R146001
Total Kjeldahl Nitrogen	0.23		0.02	%	25-SEP-03		HSL	R145463
Phosphorus, Total	530		90		26-SEP-03		BEM	
Total Organic Carbon	530		90	mg/kg	20-3EF-03	20-3EF-03		R145568
Organic Carbon	2.4		0.1	%	25-SEP-03	25-SEP-03	HSL	R145638
Organic Matter	4.2		0.2	%	25-SEP-03		HSL	R145638
Metals (ICP/MS)			0.2					
Silver (Ag)	<0.2		0.2	mg/kg		25-SEP-03	МХ	R145372
Aluminum (Al)	11700		50	mg/kg		25-SEP-03	MX	R145372
Arsenic (As)	4.0		0.1	mg/kg		25-SEP-03	MX	R145372
Boron (B)	9		2	mg/kg		25-SEP-03	MX	R145372
Barium (Ba)	139		0.5	mg/kg		25-SEP-03	MX	R145372
Beryllium (Be)	0.8		0.2	mg/kg		25-SEP-03	MX	R145372
Bismuth (Bi)	<0.5		0.5	mg/kg		25-SEP-03	MX	R145372
Calcium (Ca)	33000		100	mg/kg		25-SEP-03	MX	R145372
Cadmium (Cd)	0.4		0.1	mg/kg		25-SEP-03	MX	R145372
Cobalt (Co)	12.9		0.1	mg/kg		25-SEP-03	MX	R145372
Chromium (Cr)	28.2		0.2	mg/kg		25-SEP-03	MX	R145372
Copper (Cu)	30.3		0.5	mg/kg		25-SEP-03	MX	R145372
Iron (Fe)	24100		200	mg/kg		25-SEP-03	MX	R145372
Potassium (K)	2760		50	mg/kg		25-SEP-03	MX	R145372
Magnesium (Mg)	14500		20	mg/kg		25-SEP-03	MX	R145372
Manganese (Mn)	341		1	mg/kg		25-SEP-03	MX	R145372
Molybdenum (Mo)	1.9		0.1	mg/kg		25-SEP-03	MX	R145372
Sodium (Na)	200		100	mg/kg		25-SEP-03	MX	R145372
Nickel (Ni)	41.2		0.5	mg/kg		25-SEP-03	MX	R145372
Lead (Pb) Selenium (Se)	12.4 0.5		0.5 0.2	mg/kg		25-SEP-03 25-SEP-03	MX	R145372 R145372
Tin (Sn)	<2		0.2 2	mg/kg mg/kg		25-SEP-03 25-SEP-03	MX MX	R145372 R145372
Strontium (Sr)	60		1			25-SEP-03	MX	R145372
Titanium (Ti)	150		1	mg/kg mg/kg		25-SEP-03 25-SEP-03	MX	R145372 R145372
Thallium (TI)	0.24		0.05	mg/kg		25-SEP-03	MX	R145372 R145372
Uranium (U)	0.24		0.05	mg/kg		25-SEP-03	MX	R145372 R145372
Vanadium (V)	30.2		0.05	mg/kg		25-SEP-03	MX	R145372
Zinc (Zn)	87		5	mg/kg		25-SEP-03	MX	R145372
CCME PAHs								
Naphthalene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
Quinoline	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
Phenanthrene	0.02		0.01	mg/kg	23-SEP-03		FWC	R144969
	-							

Sample Details	s/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-6	SITE NE								
Sample Date:									
Matrix:	SEDIMENT								
IVIALITA.	SEDIMENT								
CCME F	PAHs								
	Pyrene	<0.01	RAMB	0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(a)anthracene	0.02		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(b)fluoranthene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(k)fluoranthene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(a)pyrene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Indeno(1,2,3-cd)pyrene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Dibenzo(a,h)anthracene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
Surr:	Nitrobenzene d5	68		55-108	%		25-SEP-03	FWC	R144969
Surr:	2-Fluorobiphenyl	80		51-100	%		25-SEP-03	FWC	R144969
Surr:	p-Terphenyl d14	97		72-117	%	23-SEP-03	20-SEP-03	FWC	R144969
Detailed	-								DIALOOI
	Chloride (Cl)	9		1	mg/L	26-SEP-03		DDN	R145681
	Sulphate (SO4)	35.7		0.5	mg/L	26-SEP-03	26-SEP-03	DDN	R145681
pH and	EC (Saturated Paste)				0/				DITEST
	% Saturation pH in Saturated Paste	826		0.1	%		26-SEP-03	JZ	R145651
	•	6.9		0.1	pH		26-SEP-03	JZ	R145651
C 4 D	Conductivity Sat. Paste	0.34		0.03	dS m-1		26-SEP-03	JZ	R145651
SAR	Calcium (Ca)	40.7		0.5	mg/L		26-SEP-03	SIW	R145572
	Potassium (K)	2.3		0.5	mg/L		26-SEP-03	SIW	R145572 R145572
	Magnesium (Mg)	7.1		0.1	mg/L		26-SEP-03	SIW	R145572
	Sodium (Na)	16		1	mg/L		26-SEP-03	SIW	R145572
	SAR	0.6		'	SAR		26-SEP-03	SIW	R145572
1 1 21 402 7		0.0						0.111	
L131493-7 Sample Date:	SITE NW 18-SEP-03 14:20								
•									
Matrix:	SEDIMENT VHs and TEHs								
	Fotal Hydrocarbons								
COME	F1 (C6-C10)	<5		5	mg/kg		29-SEP-03		
	F1-BTEX	<5		5	mg/kg		29-SEP-03		
	F2 (C10-C16)	26		5	mg/kg		29-SEP-03		
	F2-Naphth	26		5	mg/kg		29-SEP-03		
	F3 (C16-C34)	130		5	mg/kg		29-SEP-03		
	F3-PAH	130		5	mg/kg		29-SEP-03		
	F4 (C34-C50)	25		5	mg/kg		29-SEP-03		
	Total Hydrocarbons (C6-C50)	180		5	mg/kg		29-SEP-03		
	Chromatogram to baseline at nC50	NO					29-SEP-03		
CCMET	Fotal Extractable Hydrocarbons Prep/Analysis Dates					25-SEP-03	26-SEP-03	CTL	R145615
CCME E	ЗТЕХ								
	Benzene	<0.01		0.03	mg/kg	28-SEP-03		TKP	R145900
	Toluene	<0.01		0.03	mg/kg	28-SEP-03		TKP	R145900
	Ethylbenzene	<0.01		0.03	mg/kg	28-SEP-03		ТКР	R145900
	Xylenes	0.03		0.03	mg/kg	28-SEP-03	29-SEP-03	TKP	R145900
Note: raise D	DL due to moisture content								
	Cyanide, Total	0.92		0.1	ug/g		30-SEP-03	SEN	R146339
	% Moisture	61		0.1	%		23-SEP-03	BDH	R144772
	Ammonia-N	3		1	mg/kg		25-SEP-03	TL	R145389
I					50				
		l					1		1

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-7 SITE NW								
Sample Date: 18-SEP-03 14:20								
Matrix: SEDIMENT								
Mercury (Hg)	<0.05		0.05	mg/kg		25-SEP-03	МХ	R145372
Oil-Gravimetric	1200		100	mg/kg		10-OCT-03	JME	R145555
Phenols (4AAP)	0.21		0.03	mg/kg		26-SEP-03	STW	R145683
Silicon (Si)	1930		50	mg/kg		29-SEP-03	HAS	R146001
Total Kjeldahl Nitrogen	0.23		0.02	%	25-SEP-03	25-SEP-03	HSL	R145463
Phosphorus, Total	490		90	mg/kg		26-SEP-03	BEM	R145568
Total Organic Carbon	450			ing/itg			DEIM	11140000
Organic Carbon	2.7		0.1	%	25-SEP-03	25-SEP-03	HSL	R145638
Organic Matter	4.6		0.2	%	25-SEP-03	25-SEP-03	HSL	R145638
Metals (ICP/MS)								
Silver (Åg)	<0.2		0.2	mg/kg		25-SEP-03	MX	R145372
Aluminum (Al)	11600		50	mg/kg		25-SEP-03	MX	R145372
Arsenic (As)	5.1		0.1	mg/kg		25-SEP-03	MX	R145372
Boron (B)	10		2	mg/kg		25-SEP-03	MX	R145372
Barium (Ba)	152		0.5	mg/kg		25-SEP-03	MX	R145372
Beryllium (Be)	0.8		0.2	mg/kg		25-SEP-03	MX	R145372
Bismuth (Bi)	<0.5		0.5	mg/kg		25-SEP-03	MX	R145372
Calcium (Ca)	47600		100	mg/kg		25-SEP-03	MX	R145372
Cadmium (Cd)	0.4		0.1	mg/kg		25-SEP-03	MX	R145372
Cobalt (Co)	12.2		0.1	mg/kg		25-SEP-03	MX	R145372
Chromium (Cr)	27.7		0.2	mg/kg		25-SEP-03	MX	R145372
Copper (Cu) Iron (Fe)	33.5 24500		0.5 200	mg/kg		25-SEP-03 25-SEP-03	MX MX	R145372 R145372
Potassium (K)	24500		200 50	mg/kg mg/kg		25-SEP-03	MX	R145372 R145372
Magnesium (Mg)	15400		20	mg/kg		25-SEP-03	MX	R145372
Manganese (Mn)	353		1	mg/kg		25-SEP-03	MX	R145372
Molybdenum (Mo)	1.7		0.1	mg/kg		25-SEP-03	MX	R145372
Sodium (Na)	200		100	mg/kg		25-SEP-03	MX	R145372
Nickel (Ni)	39.3		0.5	mg/kg		25-SEP-03	MX	R145372
Lead (Pb)	13.1		0.5	mg/kg		25-SEP-03	MX	R145372
Selenium (Se)	0.4		0.2	mg/kg		25-SEP-03	MX	R145372
Tin (Sn)	<2		2	mg/kg		25-SEP-03	MX	R145372
Strontium (Sr)	90		1	mg/kg		25-SEP-03	MX	R145372
Titanium (Ti)	160		1	mg/kg		25-SEP-03	MX	R145372
Thallium (TI)	0.25		0.05	mg/kg		25-SEP-03	MX	R145372
Uranium (U)	0.97		0.05	mg/kg		25-SEP-03	MX	R145372
Vanadium (V)	29.1		0.2	mg/kg		25-SEP-03	MX	R145372
Zinc (Zn)	86		5	mg/kg		25-SEP-03	MX	R145372
CCME PAHs								
Naphthalene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
Quinoline	<0.01		0.01	mg/kg		25-SEP-03	FWC	R144969
Phenanthrene	0.02		0.01	mg/kg		25-SEP-03	FWC	R144969
Pyrene Benzo(a)anthracene	<0.01		0.01	mg/kg		25-SEP-03 25-SEP-03	FWC	R144969
Benzo(a)anthracene Benzo(b)fluoranthene	0.01		0.01 0.01	mg/kg		25-SEP-03 25-SEP-03	FWC FWC	R144969
Benzo(b)fluorantnene Benzo(k)fluoranthene	<0.01 <0.01		0.01	mg/kg mg/kg		25-SEP-03 25-SEP-03	FWC	R144969 R144969
Benzo(a)pyrene	<0.01		0.01	mg/kg		25-SEP-03	FWC	R144969 R144969
Indeno(1,2,3-cd)pyrene	<0.01		0.01	mg/kg		25-SEP-03	FWC	R144969 R144969
Dibenzo(a,h)anthracene	<0.01		0.01	mg/kg		25-SEP-03	FWC	R144969 R144969
Surr: Nitrobenzene d5	66		55-108	%	23-SEP-03		FWC	R144969
Surr: 2-Fluorobiphenyl	66		51-100	%		25-SEP-03	FWC	R144969
·····								

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-7 SITE NW								
Sample Date: 18-SEP-03 14:20								
Matrix: SEDIMENT								
CCME PAHs	100			0/			=	D / / / 000
Surr: p-Terphenyl d14	106		72-117	%	23-SEP-03	25-SEP-03	FWC	R144969
Detailed Salinity	40							D4 45004
Chloride (CI)	13		1	mg/L		26-SEP-03	DDN	R145681
Sulphate (SO4)	53.6		0.5	mg/L	26-SEP-03	26-SEP-03	DDN	R145681
pH and EC (Saturated Paste) % Saturation	979		0.1	%		26-SEP-03	JZ	R145651
pH in Saturated Paste	6.9		0.1	рН		26-SEP-03	JZ	R145651
Conductivity Sat. Paste	0.41		0.03	dS m-1		26-SEP-03	JZ	R145651
SAR	0.11		0.00					
Calcium (Ca)	53.4		0.5	mg/L		26-SEP-03	SIW	R145572
Potassium (K)	3.6		0.1	mg/L		26-SEP-03	SIW	R145572
Magnesium (Mg)	6.2		0.1	mg/L		26-SEP-03	SIW	R145572
Sodium (Na)	19		1	mg/L		26-SEP-03	SIW	R145572
SAR	0.7			SAR		26-SEP-03	SIW	R145572
L131493-8 SITE SE								
Sample Date: 18-SEP-03 15:50								
Matrix: SEDIMENT								
CCME TVHs and TEHs								
CCME Total Hydrocarbons								
F1 (C6-C10)	<5		5	mg/kg		29-SEP-03		
F1-BTEX	<5		5	mg/kg		29-SEP-03		
F2 (C10-C16)	19		5	mg/kg		29-SEP-03		
F2-Naphth	19		5	mg/kg		29-SEP-03		
F3 (C16-C34)	98		5	mg/kg		29-SEP-03		
F3-PAH	98		5	mg/kg		29-SEP-03		
F4 (C34-C50)	22		5	mg/kg		29-SEP-03		
Total Hydrocarbons (C6-C50)	140		5	mg/kg		29-SEP-03		
Chromatogram to baseline at nC50	NO					29-SEP-03		
CCME Total Extractable Hydrocarbons Prep/Analysis Dates					25-SEP-03	26-SEP-03	CTL	R145615
CCME BTEX								
Benzene	<0.03		0.03	mg/kg	26-SEP-03	29-SEP-03	EMP	R145894
Toluene	0.05		0.03	mg/kg	26-SEP-03	29-SEP-03	EMP	R145894
Ethylbenzene	<0.03		0.03	mg/kg	26-SEP-03		EMP	R145894
Xylenes	<0.03		0.03	mg/kg	26-SEP-03	29-SEP-03	EMP	R145894
Note: DL RAISED DUE TO HIGH MOISTURE CONTENT								
Cyanide, Total	0.61		0.1	ug/g		30-SEP-03	SEN	R146339
% Moisture	53		0.1	ug/g %		23-SEP-03	BDH	R140339 R144772
Ammonia-N	4		1			25-SEP-03		R144772 R145389
				mg/kg			TL	
Mercury (Hg)	<0.05		0.05	mg/kg		25-SEP-03	MX	R145372
Oil-Gravimetric	600		100	mg/kg		26-SEP-03	JME	R145555
Phenols (4AAP)	0.07		0.03	mg/kg		26-SEP-03	STW	R145683
Silicon (Si)	1180		50	mg/kg		29-SEP-03	HAS	R146001
Total Kjeldahl Nitrogen	0.18		0.02	%	25-SEP-03	25-SEP-03	HSL	R145463
Phosphorus, Total	600		90	mg/kg	26-SEP-03	26-SEP-03	BEM	R145568
Total Organic Carbon Organic Carbon								
	2.4	1	0.1	%	125 CED 02	25-SEP-03	HSL	R145638

Total Org () Metals (IC) / / / / / / / / / / / / / / / / / /	SEDIMENT anic Carbon Drganic Matter	4.1 <0.2 7140 4.8 8 123 0.5		0.2 0.2 50 0.1	% mg/kg mg/kg	25-SEP-03	25-SEP-03 25-SEP-03	HSL	R145638 R145372
Sample Date: 1 Matrix: 5 Total Org (Metals (IC 5 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7	8-SEP-03 15:50 SEDIMENT anic Carbon Drganic Matter CP/MS) Silver (Ag) Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	<0.2 7140 4.8 8 123		0.2 50	mg/kg	25-SEP-03			
Matrix: S Total Org (Metals (IC S 4 4 4 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7	SEDIMENT anic Carbon Drganic Matter SP/MS) Silver (Ag) Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	<0.2 7140 4.8 8 123		0.2 50	mg/kg	25-SEP-03			
Total Org () Metals (IC) / / / / E E E E E () () () ()	anic Carbon Drganic Matter CP/MS) Silver (Ag) Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	<0.2 7140 4.8 8 123		0.2 50	mg/kg	25-SEP-03			
Metals (IC S A E E E E C C C C	Drganic Matter SP/MS) Silver (Ag) Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	<0.2 7140 4.8 8 123		0.2 50	mg/kg	25-SEP-03			
Metals (IC S A E E E E C C C C C	CP/MS) Silver (Ag) Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	<0.2 7140 4.8 8 123		0.2 50	mg/kg	25-SEP-03			
E E E C C C	Silver (Åg) Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	7140 4.8 8 123		50	0 0		25-SEP-03	MX	R145372
/ / E E E E C C C C	Aluminum (Al) Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	7140 4.8 8 123		50	0 0		20-0LF-00		
A E E E C C C	Arsenic (As) Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	4.8 8 123			mg/kg		25-SEP-03	MX	R145372 R145372
E E E C C	Boron (B) Barium (Ba) Beryllium (Be) Bismuth (Bi)	8 123			mg/kg		25-SEP-03	MX	R145372
E E C C	Barium (Ba) Beryllium (Be) Bismuth (Bi)	123		2	mg/kg		25-SEP-03	MX	R145372
E E C C	Beryllium (Be) Bismuth (Bi)			0.5	mg/kg		25-SEP-03	MX	R145372
E C C	Bismuth (Bi)	•••		0.2	mg/kg		25-SEP-03	MX	R145372
		<0.5		0.5	mg/kg		25-SEP-03	MX	R145372
		93900		100	mg/kg		25-SEP-03	мх	R145372
	Cadmium (Cd)	0.4		0.1	mg/kg		25-SEP-03	МХ	R145372
(Cobalt (Co)	9.0		0.1	mg/kg		25-SEP-03	MX	R145372
(Chromium (Cr)	16.0		0.2	mg/kg		25-SEP-03	МХ	R145372
(Copper (Cu)	18.6		0.5	mg/kg		25-SEP-03	MX	R145372
I	ron (Fe)	17600		200	mg/kg		25-SEP-03	MX	R145372
F	Potassium (K)	1730		50	mg/kg		25-SEP-03	MX	R145372
	/lagnesium (Mg)	15500		20	mg/kg		25-SEP-03	MX	R145372
1	Manganese (Mn)	372		1	mg/kg		25-SEP-03	MX	R145372
Ν	Molybdenum (Mo)	1.9		0.1	mg/kg		25-SEP-03	MX	R145372
	Sodium (Na)	300		100	mg/kg		25-SEP-03	MX	R145372
	Nickel (Ni)	26.5		0.5	mg/kg		25-SEP-03	MX	R145372
	.ead (Pb)	9.7		0.5	mg/kg		25-SEP-03	MX	R145372
	Selenium (Se)	0.4		0.2	mg/kg		25-SEP-03	MX	R145372
	Tin (Sn)	<2		2	mg/kg		25-SEP-03	MX	R145372
	Strontium (Sr)	166		1	mg/kg		25-SEP-03	MX	R145372
	Fitanium (Ti)	59		1	mg/kg		25-SEP-03	MX	R145372
	Fhallium (TI)	0.25		0.05	mg/kg		25-SEP-03	MX	R145372
	Jranium (U)	1.37		0.05	mg/kg		25-SEP-03 25-SEP-03	MX	R145372
	/anadium (V) Zinc (Zn)	23.2 75		0.2 5	mg/kg		25-SEP-03 25-SEP-03	MX MX	R145372
CCME PA		75		5	mg/kg		23-3LF-03	IVIA	R145372
	Naphthalene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
	Quinoline	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Phenanthrene	0.02		0.01	mg/kg	23-SEP-03		FWC	R144969
	Pyrene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(a)anthracene	<0.01	RAMB	0.01	mg/kg	23-SEP-03	1	FWC	R144969
E	Benzo(b)fluoranthene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
E	Benzo(k)fluoranthene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
E	Benzo(a)pyrene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
I	ndeno(1,2,3-cd)pyrene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
Γ	Dibenzo(a,h)anthracene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
Surr: N	Nitrobenzene d5	77		55-108	%		25-SEP-03	FWC	R144969
	2-Fluorobiphenyl	74		51-100	%	23-SEP-03	25-SEP-03	FWC	R144969
	o-Terphenyl d14	102		72-117	%	23-SEP-03	25-SEP-03	FWC	R144969
Detailed Sa	•								
	Chloride (Cl)	11		1	mg/L	26-SEP-03		DDN	R145681
ę	Sulphate (SO4)	60.5		0.5	mg/L	26-SEP-03	26-SEP-03	DDN	R145681
	C (Saturated Paste)								
	% Saturation	553		0.1	%		26-SEP-03	JZ	R145651
k	oH in Saturated Paste	7.0		0.1	pН		26-SEP-03	JZ	R145651

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
L131493-8 SITE SE								
Sample Date: 18-SEP-03 15:50								
Matrix: SEDIMENT								
Detailed Salinity								
pH and EC (Saturated Paste)								
Conductivity Sat. Paste	0.39		0.03	dS m-1		26-SEP-03	JZ	R145651
SAR								
Calcium (Ca)	47.9		0.5	mg/L		26-SEP-03	SIW	R145572
Potassium (K)	2.9		0.1	mg/L		26-SEP-03	SIW	R145572
Magnesium (Mg)	7.4		0.1	mg/L		26-SEP-03	SIW	R145572
Sodium (Na)	21		1	mg/L		26-SEP-03	SIW	R145572
SAR	0.8			SAR		26-SEP-03	SIW	R145572
L131493-9 SITE SW								
Sample Date: 18-SEP-03 16:20								
Matrix: SEDIMENT								
CCME TVHs and TEHs								
CCME Total Hydrocarbons								
F1 (C6-C10)	<5		5	mg/kg		29-SEP-03		
F1-BTEX	<5		5	mg/kg		29-SEP-03		
F2 (C10-C16)	17		5	mg/kg		29-SEP-03		
F2-Naphth	17		5	mg/kg		29-SEP-03		
F3 (C16-C34)	87		5	mg/kg		29-SEP-03		
F3-PAH	87		5	mg/kg		29-SEP-03		
F4 (C34-C50)	19		5	mg/kg		29-SEP-03		
Total Hydrocarbons (C6-C50)	120		5	mg/kg		29-SEP-03		
Chromatogram to baseline at nC50	YES					29-SEP-03		
CCME Total Extractable Hydrocarbons Prep/Analysis Dates					25-SEP-03	26-SEP-03	CTL	R145615
CCME BTEX								
Benzene	<0.01		0.02	mg/kg	26-SEP-03	29-SEP-03	EMP	R145894
Toluene	0.04		0.02	mg/kg	26-SEP-03		EMP	R145894
Ethylbenzene	<0.01		0.02	mg/kg		29-SEP-03	EMP	R145894
Xylenes	0.03		0.02	mg/kg	26-SEP-03	29-SEP-03	EMP	R145894
Note: raise DL due to moisture content								
Cyanide, Total	0.68		0.1	ug/g		30-SEP-03	SEN	R146339
% Moisture	48		0.1	%		23-SEP-03	BDH	R144772
Ammonia-N	5		1	mg/kg		25-SEP-03	TL	R145389
Mercury (Hg)	<0.05		0.05	mg/kg		25-SEP-03	MX	R145372
Oil-Gravimetric	400		100	mg/kg		10-OCT-03	JME	R145555
Phenols (4AAP)	0.17		0.03	mg/kg		26-SEP-03	STW	R145683
Silicon (Si)	1210		50	mg/kg		29-SEP-03	HAS	R146001
Total Kjeldahl Nitrogen	0.14		0.02	%	25-SEP-03		HSL	R145463
Phosphorus, Total	450		90	mg/kg	26-SEP-03		BEM	R145568
Total Organic Carbon	400		30	ing/ng		-000000		111-0000
Organic Carbon	1.5		0.1	%	25-SEP-03	25-SEP-03	HSL	R145638
Organic Matter	2.6		0.2	%	25-SEP-03		HSL	R145638
Metals (ICP/MS)								
Silver (Ag)	<0.2		0.2	mg/kg		25-SEP-03	МХ	R145372
Aluminum (Al)	6890		50	mg/kg		25-SEP-03	MX	R145372
Arsenic (As)	4.8		0.1	mg/kg		25-SEP-03	MX	R145372
Boron (B)	8		2	mg/kg		25-SEP-03	MX	R145372
Barium (Ba)	122		0.5	mg/kg		25-SEP-03	MX	R145372
	0.5	1	0.2	mg/kg	1	25-SEP-03	MX	R145372

Metals (I	SITE SW 18-SEP-03 16:20								1
Sample Date: Matrix: Metals (I	18-SEP-03 16:20								
Matrix: Metals (I									
•	SEDIMENT								
•									
	•				-				
	Bismuth (Bi)	<0.5		0.5	mg/kg		25-SEP-03	MX	R145372
	Calcium (Ca)	75000		100	mg/kg		25-SEP-03	MX	R145372
	Cadmium (Cd)	0.3		0.1	mg/kg		25-SEP-03	MX	R145372
	Cobalt (Co)	8.8		0.1	mg/kg		25-SEP-03	MX	R145372
	Chromium (Cr)	15.8		0.2	mg/kg		25-SEP-03	MX	R145372
	Copper (Cu)	20.1		0.5	mg/kg		25-SEP-03	MX	R145372
	Iron (Fe)	18000		200	mg/kg		25-SEP-03	MX	R145372
	Potassium (K)	1590		50	mg/kg		25-SEP-03	MX	R145372
	Magnesium (Mg)	13300		20	mg/kg		25-SEP-03	MX	R145372
	Manganese (Mn)	371		1	mg/kg		25-SEP-03	MX	R145372
	Molybdenum (Mo)	0.9		0.1	mg/kg		25-SEP-03	MX	R145372
	Sodium (Na)	200		100	mg/kg		25-SEP-03	MX	R145372
	Nickel (Ni)	23.5		0.5	mg/kg		25-SEP-03	MX	R145372
	Lead (Pb) Selenium (Se)	9.6		0.5	mg/kg		25-SEP-03 25-SEP-03	MX	R145372
	Selenium (Se) Tin (Sn)	0.3 <2		0.2 2	mg/kg		25-SEP-03 25-SEP-03	MX	R145372
				2	mg/kg		25-SEP-03 25-SEP-03	MX	R145372
	Strontium (Sr) Titanium (Ti)	148			mg/kg		25-SEP-03 25-SEP-03	MX	R145372
		79		1 0.05	mg/kg		25-SEP-03 25-SEP-03	MX	R145372
	Thallium (TI) Uranium (U)	0.21 0.91			mg/kg		25-SEP-03 25-SEP-03	MX	R145372
	Vanadium (V)	20.9		0.05 0.2	mg/kg mg/kg		25-SEP-03	MX MX	R145372 R145372
	Zinc (Zn)	93		0.2 5	mg/kg		25-SEP-03	MX	R145372 R145372
CCME P		55		5	iiig/kg		20-021-00	IVIA	1143372
	Naphthalene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
	Quinoline	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Phenanthrene	0.02		0.01	mg/kg	23-SEP-03		FWC	R144969
	Pyrene	<0.01	RAMB	0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(a)anthracene	0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(b)fluoranthene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(k)fluoranthene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Benzo(a)pyrene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
	Indeno(1,2,3-cd)pyrene	<0.01		0.01	mg/kg	23-SEP-03		FWC	R144969
	Dibenzo(a,h)anthracene	<0.01		0.01	mg/kg	23-SEP-03	25-SEP-03	FWC	R144969
Surr:	Nitrobenzene d5	67		55-108	%	23-SEP-03	25-SEP-03	FWC	R144969
Surr:	2-Fluorobiphenyl	65		51-100	%	23-SEP-03		FWC	R144969
Surr:	p-Terphenyl d14	102		72-117	%	23-SEP-03	25-SEP-03	FWC	R144969
Detailed S	alinity								
	Chloride (Cl)	3		1	mg/L	26-SEP-03		DDN	R145681
	Sulphate (SO4)	36.7		0.5	mg/L	26-SEP-03	26-SEP-03	DDN	R145681
pH and E	C (Saturated Paste)								
	% Saturation	955		0.1	%		26-SEP-03	JZ	R145651
	pH in Saturated Paste	7.0		0.1	рН		26-SEP-03	JZ	R145651
	Conductivity Sat. Paste	0.28		0.03	dS m-1		26-SEP-03	JZ	R145651
SAR								_	
	Calcium (Ca)	38.3		0.5	mg/L		26-SEP-03	SIW	R145572
	Potassium (K)	2.1		0.1	mg/L		26-SEP-03	SIW	R145572
	Magnesium (Mg)	5.9		0.1	mg/L		26-SEP-03	SIW	R145572
	Sodium (Na)	6		1	mg/L		26-SEP-03	SIW	R145572
	SAR	0.2			SAR		26-SEP-03	SIW	R145572

Sample Details/Parameters	Result	Qualifier	D.L.	Units	Extracted	Analyzed	By	Batch
Refer to Referenced Information for Qual	fiers (if any) and Metho	dology.						

Reference Information

Qualifier	Description			
н	Result falls within the	e 99% Confidence Interval (Lat	poratory Control Limits)	
	Result Adjusted For			
Methods Listed	(if applicable):			
ETL Test Code	Matrix	Test Description	Preparation Method Reference(Based On)	Analytical Method Reference(Based On
BTX,F1-ED	Water	BTEX and F1 (C6-C10)	EPA 5030	EPA 5030/8015&8260-P&T GC-MS
C-TOT-ORG-CL	Water	Total Organic Carbon		FID APHA 5310 B-Instrumental
C-TOT-ORG-WB	-SK Soil	Total Organic Carbon		CSSS (1993) p. 190-191
		otal and Organic Carbon (Wet iety of Soil Science. Lewis Put	Oxidation-Redox Titration Method). p. 190-191 blishers Anne Arbor, Ml.	. In: M.R. Carter (ed.). Soil Sampling and
CL-ED	Water	Chloride (Cl)		APHA 4500 CI E-Colorimetry
CL-SAR-CL	Soil	Chloride (CI) (Saturated P	aste)	APHA 4110 B-Ion Chromatography
CN-TOT-WT	Water	Cyanide, Total		EPA 9012(mod)
CN-TOT-WT	Soil	Cyanide, Total		EPA 9012(mod)
ETL-BTX,TVH-CC	CME-ED Soil	CCME BTEX	EPA 5030	CCME CWS-PHC Dec-2000 - Pub# 1310
ETL-ROUTINE-IC	P-ED Water	ICP metals and SO4 for row	putine	APHA 3120 B-ICP-OES
ETL-TEH-CCME-	ED Soil	CCME Total Extractable Hydrocarbons		CCME CWS-PHC Dec-2000 - Pub# 1310
F2-ED	Water	F2 (>C10-C16)		EPA 3510/8000-GC-FID
HG-EXT-LOW-ED	D Water	Mercury (Hg)-Extractable		EPA 6020
HG-LOW-ED	Soil	Mercury (Hg)	EPA 3050	EPA 6020
MET1-EXT-LOW-	ED Water	Extractable Trace Metals (Level)		EPA 6020
MET2-EXT-ED	Water	Extractable Major Metals		EPA 200.7
METAL-LOW-EX	D-ED Soil	Metals (ICP/MS)	EPA 3050	EPA 6020
N-TOTKJ-ED	Water	Total Kjeldahl Nitrogen		APHA 4500N-C -DigAuto- Colorimetry
N-TOTKJ-SK	Soil	Total Kjeldahl Nitrogen (O N)	rganic	CSSS 22.2-Titration
N2N3-ED	Water	Nitrate+Nitrite-N		APHA 4500 NO3H-Colorimetry
NH4-ED	Water	Ammonia-N		APHA4500NH3F Colorimetry
NH4-ED	Soil	Ammonia-N		APHA 4500 NH3F-Colorimetry
NO2-ED	Water	Nitrite-N		APHA 4500 NO2B-Colorimetry
NO3-ED	Water	Nitrate-N		APHA 4500 NO3H-Colorimetry
OGG-ED	Water	Oil and Grease-Gravimetr	ic	APHA 5520 B Hexane MTBE ext. Gravime
OGG-ED	Soil	Oil and Grease-Gravimetr	ic	APHA 5520 D-Soxhlet Extr. Gravimet
P-TOT-SK	Soil	Total Phosphorus - HNO3	3/HCIO4 ICP	SSSA (1996) p. 870-872
		digestion Digestion with Perchloric Acid. WI. Book series no. 5	p. 870-872. In: J.M. Bartels et al. (ed.) Methods	s of Soil Analysis: Part 3 Chemical Method
P-TOTAL-ED	Water	Phosphorus, Total		APHA4500-PBE Auto-Colorimetry
PAH-CCME-ED	Water	CCME PAHs	GC/MS	EPA 3510/8270-GC/MS
PAH-CCME-ED	Soil	CCME PAHs	GC/MS	EPA 3540/8270-GC/MS

DEH CHO BRIDGE 03-1370-021

L131493 CONTD.... PAGE 21 of 21

Reference Information

		*:	Laboratory Methods employe	d follow in-house procedures, which are
SO4-SAR-CL	Soil	Sulfate (SO4)		APHA 4110 B-Ion Chromatography
SI-EXT-ED	Water	Silicon (Si)-Extractable		EPA 200.7
SI-ED	Soil	Silicon (Si)	EPA 3050	EPA 200.7
SAT/PH/EC-CL	Soil	pH and EC (Saturated Paste)		CSSS, Chp. 18 - Saturation Extract
SAR-CALC-CL	Soil	SAR		CSSS 18.4-Calculation
PREP-MOISTURE-ED	Soil	% Moisture		Oven dry 105C-Gravimetric
PHENOLS-CL	Soil	Phenols (4AAP)		EPA MAY813355-Colorimteric
PHENOLS-CL	Water	Phenols (4AAP)		EPA 9066-Colorimetric
PH/EC/ALK-ED	Water	pH, Conductivity and Total Alkalinity		APHA 4500-H, 2510, 2320

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies.

Chain of Custody numbers:

60885

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
CL	Enviro-Test Laboratories - Calgary, Alberta Canada	a, ED	Enviro-Test Laboratories - Edmonton, Alberta, Canada
SK	Enviro-Test Laboratories - Saskatoon, Saskatchewan, Canada	WT	Enviro-Test Laboratories - Waterloo (Sentinel), Ontario, Can

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds. The reported surrogate recovery value provides a measure of method efficiency. The Laboratory warning units are determined under column heading D.L.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

< - Less than

D.L. - Detection Limit

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. UNLESS OTHERWISE STATED, SAMPLES ARE NOT CORRECTED FOR CLIENT FIELD BLANKS. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

Enviro-Test Laboratories has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, Enviro-Test Laboratories assumes no liability for the use or interpretation of the results.

Table A-2

Enviro-Test QC Report

Report Date: 27-OCT-03

Page 1 of 19

ENVIRO-TEST QC REPORT

Workorder: L131493

Client:	GOLDER ASSOCIATES LTD
	17312 106 AVE
	EDMONTON AB T5S 1H9

Contact: JIM CAMPBELL / M. DUNNIGAN

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX,F1-ED		Water							
Batch I	R145747								
WG141280-5	DUP		L131493-5						
Benzene			<0.0005	<0.0005	RPD-NA	mg/L	N/A	25	
EthylBenzene			<0.0005	<0.0005	RPD-NA	mg/L	N/A	10	
Toluene			<0.0005	<0.0005	RPD-NA	mg/L	N/A	21	
F1(C6-C10)			<0.1	<0.1	RPD-NA	mg/L	N/A	23	
Xylenes			<0.0005	<0.0005	RPD-NA	mg/L	N/A	22	2 27-SEP-03
WG141524-2 Benzene	LCS			97		%		7	1-125 27-SEP-03
EthylBenzene				106		%		7	2-115 27-SEP-03
Toluene				103		%		6	8-130 27-SEP-03
F1(C6-C10)				113		%		6	1-134 27-SEP-03
Xylenes				104		%		7	6-123 27-SEP-03
WG141524-1 Benzene	МВ			<0.0005		mg/L		0.	.0005 27-SEP-03
EthylBenzene				< 0.0005		mg/L			.0005 27-SEP-03
Toluene				<0.0005		mg/L		0.	.0005 27-SEP-03
F1(C6-C10)				<0.1		mg/L			.1 27-SEP-03
Xylenes				<0.0005		mg/L			.0005 27-SEP-03
C-TOT-ORG-CL		Water							
	R145696								
WG141670-5 Total Organic	DUP		L131493-4 8	7	J	mg/L	1	3.	.1 26-SEP-03
WG141670-1	LCS		0		0			0.	20-021-03
Total Organic				97		%		8	6-106 26-SEP-03
WG141670-2 Total Organic	MB Carbon			<1		mg/L		1	26-SEP-03
WG141670-6 Total Organic	MS Carbon		L131493-4	99		%		8	7-109 26-SEP-03
CL-ED		Water							
Batch I	R145187								
WG141077-5 Chloride (Cl)	DUP		L130553-1 27	25		mg/L	4.1	5	24-SEP-03
WG141077-7 Chloride (Cl)	DUP		L131128-4 16	16		mg/L	3.5	5	24-SEP-03
. ,						•		-	

Page 2 of 19

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit Ana	lyzed
CL-ED	Water							
Batch R145	187							
WG141077-9 Chloride (Cl)	DUP	L131621-4 17	17		mg/L	0.35	5	24-SEP-03
WG141077-2 L Chloride (Cl)	CS		96		%		75-125	24-SEP-03
WG141077-3 L Chloride (Cl)	CS		99		%		75-125	24-SEP-03
WG141077-1 N Chloride (Cl)	ИВ		<1		mg/L		1	24-SEP-03
WG141077-10 N Chloride (Cl)	MS	L131621-4	94	н	%		94-113	24-SEP-03
WG141077-6 N Chloride (Cl)	MS	L130553-1	92	н	%		94-113	24-SEP-03
WG141077-8 N Chloride (Cl)	MS	L131128-4	94	н	%		94-113	24-SEP-03
ETL-ROUTINE-ICP-E	D Water							
Batch R144	764							
	CRM		07		0/			
Calcium (Ca) Magnesium (Mg)			97 98		%		91-104	23-SEP-03
Potassium (K)			90 107		%		92-105	23-SEP-03
Sodium (Na)			107		%		89-111	23-SEP-03
Sulfate (SO4)			100		%		91-104 90-103	23-SEP-03 23-SEP-03
	DUP	L130944-16	100		70		30-103	23-3LF-03
Calcium (Ca)		3320	3290		mg/L	0.85	15	23-SEP-03
Magnesium (Mg)		85.5	82.0		mg/L	4.2	15	23-SEP-03
Potassium (K)		42.4	52.5	н	mg/L	21	18	23-SEP-03
Sodium (Na)		1730	1660		mg/L	4.3	15	23-SEP-03
Sulfate (SO4)		1440	1410		mg/L	1.8	15	23-SEP-03
WG140662-15 Calcium (Ca)	DUP	L131080-12 377	377		mg/L	0.0009	95 15	23-SEP-03
Magnesium (Mg)		361	358		mg/L	0.80	15	23-SEP-03
Potassium (K)		13.9	13.6		mg/L	1.9	18	23-SEP-03
Sodium (Na)		1950	1940		mg/L	0.40	15	23-SEP-03
Sulfate (SO4)		4880	4830		mg/L	1.2	15	23-SEP-03
WG140662-17 Calcium (Ca)	DUP	L131094-1 231	228		mg/L	1.4	15	23-SEP-03
Magnesium (Mg)		133	132		mg/L	0.98	15	23-SEP-03
Potassium (K)		26.9	26.5		mg/L	1.4	18	23-SEP-03
Sodium (Na)		624	610		mg/L	2.2	15	23-SEP-03
Sulfate (SO4)		1280	1210		mg/L	5.2	15	23-SEP-03

Report Date: 27-OCT-03

Page 3 of 19

Workorder: L131493									
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Ana	lyzed
ETL-ROUTINE-ICP-ED	Water								
Batch R144764									
WG140662-1 MB			<u>م ج</u>						
Calcium (Ca)			<0.5		mg/L			2.5	23-SEP-03
Magnesium (Mg)			<0.1		mg/L			0.5	23-SEP-03
Potassium (K)			<0.1		mg/L			0.5	23-SEP-03
Sodium (Na)			<1		mg/L			5	23-SEP-03
Sulfate (SO4)			<0.5		mg/L			2.5	23-SEP-03
WG140662-14 MS Calcium (Ca)		L130944-16	108		%			82-114	23-SEP-03
Magnesium (Mg)			102		%			88-111	23-SEP-03
Potassium (K)			103		%			87-122	23-SEP-03
Sodium (Na)			104		%			85-116	23-SEP-03
Sulfate (SO4)			97		%			81-114	23-SEP-03
WG140662-16 MS Calcium (Ca)		L131080-12	100		%				
Magnesium (Mg)			100		%			82-114	23-SEP-03
								88-111	23-SEP-03
Potassium (K)			102		%			87-122	23-SEP-03
Sodium (Na)			116	Н -	%			85-116	23-SEP-03
Sulfate (SO4)			137	E	%			81-114	23-SEP-03
WG140662-18 MS Calcium (Ca)		L131094-1	94		%			82-114	23-SEP-03
Magnesium (Mg)			97		%			88-111	23-SEP-03
Potassium (K)			96		%			87-122	23-SEP-03
Sodium (Na)			89		%			85-116	23-SEP-03
Sulfate (SO4)			93		%			81-114	23-SEP-03
F2-ED	Water								
Batch R145752									
WG141746-3 DUP F2 (>C10-C16)		L131493-2 <0.05	<0.05	RPD-NA	mg/L	N/A		59	26-SEP-03
WG141746-4 DUP		L131568-2			5		•		
F2 (>C10-C16)		<0.05	<0.05	RPD-NA	mg/L	N/A		59	26-SEP-03
WG141746-2 LCS F2 (>C10-C16)			100		%			64-124	26-SEP-03
WG141746-1 MB F2 (>C10-C16)			<0.05		mg/L			0.05	26-SEP-03
HG-EXT-LOW-ED	Water								
Batch R145050 WG140752-1 MB Mercury (Hg)-Extractable	9		<0.0001		mg/L			0.0005	23-SEP-03
MET1-EXT-LOW-ED	Water								

Report Date: 27-OCT-03

Page 4 of 19

			Worko	rder: L1314	93			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET1-EXT-LOW-ED	Water							
Batch R145050								
WG140752-1 MB			<0.0004		···· • //		0.00	
Antimony (Sb)			<0.0004		mg/L		0.00	
Arsenic (As) Barium (Ba)			<0.0004		mg/L		0.00	
. ,			<0.0001		mg/L		0.00	
Beryllium (Be)					mg/L		0.00	
Bismuth (Bi)			0.00020		mg/L		0.00	
Boron (B)			<0.002		mg/L		0.01	
Cadmium (Cd)			<0.0001		mg/L		0.00	
Chromium (Cr)			0.0007		mg/L		0.00	
Cobalt (Co)			<0.0001		mg/L		0.00	
Copper (Cu)			<0.0006		mg/L		0.00	
Lead (Pb)			<0.0001		mg/L		0.00	
Molybdenum (Mo)			<0.0001		mg/L		0.00	
Nickel (Ni)			0.0002		mg/L		0.00	
Phosphorus (P)			<0.01		mg/L		0.01	
Selenium (Se)			<0.0004		mg/L		0.00	
Silver (Ag)			<0.0002		mg/L		0.00	
Strontium (Sr)			<0.0001		mg/L		0.00	
Thallium (TI)			0.00014		mg/L		0.00	
Tin (Sn)			<0.0002		mg/L		0.00	1 23-SEP-03
Titanium (Ti)			<0.0003		mg/L		0.00	15 23-SEP-03
Uranium (U)			<0.0001		mg/L		0.00	05 23-SEP-03
Vanadium (V)			<0.0001		mg/L		0.00	05 23-SEP-03
Zinc (Zn)			<0.002		mg/L		0.01	23-SEP-03
IET2-EXT-ED	Water							
Batch R145296								
WG140910-4 DUP		L131493-4	07.0					
Calcium (Ca)		38.4	37.8		mg/L	1.5	20	24-SEP-03
Iron (Fe)		2.12	2.00		mg/L	5.9	15	24-SEP-03
Magnesium (Mg)		7.54	7.11		mg/L	5.9	20	24-SEP-03
Manganese (Mn)		0.183	0.173		mg/L	5.6	20	24-SEP-03
Potassium (K)		1.1	1.1		mg/L	0.28		24-SEP-03
Sodium (Na)		5.0	5.0	J	mg/L	0.0	1.5	24-SEP-03
WG140910-1 MB Calcium (Ca)			<0.5		mg/L		0.5	24-SEP-03
Iron (Fe)			<0.005		mg/L		0.02	5 24-SEP-03
Magnesium (Mg)			<0.01		mg/L		0.01	24-SEP-03
Manganese (Mn)			<0.001		mg/L		0.00	1 24-SEP-03

Page 5 of 19

Workorder: L131493									
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Ana	lyzed
MET2-EXT-ED	Water								
Batch R145296 WG140910-1 MB Potassium (K)			<0.1		mg/L			0.1	24-SEP-03
Sodium (Na)			<0.5		mg/L			0.5	24-SEP-03
WG140910-5 MS Calcium (Ca)		L131493-4	102	E	%			75-125	24-SEP-03
Iron (Fe)			97		%			86-108	24-SEP-03
Magnesium (Mg)			98	Е	%			75-125	24-SEP-03
Manganese (Mn)			97	Е	%			75-125	24-SEP-03
Potassium (K)			105		%			75-125	24-SEP-03
Sodium (Na)			102		%			75-125	24-SEP-03
N-TOTKJ-ED	Water								
Batch R145102									
WG140859-4 DUP Total Kjeldahl Nitrogen		L131453-2 0.6	0.6	J	mg/L	0.0		0.61	24-SEP-03
WG140859-2 LCS Total Kjeldahl Nitrogen			100		%			73-131	24-SEP-03
WG140859-1 MB Total Kjeldahl Nitrogen			<0.2		mg/L			0.2	24-SEP-03
N2N3-ED	Water								
Batch R144881 WG140776-3 LCS Nitrate+Nitrite-N			99		%			00.405	
WG140776-1 MB Nitrate+Nitrite-N			<0.1		/s mg/L			88-105 0.1	23-SEP-03 23-SEP-03
WG140776-4 MS Nitrate+Nitrite-N		L131493-5	89	н	%			90-108	23-SEP-03
WG140776-6 MS Nitrate+Nitrite-N		L131668-1	89	н	%			90-108	23-SEP-03
WG140776-5 MSD Nitrate+Nitrite-N		WG140776-4 89	90		%	0.12		5	23-SEP-03
WG140776-7 MSD Nitrate+Nitrite-N		WG140776-6 89	90		%	0.86		5	23-SEP-03
NH4-ED	Water								
Batch R144913									
WG140695-2 LCS Ammonia-N			104		%			89-116	23-SEP-03
Ammonia-N			104		%			89-116	23-SEP-03
WG140695-1 MB Ammonia-N			<0.05		mg/L			0.05	23-SEP-03
Ammonia-N			<0.05		mg/L			0.05	23-SEP-03
WG140695-4 MS		L131493-5							

Page 6 of 19

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit A	nalyzed
NH4-ED		Water							
Batch R1	44913								
WG140695-4	MS		L131493-5						
Ammonia-N				105		%		65-132	23-SEP-03
NO2-ED		Water							
Batch R1	44881								
WG140776-3 Nitrite-N	LCS			94	н	%		94-108	23-SEP-03
WG140776-1	МВ								
Nitrite-N				<0.05		mg/L		0.05	23-SEP-03
WG140776-4 Nitrite-N	MS		L131493-5	96		%		93-105	23-SEP-03
WG140776-6	MS		L131668-1						
Nitrite-N				97		%		93-105	23-SEP-03
WG140776-5	MSD		WG140776-4						
Nitrite-N			96	98		%	1.5	5	23-SEP-03
WG140776-7 Nitrite-N	MSD		WG140776-6 97	98		%	1.1	5	23-SEP-03
OGG-ED		Water							
Batch R1	45358								
WG141293-2 Oil and Grease	LCS			86		%		70.400	
				00		76		79-100	25-SEP-03
WG141293-1 Oil and Grease	MB			<1		mg/L		1	25-SEP-03
P-TOTAL-ED		Water		••				·	20 021 00
	45454	water							
Batch R1 WG140998-8	45154 DUP		1 121254 0						
Phosphorus, To			L131354-2 0.03	0.03	J	mg/L	0.00	0.061	24-SEP-03
WG140998-4	LCS				-	5	0.00	0.001	2.52.50
Phosphorus, To				96		%		87-109	24-SEP-03
WG140998-1	MB								
Phosphorus, To				<0.02		mg/L		0.02	24-SEP-03
WG140998-9	MS		L131394-7						
Phosphorus, To				108		%		80-120	24-SEP-03
PAH-CCME-ED		Water							
Batch R1	44969								
WG140479-2	LCS			-					
Acenaphthene				67		%		66-103	
Acridine				73		%		65-114	24-SEP-03
Anthracene				70	Н	%		71-106	24-SEP-03
Benzo(a)anthrac	ene			68	н	%		69-112	24-SEP-03
Benzo(a)pyrene				70		%		66-111	24-SEP-03

Report Date: 27-OCT-03

Page 7 of 19

Test	Matrix Reference	Result	Qualifier	Units R	PD Lin	nit Anal	yzed
PAH-CCME-ED	Water						
Batch R144969							
WG140479-2 LCS							
Benzo(b)fluoranthene		95		%		66-103	24-SEP-03
Benzo(k)fluoranthene		90		%		63-111	24-SEP-03
Chrysene		74		%		66-114	24-SEP-03
Dibenzo(a,h)anthracene		72		%		63-111	24-SEP-03
Fluoranthene		78		%		68-113	24-SEP-03
Fluorene		72		%		66-109	24-SEP-03
Indeno(1,2,3-cd)pyrene		63	Н	%		64-112	24-SEP-03
Naphthalene		69		%		65-107	24-SEP-03
Phenanthrene		72		%		70-114	24-SEP-03
Pyrene		79		%		68-121	24-SEP-03
Quinoline		78		%		70-110	24-SEP-03
WG140479-1 MB Acenaphthene		<0.0000	1	mg/L		0.00001	
Acridine		<0.0000		mg/L		0.00001	24-SEP-03
Anthracene		<0.0000		mg/L		0.00001	24-SEP-03
Benzo(a)anthracene		<0.0000				0.00001	24-SEP-03
Benzo(a)pyrene		<0.0000		mg/L		0.00001	24-SEP-03
Benzo(b)fluoranthene		<0.0000		mg/L		0.00001	24-SEP-03
		<0.0000		mg/L		0.00001	24-SEP-03
Benzo(k)fluoranthene		<0.0000		mg/L			24-SEP-03
Chrysene Dibenzo(a,h)anthracene				mg/L		0.00001	24-SEP-03
Fluoranthene		<0.0000		mg/L		0.00001	24-SEP-03
Fluorene		<0.0000 <0.0000		mg/L		0.00001	24-SEP-03
				mg/L		0.00001	24-SEP-03
Indeno(1,2,3-cd)pyrene		<0.0000		mg/L		0.00001	24-SEP-03
Naphthalene Phenanthrene		<0.0000		mg/L		0.00001	24-SEP-03
		<0.0000		mg/L		0.00001	24-SEP-03
Pyrene		<0.0000		mg/L		0.00001	24-SEP-03
Quinoline		<0.0000	1	mg/L		0.00001	24-SEP-03
	Water						
Batch R144945							
WG140567-4 DUP Alkalinity, Total (as CaCO3) L131624- 9) 454	9 457		mg/L	0.75	5	23-SEP-03
Bicarbonate (HCO3)	554	558		mg/L	0.75	20	23-SEP-03
Carbonate (CO3)	<5	<5	RPD-NA	mg/L	0.75 N/A	20	23-SEP-03
Conductivity (EC)	1780	1780		uS/cm	0.28	5.5	23-SEP-03
Hydroxide (OH)	<5	<5	RPD-NA	mg/L	0.20 N/A	20	23-SEP-03
pH	7.5	7.5	J	pH	0.0	0.1	23-SEP-03
WG140567-5 DUP	7.5 L131817-{		J	PLI	0.0	0.1	20-057-03

Page 8 of 19

Workorder: L131493									
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit Ana	yzed	
PH/EC/ALK-ED	Water								
Batch R144945									
WG140567-5 DUP Alkalinity, Total (as CaCO	3)	L131817-5 398	400		ma/l	0.57	5		
Bicarbonate (HCO3)	3)	396 486	400		mg/L mg/L	0.57	5	23-SEP-03	
Carbonate (CO3)		400 <5	400 <5	RPD-NA	mg/L	0.58 N/A	20 20	23-SEP-03	
Conductivity (EC)		<5 1990	<0 1990	RPD-NA	uS/cm	0.10	5.5	23-SEP-03 23-SEP-03	
Hydroxide (OH)		<5	<5	RPD-NA	mg/L				
pH		7.3	7.3			N/A	20	23-SEP-03	
		7.5	1.5	J	рН	0.0	0.1	23-SEP-03	
WG140567-1 LCS Conductivity (EC)			99		%		97-105	23-SEP-03	
WG140567-2 LCS рН			7.0		pН		6.9-7.1	23-SEP-03	
WG140567-3 LCS Alkalinity, Total (as CaCO	3)		100		%		96-109	23-SEP-03	
PHENOLS-CL	Water								
Batch R145683									
WG141661-2 LCS Phenols (4AAP)			74	G	%		86-100	26-SEP-03	
WG141661-1 MB Phenols (4AAP)			<0.001		mg/L		0.001	26-SEP-03	
SI-EXT-ED	Water								
Batch R145296									
WG140910-4 DUP		L131493-4							
Silicon (Si)-Extractable		2.2	2.1		mg/L	6.9	20	24-SEP-03	
WG140910-1 MB									
Silicon (Si)-Extractable			<0.1		mg/L		0.1	24-SEP-03	
WG140910-5 MS Silicon (Si)-Extractable		L131493-4	97		%		75-125	24-SEP-03	
C-TOT-ORG-WB-SK	Soil								
Batch R145638									
WG141253-1 DUP		L131493-8			<i>c.</i>				
Organic Carbon		2.4	2.0		%	18	20	25-SEP-03	
Organic Matter		4.1	3.4	Н	%	19	15	25-SEP-03	
WG141253-2 IRM Organic Matter			4.1		%		3.5-4.3	25-SEP-03	
CL-SAR-CL	Soil								
Batch R145681									
WG141664-10 DUP Chloride (Cl)		L131573-49 236	227		mg/L	3.7	10	27-SEP-03	
WG141664-4 DUP Chloride (Cl)		L131573-4 464	477		mg/L	2.8	10	26-SEP-03	
WG141664-6 DUP		L131573-6							
		-							

Page 9 of 19

est I	Matrix Reference	Result	Qualifier	Units	RPD Lim	nit Ana	lyzed
CL-SAR-CL	Soil						
Batch R145681							
WG141664-6 DUP Chloride (Cl)	L131573-6 1180	1240		mg/L	4.2	10	26-SEP-03
WG141664-7 DUP Chloride (Cl)	L131573-28 933	939		mg/L	0.65	10	26-SEP-03
WG141664-8 DUP Chloride (Cl)	L131573-29 911	878		mg/L	3.6	10	26-SEP-03
WG141664-9 DUP Chloride (Cl)	L131573-30 343	343		mg/L	0.16	10	26-SEP-03
WG141664-3 IRM Chloride (Cl)		86		%		84-118	26-SEP-03
WG141664-1 LCS Chloride (Cl)		95		%		92-112	26-SEP-03
WG141664-2 MB Chloride (Cl)		<1		mg/L		1	26-SEP-03
WG141664-11 MS Chloride (Cl)	L131573-49	99		%		89-111	27-SEP-03
WG141664-5 MS Chloride (Cl)	L131573-4	104		%		89-111	26-SEP-03
ETL-BTX,TVH-CCME-ED	Soil						
Batch R145894							
WG141909-2 LCS		75		0/			
Benzene Ethylbenzene		75 101		%		60-122	29-SEP-03
Toluene		98		%		64-124	29-SEP-03
TVH: (C6-C10 / No BTEX (Correction)	118		%		61-126 59-128	29-SEP-03 29-SEP-03
Xylenes		106		%		68-122	29-SEP-03
WG141909-1 MB						00 122	20 021 00
Benzene		<0.01		mg/kg		0.01	29-SEP-03
Ethylbenzene		<0.01		mg/kg		0.01	29-SEP-03
Toluene		<0.01		mg/kg		0.01	29-SEP-03
TVH: (C6-C10 / No BTEX (Correction)	<5		mg/kg		5	29-SEP-03
Xylenes		<0.01		mg/kg		0.01	29-SEP-03
Batch R145900 WG140387-5 DUP Benzene	L131493-7 <0.01	<0.04	RPD-NA	mg/kg	N/A	42	20 SED 02
Ethylbenzene	<0.01	<0.04		mg/kg	N/A N/A		29-SEP-03
Toluene	<0.01	<0.04 0.04	RPD-NA			48	29-SEP-03
TVH: (C6-C10 / No BTEX (0.04 <5	RPD-NA	mg/kg mg/kg	N/A	39	29-SEP-03
	-		RPD-NA		N/A	41	29-SEP-03
Xylenes COMMENTS: raise DL WG141935-2 LCS	0.03 due to moisture content	0.05	RPD-NA	mg/kg	N/A	52	29-SEP-03

Report Date: 27-OCT-03 Page 10 of 19

ENVIRO-TEST QC REPORT

Workorder: L131493

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
ETL-BTX,TVH-CCME-ED	Soil								
Batch R145900 WG141935-2 LCS Benzene			70		0/				
Ethylbenzene			79 120		%			50-122	29-SEP-03
Toluene			95		%			64-124	29-SEP-03
TVH: (C6-C10 / No BTE	X Correction)		93 93		%			51-126	29-SEP-03
Xylenes	X Correction)		93 88		%			59-128	29-SEP-03
WG141935-1 MB			00		70		t	68-122	29-SEP-03
Benzene			<0.01		mg/kg		().01	29-SEP-03
Ethylbenzene			<0.01		mg/kg		().01	29-SEP-03
Toluene			<0.01		mg/kg		(0.01	29-SEP-03
TVH: (C6-C10 / No BTE	X Correction)		<5		mg/kg		Ę	5	29-SEP-03
Xylenes			<0.01		mg/kg		(0.01	29-SEP-03
WG140387-4 MS		L131319-19							
Benzene			82		%		4	17-118	08-OCT-03
Ethylbenzene			72		%		4	18-117	08-OCT-03
Toluene			73		%		4	18-120	08-OCT-03
TVH: (C6-C10 / No BTE	X Correction)		92		%		ţ	50-114	08-OCT-03
Xylenes			73		%		ŧ	50-117	08-OCT-03
ETL-TEH-CCME-ED	Soil								
Batch R145615									
WG141624-2 LCS TEH: (C10-C16)			66		%			58-118	25-SEP-03
TEH: (C16-C34)			66		%			58-118	25-SEP-03
TEH: (C34-C50)			66		%			58-118	25-SEP-03
WG141624-3 LCS			00		70			00-110	20-0LF-00
TEH: (C10-C16)			64		%		Ę	58-118	26-SEP-03
TEH: (C16-C34)			64		%		Ę	58-118	26-SEP-03
TEH: (C34-C50)			64		%		Ę	58-118	26-SEP-03
WG141624-1 MB									
TEH: (C10-C16)			<5		mg/kg		Ę		25-SEP-03
TEH: (C16-C34)			<5		mg/kg			5	25-SEP-03
TEH: (C34-C50)			<5		mg/kg		Ę	5	25-SEP-03
HG-LOW-ED	Soil								
Batch R145372									
WG141201-2 CRM Mercury (Hg)			91		%		Ę	58-142	25-SEP-03
WG141201-1 MB Mercury (Hg)			<0.05		mg/kg		().25	25-SEP-03
METAL-LOW-EXD-ED	Soil								

Report Date: 27-OCT-03

Page 11 of 19

Test	Matrix	Reference	Result	order: L13149	Units	RPD	Limit A	nalyzed
Test		Reference	Result	Quaimer	Units	RPD		anaryzeu
IETAL-LOW-EXD-ED	Soil							
Batch R145372 WG141201-2 CRM								
Aluminum (Al)			104		%		63-13	7 25-SEP-03
Arsenic (As)			97		%		88-11	
Barium (Ba)			111		%		83-11	
Boron (B)			100		%		48-15	
Cadmium (Cd)			100		%		78-12	
Calcium (Ca)			90		%		89-11	1 25-SEP-03
Chromium (Cr)			106		%		78-12	2 25-SEP-03
Cobalt (Co)			94		%		89-11	1 25-SEP-03
Copper (Cu)			88		%		81-11	
Iron (Fe)			90		%		77-12	3 25-SEP-03
Lead (Pb)			119		%		80-12	
Magnesium (Mg)			96		%		83-11	7 25-SEP-03
Manganese (Mn)			89		%		78-12	2 25-SEP-03
Nickel (Ni)			95		%		89-11	1 25-SEP-03
Potassium (K)			126	Н	%		77-12	3 25-SEP-03
Selenium (Se)			75		%		59-14	1 25-SEP-03
Sodium (Na)			89		%		77-12	3 25-SEP-03
Strontium (Sr)			96		%		90-11	1 25-SEP-03
Vanadium (V)			116		%		73-12	7 25-SEP-03
Zinc (Zn)			96		%		85-11	5 25-SEP-03
WG141201-1 MB								
Aluminum (Al)			<50		mg/kg		250	25-SEP-03
Arsenic (As)			<0.1		mg/kg		0.5	25-SEP-03
Barium (Ba)			<0.5		mg/kg		2.5	25-SEP-03
Beryllium (Be)			<0.2		mg/kg		1	25-SEP-03
Bismuth (Bi)			<0.5		mg/kg		2.5	25-SEP-03
Boron (B)			<2		mg/kg		10	25-SEP-03
Cadmium (Cd)			<0.1		mg/kg		0.5	25-SEP-03
Calcium (Ca)			<100		mg/kg		500	25-SEP-03
Chromium (Cr)			<0.2		mg/kg		1	25-SEP-03
Cobalt (Co)			<0.1		mg/kg		0.5	25-SEP-03
Copper (Cu)			<0.5		mg/kg		2.5	25-SEP-03
Iron (Fe)			<200		mg/kg		1000	25-SEP-03
Lead (Pb)			<0.5		mg/kg		2.5	25-SEP-03
Magnesium (Mg)			<20		mg/kg		100	25-SEP-03
Manganese (Mn)			<1		mg/kg		5	25-SEP-03
Molybdenum (Mo)			0.2		mg/kg		0.5	25-SEP-03

Report Date: 27-OCT-03 Page 12 of 19

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit A	nalyzed
METAL-LOW-EXD-ED	Soil							
Batch R145372								
WG141201-1 MB Nickel (Ni)			<0.5		~~~// <i>c</i> a		2.5	
Potassium (K)			<50		mg/kg mg/kg		2.5 250	25-SEP-03
Selenium (Se)			<0.2		mg/kg		1	25-SEP-03 25-SEP-03
Silver (Ag)			0.4		mg/kg		1	25-SEP-03 25-SEP-03
Sodium (Na)			<100		mg/kg		500	25-SEP-03 25-SEP-03
Strontium (Sr)			<1		mg/kg		5	25-SEP-03
Thallium (TI)			< 0.05		mg/kg		0.25	25-SEP-03
Tin (Sn)			<2		mg/kg		10	25-SEP-03
Titanium (Ti)			<1		mg/kg		5	25-SEP-03
Uranium (U)			<0.05		mg/kg		0.25	25-SEP-03
Vanadium (V)			<0.2		mg/kg		1	25-SEP-03
Zinc (Zn)			<5		mg/kg		25	25-SEP-03
N-TOTKJ-SK	Soil		-		5.9			20 02. 00
Batch R145463 WG140756-2 CRM	001		6.00					
Total Kjeldahl Nitrogen			0.22		%		.1925	25-SEP-03
WG140756-1 DUP Total Kjeldahl Nitrogen		L131394-4 1.70	1.67	J	%	0.03	0.1	25-SEP-03
NH4-ED	Soil							
Batch R145389 WG141261-5 DUP Ammonia-N		L131330-1 2	2	J	mg/kg	0	3.1	25-SEP-03
OGG-ED	Soil							
Batch R145555								
WG141519-3 DUP Oil-Gravimetric		L131260-30 14800	14900		mg/kg	0.80	22	26-SEP-03
WG141519-2 LCS Oil-Gravimetric			99		%		94-109	26-SEP-03
WG141519-1 MB Oil-Gravimetric			<100		mg/kg		100	26-SEP-03
P-TOT-SK	Soil							
Batch R145568 WG141146-3 CRM Phosphorus, Total			90		%		81-119	26-SEP-03
WG141146-1 DUP Phosphorus, Total		L131493-9 450	450		mg/kg	0.29		26-SEP-03
PAH-CCME-ED	Soil				- •			

Report Date: 27-OCT-03

Page 13 of 19

ENVIRO-TEST QC REPORT

Workorder: L131493 Qualifier RPD Test Matrix Result Units Limit Reference Analyzed PAH-CCME-ED Soil R144969 Batch WG140481-1 MB Benzo(a)anthracene <0.01 mg/kg 0.01 25-SEP-03 Benzo(a)pyrene <0.01 mg/kg 0.01 25-SEP-03 Benzo(b)fluoranthene <0.01 mg/kg 0.01 25-SEP-03 Benzo(k)fluoranthene <0.01 0.01 25-SEP-03 mg/kg Dibenzo(a,h)anthracene <0.01 mg/kg 0.01 25-SEP-03 Indeno(1,2,3-cd)pyrene <0.01 mg/kg 0.01 25-SEP-03 Naphthalene < 0.01 0.01 mg/kg 25-SEP-03 Phenanthrene <0.01 mg/kg 0.01 25-SEP-03 Pyrene <0.01 0.01 mg/kg 25-SEP-03 Quinoline <0.01 mg/kg 0.01 25-SEP-03 PHENOLS-CL Soil Batch R145683 WG141661-2 LCS Phenols (4AAP) 74 G % 86-100 26-SEP-03 WG141661-1 MB Phenols (4AAP) < 0.03 mg/kg 0.03 26-SEP-03 Soil SAR-CALC-CL R145572 Batch WG141558-10 DUP L131573-28 Calcium (Ca) 39.3 35.4 mg/L 10 10 26-SEP-03 Magnesium (Mg) 21.2 23.6 н mg/L 11 10 26-SEP-03 Potassium (K) 55.2 61.1 mg/L 10 10 26-SEP-03 Sodium (Na) 822 907 mg/L 9.8 10 26-SEP-03 WG141558-11 DUP L131573-30 Calcium (Ca) 58.2 57.2 mg/L 1.7 10 26-SEP-03 Magnesium (Mg) 24.2 24.2 mg/L 0.089 10 26-SEP-03 Potassium (K) 7.9 7.9 mg/L 0.047 10 26-SEP-03 Sodium (Na) 369 378 mg/L 26-SEP-03 2.4 10 WG141558-12 DUP L131573-49 Calcium (Ca) 49.7 mg/L 50.2 1.1 10 26-SEP-03 Magnesium (Mg) 14.2 14.0 mg/L 1.5 10 26-SEP-03 Potassium (K) 141 141 mg/L 0.35 10 26-SEP-03 Sodium (Na) 233 233 mg/L 0.074 10 26-SEP-03 WG141558-4 DUP L131573-29 Calcium (Ca) 16.7 16.7 mg/L 0.18 10 26-SEP-03 Magnesium (Mg) 10.9 10.9 mg/L 0.069 10 26-SEP-03 Potassium (K) 32.4 31.9 mg/L 10 26-SEP-03 1.5 Sodium (Na) 739 760 mg/L 2.8 10 26-SEP-03

Report Date: 27-OCT-03

Page 14 of 19

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit Ana	lyzed
SAR-CALC-CL		Soil							
Batch R14	5572								
WG141558-8 Calcium (Ca)	DUP		L131573-4 200	209		mg/L	4.5	10	
Magnesium (Mg)			200 50.6	52.0		mg/L	4.5 2.8	10 10	26-SEP-03 26-SEP-03
Potassium (K)			87.8	88.8		mg/L	1.2	10	26-SEP-03
Sodium (Na)			291	294		mg/L	1.2	10	26-SEP-03
WG141558-9 Calcium (Ca)	DUP		L131573-6 78.5	80.7		mg/L	2.8	10	26-SEP-03
Magnesium (Mg)			37.4	39.1		mg/L	4.4	10	26-SEP-03
Potassium (K)			102	106		mg/L	3.6	10	26-SEP-03
Sodium (Na)			843	885		mg/L	4.9	10	26-SEP-03
WG141558-3 Calcium (Ca)	IRM			95		%		88-110	26-SEP-03
Magnesium (Mg)				89		%		88-108	26-SEP-03
Potassium (K)				97		%		86-116	26-SEP-03
Sodium (Na)				92		%		87-109	26-SEP-03
WG141558-1 Calcium (Ca)	LCS			104		%		90-110	26-SEP-03
Magnesium (Mg)				99		%		90-110	26-SEP-03
Potassium (K)				99		%		90-110	26-SEP-03
Sodium (Na)				99		%		90-110	26-SEP-03
WG141558-2 Calcium (Ca)	MB			<0.5		mg/L		0.5	26-SEP-03
Magnesium (Mg)				<0.1		mg/L		0.1	26-SEP-03
Potassium (K)				<0.1		mg/L		0.1	26-SEP-03
Sodium (Na)				<1		mg/L		1	26-SEP-03
WG141558-5 Calcium (Ca)	MS		L131573-29	109		%		87-111	26-SEP-03
Magnesium (Mg)				99		%		90-108	26-SEP-03
Potassium (K)				104		%		89-105	26-SEP-03
Sodium (Na)				108		%		85-109	26-SEP-03
SAT/PH/EC-CL		Soil							
Batch R14	5651								
WG141638-4 % Saturation	DUP		L131573-1 46.3	46.3		%	0.0	10	26-SEP-03
Conductivity Sat.	Paste		7.74	7.92		dS m-1	2.3	10	26-SEP-03
pH in Saturated P	Paste		7.3	7.2	J	pH	0.1	0.2	26-SEP-03
WG141638-5 % Saturation	DUP		L131573-4 45.0	45.0		%	0.0	10	26-SEP-03
Conductivity Sat.	Paste		2.74	2.85		dS m-1	3.9	10	26-SEP-03
					J		0.0	0.2	

ENVIRO-TEST QC REPORT

Workorder: L131493

Test	Matrix	Reference	Result	Qualifier	Units	RPD Li	mit Ana	lyzed
SAT/PH/EC-CL	Soil							
Batch R145651								
WG141638-5 DUP pH in Saturated Paste		L131573-4 7.3	7.3	J	pН	0.0	0.2	26-SEP-03
WG141638-6 DUP % Saturation		L131573-6 25.0	25.0		%	0.0	10	26-SEP-03
Conductivity Sat. Paste		4.97	5.07		dS m-1	2.0	10	26-SEP-03
pH in Saturated Paste		8.0	8.0	J	pН	0.0	0.2	26-SEP-03
WG141638-7 DUP % Saturation		L131573-29 38.4	38.2		%	0.37	10	26-SEP-03
Conductivity Sat. Paste		3.90	3.72		dS m-1	4.7	10	26-SEP-03
pH in Saturated Paste		8.7	8.7	J	pН	0.0	0.2	26-SEP-03
WG141638-8 DUP % Saturation		L131573-30 50.0	49.7		%	0.62	10	26-SEP-03
Conductivity Sat. Paste		2.04	2.06		dS m-1	0.98	10	26-SEP-03
pH in Saturated Paste		7.7	7.7	J	pН	0.0	0.2	26-SEP-03
WG141638-9 DUP % Saturation		L131573-49 23.2	23.2		%	0.0	10	26-SEP-03
Conductivity Sat. Paste		1.88	1.83		dS m-1	2.7	10	26-SEP-03
pH in Saturated Paste		8.1	8.1	J	pН	0.0	0.2	26-SEP-03
WG141638-1 IRM % Saturation			101		%		90-110	26-SEP-03
Conductivity Sat. Paste			103		%		90-110	26-SEP-03
pH in Saturated Paste			7.2		рН		7-7.4	26-SEP-03
WG141638-2 IRM % Saturation			103		%		90-110	
Conductivity Sat. Paste			105		%		90-110 90-110	26-SEP-03
pH in Saturated Paste			7.3		₇₈ pH		90-110 7-7.4	26-SEP-03
WG141638-3 IRM								26-SEP-03
% Saturation			103		%		90-110	26-SEP-03
Conductivity Sat. Paste pH in Saturated Paste			106		%		90-110	26-SEP-03
-	Co.il		7.3		рН		7-7.4	26-SEP-03
SO4-SAR-CL	Soil							
Batch R145681 WG141664-10 DUP Sulphate (SO4)		L131573-49 325	320		mg/L	1.6	10	27-SEP-03
WG141664-4 DUP Sulphate (SO4)		L131573-4 253	259		mg/L	2.5	10	26-SEP-03
WG141664-6 DUP Sulphate (SO4)		L131573-6 507	529		mg/L	4.4	10	26-SEP-03
WG141664-7 DUP Sulphate (SO4)		L131573-28 351	354		mg/L	0.85	10	26-SEP-03
WG141664-8 DUP		L131573-29						

			Workor	der: L13149)3				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Anal	yzed
SO4-SAR-CL	Soil								
Batch R145681									
WG141664-8 DUP		L131573-29							
Sulphate (SO4)		304	291		mg/L	4.4		10	26-SEP-03
WG141664-9 DUP		L131573-30							
Sulphate (SO4)		119	130		mg/L	8.2		10	26-SEP-03
WG141664-3 IRM									
Sulphate (SO4)			99		%			86-118	26-SEP-03
WG141664-1 LCS									
Sulphate (SO4)			98		%			90-108	26-SEP-03
WG141664-2 MB									
Sulphate (SO4)			<0.5		mg/L			0.5	26-SEP-03
WG141664-11 MS		L131573-49							
Sulphate (SO4)			99		%			89-113	27-SEP-03
WG141664-5 MS		L131573-4							
Sulphate (SO4)			103		%			89-113	26-SEP-03
Product - Batch and Sample N	Number Rel	ations:							
BTX,F1-ED	1								
R145747		L131493-1	L131493-2	L13 [,]	1493-3	L131493-4		L131493	3-5
C-TOT-ORG-CL	1								
R145696		L131493-1	L131493-2	L13 [,]	1493-3	L131493-4		L131493	3-5
CL-ED	1								
R145187		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	3-5
CN-TOT-WT	1								
R145625		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	3-5
ETL-ROUTINE-ICP-ED	1								
R144764		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	3-5
F2-ED	1								
R145752		L131493-1	L131493-2	L13 [,]	1493-3	L131493-4		L131493	3-5
HG-EXT-LOW-ED	1								
R145050		L131493-1	L131493-2	L13 ⁻	1493-3	L131493-4		L131493	8-5
MET1-EXT-LOW-ED	1								
R145050		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	8-5
MET2-EXT-ED	1								
R145296		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	8-5
N-TOTKJ-ED	1								
R145102		L131493-1	L131493-2	L13′	1493-3	L131493-4		L131493	8-5
N2N3-ED	1								
R144881		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	8-5
NH4-ED	1								
R144913		L131493-1	L131493-2	L13′	1493-3	L131493-4		L131493	8-5
NO2-ED	1								
R144881		L131493-1	L131493-2	L13 ²	1493-3	L131493-4		L131493	8-5
NO3-ED	1								

Page 17 of 19

ENVIRO-TEST QC REPORT

Workorder: L131493

Γest	Matrix	Reference	Result	Qualifier Units	RPD I	imit Analyzed
Product - Batch and Samp	le Number Rel	ations:				
OGG-ED	1					
R145358		L131493-1	L131493-2	L131493-3	L131493-4	L131493-5
P-TOTAL-ED	1	1 1 2 1 4 0 2 1	1 1 2 1 4 0 2 2	1 1 2 1 1 0 2 2	1 1 2 1 4 0 2 4	1 1 2 1 4 0 2 5
R145154 PAH-CCME-ED	1	L131493-1	L131493-2	L131493-3	L131493-4	L131493-5
R144969	1	L131493-1	L131493-2	L131493-3	L131493-4	L131493-5
PH/EC/ALK-ED	1					
R144945	·	L131493-1	L131493-2	L131493-3	L131493-4	L131493-5
PHENOLS-CL	1					
R145683		L131493-1	L131493-2	L131493-3	L131493-4	L131493-5
SI-EXT-ED	1					
R145296		L131493-1	L131493-2	L131493-3	L131493-4	L131493-5
C-TOT-ORG-WB-SK	2					
R145638		L131493-6	L131493-7	L131493-8	L131493-9	
CL-SAR-CL	2					
R145681		L131493-6	L131493-7	L131493-8	L131493-9	
CN-TOT-WT	2					
R146339		L131493-6	L131493-7	L131493-8	L131493-9	
ETL-BTX,TVH-CCME-E	D 2	1 1 2 1 4 0 2 9	L131493-9			
R145894 ETL-BTX,TVH-CCME-E	D 2	L131493-8	L131493-9			
R145900	0 2	L131493-6	L131493-7			
ETL-TEH-CCME-ED	2					
R145615		L131493-6	L131493-7	L131493-8	L131493-9	
HG-LOW-ED	2					
R145372		L131493-6	L131493-7	L131493-8	L131493-9	
METAL-LOW-EXD-ED	2					
R145372		L131493-6	L131493-7	L131493-8	L131493-9	
N-TOTKJ-SK	2					
R145463		L131493-6	L131493-7	L131493-8	L131493-9	
NH4-ED	2					
R145389	-	L131493-6	L131493-7	L131493-8	L131493-9	
OGG-ED	2	1 1 2 1 4 0 2 6	1 1 2 1 4 0 2 7	1 1 21 102 0	1 1 2 1 4 0 2 0	
R145555 P-TOT-SK	2	L131493-6	L131493-7	L131493-8	L131493-9	
R145568	2	L131493-6	L131493-7	L131493-8	L131493-9	
PAH-CCME-ED	2	2101400 0	21014007	2101400 0	2101400 0	
R144969	-	L131493-6	L131493-7	L131493-8	L131493-9	
PHENOLS-CL	2					
R145683		L131493-6	L131493-7	L131493-8	L131493-9	
PREP-MOISTURE-ED	2					
R144772		L131493-6	L131493-7	L131493-8	L131493-9	
SAR-CALC-CL	2					
R145572		L131493-6	L131493-7	L131493-8	L131493-9	

Report Date: 27-OCT-03

Page 18 of 19

ENVIRO-TEST QC REPORT

Workorder: L131493

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Product - Batch and Sam	ple Number Rel	ations:						
SAT/PH/EC-CL	2							
R145651	I	L131493-6	L131493-7	L131	493-8	L131493-9		
SI-ED	2							
R146001	I	L131493-6	L131493-7	L131	493-8	L131493-9		
SO4-SAR-CL	2							
R145681	l	L131493-6	L131493-7	L131	493-8	L131493-9		

Legend:

- Limit 95% Confidence Interval (Laboratory Warning Limits)
- DUP Duplicate
- RPD Relative Percent Difference ((higher result-lower result)/Average, expressed as %)
- N/A Not Available
- LCS Laboratory Control Sample
- SRM Standard Reference Materials
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- ADE Average Desorption Efficiency
- MB Method Blank
- IRM Internal Reference Material
- CRM Certified Reference Material

Qualifier:

 RPD-NA
 Relative Percent Difference Not Available due to result(s) being less than detection limit.

 A
 Method blank exceeds acceptance limit. Blank correction not applied, unless the qualifier "RAMB" (result adjusted for method blank) appears in the Analytical Report.

 B
 Method blank exceeds acceptance limit. Blank correction not applied, unless the qualifier "RAMB" (result adjusted for method blank) appears in the Analytical Report.

- B Method blank result exceeds acceptance limit, however, it is less than 5% of sample concentration. Blank correction not applied.
- E Matrix spike recovery may fall outside the acceptance limits due to high sample background.
- F Silver recovery low, likely due to elevated choride levels in sample.
- G Outlier No assignable cause for nonconformity has been determined.
- H Result falls within the 99% Confidence Interval (Laboratory Control Limits)
- J Duplicate results and limit(s) are expressed in terms of absolute difference.
- K The sample referenced above is of a non-standard matrix type; standard QC acceptance criteria may not be achievable.

		July 2003			August 2003			September 2003	
Day	Mean	Range	Fluct.	Mean	Range	Fluct.	Mean	Range	Fluct.
1	23.41	21.60 - 24.20	2.60	20.86	19.10 - 22.70	3.60	14.71	12.00 - 16.80	4.80
2	21.09	18.90 - 23.40	4.50	16.03	12.70 - 19.10	6.40	15.51	12.60 - 18.80	6.20
3				12.86	11.40 - 14.50	3.10	16.42	14.80 - 18.10	3.30
4				14.20	11.80 - 17.20	5.40	14.43	11.50 - 16.90	5.40
5				14.57	12.10 - 16.90	4.80	14.75	13.30 - 16.60	3.30
6				15.62	13.20 - 19.90	6.70	14.48	12.00 - 17.40	5.40
7				15.64	12.90 - 18.90	6.00	15.84	14.60 - 17.80	3.20
8				14.33	9.90 - 18.00	8.10	15.32	13.60 - 17.40	3.80
9				9.92	8.00 - 12.10	4.10	14.84	12.60 - 16.80	4.20
10				9.76	8.90 - 10.60	1.70	14.28	12.60 - 16.30	3.70
11				12.10	9.90 - 15.70	5.80	12.97	10.60 - 15.70	5.10
12				15.26	12.30 - 18.60	6.30	12.22	10.20 - 14.30	4.10
13				17.32	14.50 - 21.00	6.50	11.62	7.30 - 14.00	6.70
14				16.86	14.60 - 19.70	5.10	6.85	5.90 - 8.00	2.10
15				19.17	15.90 - 23.40	7.50	5.12	3.40 - 7.00	3.60
16				20.46	18.60 - 22.40	3.80	5.48	2.80 - 8.10	5.30
17				18.57	17.40 - 20.60	3.20	6.18	4.70 - 7.80	3.10
18				17.96	15.20 - 20.30	5.10	6.10	5.30 - 6.80	1.50
19				16.50	15.10 - 17.80	2.70	7.35	5.90 - 9.30	3.40
20				16.53	14.60 - 18.80	4.20	5.60	2.80 - 8.10	5.30
21				17.07	15.50 - 19.40	3.90	2.96	1.90 - 4.40	2.50
22				16.15	13.90 - 18.60	4.70			
23				16.27	14.20 - 17.20	3.00			
24				13.80	12.70 - 15.10	2.40			
25				13.62	11.20 - 16.50	5.30			
26				12.78	9.90 - 15.50	5.60			
27				13.76	11.50 - 16.30	4.80			
28				14.74	12.40 - 17.50	5.10			
29				15.81	12.60 - 19.40	6.80			
30				15.73	13.30 - 18.00	4.70			
31				16.44	14.30 - 18.60	4.30			
Mean	22.25	18.90 - 24.20	3.55	15.51	8.00 - 23.40	4.86	11.10	1.90 - 18.80	4.10

Table A-3. Mean daily air temperature (°C)¹ and diurnal variation recorded² during July to September 2003 at the north causeway of the proposed Deh Cho Bridge.

¹Temperatures recorded with a continuous recorder

²Daily temperature fluctuation (maximum - minimum daily temperature)

		July 2003			August 2003			September 2003	
Day	Mean	Range	Fluct.	Mean	Range	Fluct.	Mean	Range	Fluct.
1	21.04	20.50 - 21.40	0.90	20.19	19.50 - 20.60	1.10	15.88	15.20 - 16.50	1.30
2	20.15	19.40 - 21.00	1.60	19.07	17.40 - 20.30	2.90	15.76	14.90 - 16.50	1.60
3				16.22	15.70 - 17.20	1.50	15.98	15.40 - 16.60	1.20
4				15.89	15.10 - 16.80	1.70	15.89	14.90 - 16.90	2.00
5				15.73	15.10 - 16.20	1.10	15.96	15.40 - 16.60	1.20
6				16.15	15.20 - 17.20	2.00	15.94	15.10 - 16.80	1.70
7				16.77	15.70 - 17.80	2.10	16.04	15.90 - 16.30	0.40
8				17.33	16.30 - 18.10	1.80	15.48	14.90 - 15.90	1.00
9				14.91	14.50 - 16.20	1.70	15.37	14.60 - 16.30	1.70
10				13.67	13.20 - 14.50	1.30	15.58	15.10 - 16.30	1.20
11				13.78	12.70 - 15.10	2.40	14.44	14.00 - 15.20	1.20
12				14.90	14.00 - 16.00	2.00	13.89	13.20 - 14.60	1.40
13				16.10	14.90 - 17.40	2.50	13.30	12.40 - 14.00	1.60
14				17.34	16.30 - 18.60	2.30	10.67	9.20 - 12.40	3.20
15				18.37	17.20 - 19.90	2.70	8.01	7.50 - 9.20	1.70
16				19.11	18.40 - 19.90	1.50	7.09	6.70 - 7.40	0.70
17				18.04	17.40 - 18.90	1.50	6.65	6.50 - 7.00	0.50
18				18.02	17.20 - 18.80	1.60	5.94	5.60 - 6.40	0.80
19				17.86	17.40 - 18.30	0.90	6.20	5.60 - 7.00	1.40
20				17.58	16.90 - 18.30	1.40	6.73	6.10 - 7.30	1.20
21				17.83	17.10 - 18.60	1.50	6.15	5.80 - 6.80	1.00
22				17.56	16.80 - 18.30	1.50			
23				17.38	16.90 - 17.80	0.90			
24				15.36	13.90 - 16.80	2.90			
25				13.81	12.90 - 14.90	2.00			
26				14.11	13.20 - 15.20	2.00			
27				14.43	13.50 - 15.50	2.00			
28				15.08	14.00 - 16.30	2.30			
29				15.85	14.80 - 16.90	2.10			
30				16.65	15.70 - 17.70	2.00			
31				16.29	15.70 - 16.90	1.20			
Mean	20.60	19.40 - 21.40	1.25	16.50	12.70 - 20.60	1.82	12.24	5.60 - 16.90	1.33

Table A-4. Mean daily water temperature (°C)¹ and diurnal variation recorded² during July to September 2003 at the south causeway of the proposed Deh Cho Bridge.

¹Temperatures recorded with a continuous recorder

²Daily temperature fluctuation (maximum - minimum daily temperature)

		July 2003			August 2003			September 2003	
Day	Mean	Range	Fluct.	Mean	Range	Fluct.	Mean	Range	Fluct.
1	22.76	22.10 - 23.10	1.00	20.76	20.50 - 21.40	0.90	15.98	15.50 - 16.50	1.00
2	21.87	21.40 - 22.40	1.00	19.52	17.70 - 20.60	2.90	15.79	15.20 - 16.30	1.10
3				16.16	15.70 - 17.50	1.80	16.11	15.50 - 16.60	1.10
4				15.10	14.50 - 15.70	1.20	16.34	15.70 - 17.10	1.40
5				15.03	14.30 - 15.70	1.40	16.26	15.70 - 16.80	1.10
6				16.11	15.10 - 17.40	2.30	16.07	15.40 - 16.60	1.20
7				17.39	16.50 - 18.40	1.90	16.14	16.00 - 16.50	0.50
8				18.15	17.50 - 18.80	1.30	15.59	15.20 - 16.00	0.80
9				16.14	15.40 - 17.40	2.00	15.29	14.80 - 16.00	1.20
10				14.11	13.30 - 15.20	1.90	15.52	15.10 - 16.00	0.90
11				13.65	12.70 - 14.80	2.10	14.69	14.50 - 15.50	1.00
12				15.10	14.20 - 16.30	2.10	14.08	13.50 - 14.50	1.00
13				16.65	15.70 - 17.80	2.10	13.56	12.70 - 14.30	1.60
14				17.76	16.80 - 18.80	2.00	11.35	10.10 - 12.70	2.60
15				18.70	17.80 - 19.90	2.10	8.87	8.10 - 10.10	2.00
16				19.26	18.80 - 19.70	0.90	7.51	7.30 - 8.00	0.70
17				18.28	17.70 - 19.10	1.40	7.11	6.80 - 7.40	0.60
18				18.14	17.50 - 18.80	1.30	6.32	5.90 - 7.00	1.10
19				17.94	17.50 - 18.40	0.90	6.33	5.80 - 7.00	1.20
20				17.67	17.10 - 18.10	1.00	7.03	6.40 - 7.50	1.10
21				17.72	17.20 - 18.30	1.10	6.82	6.50 - 7.40	0.90
22				17.80	17.20 - 18.40	1.20			
23				17.72	17.10 - 18.30	1.20			
24				15.41	14.20 - 16.90	2.70			
25				13.59	13.00 - 14.20	1.20			
26				13.69	12.90 - 14.50	1.60			
27				14.20	13.30 - 15.10	1.80			
28				15.18	14.30 - 16.20	1.90			
29				16.17	15.40 - 17.10	1.70			
30				16.84	16.20 - 17.50	1.30			
31				16.53	16.20 - 17.20	1.00			
Mean	22.32	21.40 - 23.10	1.00	16.66	12.70 - 21.40	1.62	12.51	5.80 - 17.10	1.15

Table A-5. Mean daily water temperature (°C)¹ and diurnal variation recorded² during July to September 2003 at the north causeway of the proposed Deh Cho Bridge.

¹Temperatures recorded with a continuous recorder

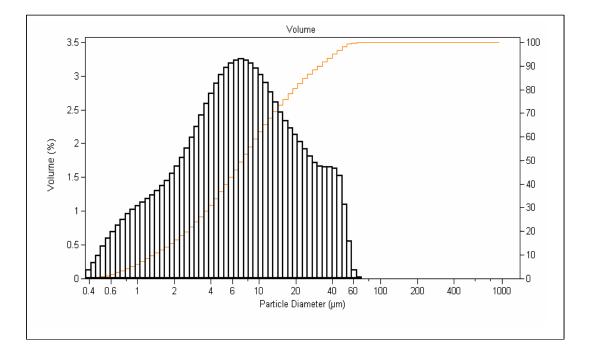
²Daily temperature fluctuation (maximum - minimum daily temperature)

	UTM (11V) NAD27				Air Temp.	Water	Dissolved	Turbidity	TSS ²	Conduc-		
Site	Location ¹	Easting	Northing	Date	Date Time		Temp. (°C) Oxygen (mg/L)	(NTU)	(mg/L)	tivity (μS/cm)	pH (units)	
South Causeway	u/s	471794	6791563	30-Jul-03	10:45	26.0	20.0	11.5	10.2	6	217.0	8.3
South Causeway	@ ferry dock	471730	6791600	30-Jul-03	10:45	26.0	20.0	11.5	11.7	8	217.0	8.3
North Causeway	d/s	471912	6792736	30-Jul-03	16:00	28.9	22.6	11.8	9.0	4	224.0	8.7
North Causeway	u/s	472086	6792779	30-Jul-03	16:02	28.9	23.1	11.9	8.0	<3	225.0	8.6
South Causeway	d/s	471536	6791572	31-Jul-03	14:00	23.6	19.3	8.9	11.5	8	216.0	8.1
South Causeway	u/s	471822	6791542	31-Jul-03	14:10	23.6	19.7	8.9	11.6	6	216.0	8.2
Main channel	118 m from SC	471794	6791727	1-Aug-03	15:47	22.3	16.1	9.5	12.7	6	218.0	8.1
Main channel	94 m from NC	471923	6792546	1-Aug-03	16:07	22.3	20.2	8.6	13.3	8	220.0	8.4
Main channel	456 m from SC	471839	6792063	1-Aug-03	16:20	22.1	16.8	9.2	11.8	6	220.0	8.0
Means						24.9	19.8	10.2	11.1	7	219.2	8.3
North Causeway	d/s	471912	6792736	18-Sep-03	14:00	6.7	6.6	-	17.0	-	251.0	7.6
North Causeway	u/s	472086	6792779	18-Sep-03	15:00	6.7	6.6	-	20.3	-	253.0	7.9
South Causeway	u/s	471822	6791542	18-Sep-03	15:50	6.5	5.9	-	25.3	-	196.0	8.0
South Causeway	d/s	471536	6791572	18-Sep-03	16:20	6.5	6.1	-	71.0	-	195.2	8.0
South Causeway	d/s	471536	6791572	18-Sep-03	14:45	6.5	6.1	-	67.9	173	190.8	7.6
South Causeway	u/s	471794	6791563	18-Sep-03	14:55	6.5	6.1	-	64.6	139	194.5	7.5
South Causeway	u/s	471822	6791542	20-Sep-03	13:20	8.0	6.5	-	16.6	15	175.2	8.0
South Causeway	d/s	471536	6791572	20-Sep-03	13:30	8.0	6.5	-	12.9	10	176.5	8.0
North Causeway	u/s	472086	6792779	20-Sep-03	13:45	8.0	6.5	-	12.9	10	182.9	7.9
North Causeway	d/s	471912	6792736	20-Sep-03	13:50	8.0	6.5	-	12.9	13	168.6	7.8
South Causeway	u/s	471794	6791563	21-Sep-03	11:00	7.0	6.0	-	10.8	10	159.3	7.2
South Causeway	d/s	471536	6791572	21-Sep-03	11:05	7.0	6.0	-	12.4	11	169.1	7.4
North Causeway	u/s	472086	6792779	21-Sep-03	11:15	7.0	6.0	-	11.8	9	179.8	7.3
North Causeway	d/s	471912	6792736	21-Sep-03	11:20	7.0	6.0	-	11.6	12	183.4	7.3
Means						7.1	6.2		26.3	40	191.1	7.7

Table A-6. Water quality data collected during summer fish sampling in vicinity of the proposed Deh Cho Bridge near Fort Providence, NT, 2003.

 ¹ NC = north causeway; SC = south causeway; u/s = upstream of causeway; d/s = downstream of causeway.
 ² TSS = total suspended solids. Summer samples were analysed by Taiga Environmental Laboratories (Yellowknife); the fall samples were analysed by Enviro-Test Laboratories (Edmonton).

Table A-7


Enviro-Test Particle Size Report

SITE = NE

File Name:	52135-03-0962_1
Sample ID:	L131493-6
Run number:	1
Comments:	1227648
Optical model:	Fraunhofer.rfz
LS 100Q	Fluid Module

Group ID: Enviro-Test Laboratories (Edmonton)

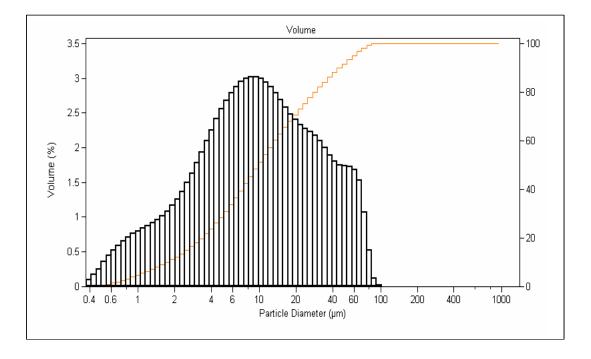
Operator: JN

Volume Statistics (Arithmetic)

52135-03-0962_1

Volume:		100%				
Mean:		11.43 µm	S.D.:	12.03 µm		
Median:	6	6.892 µm	Skewness:	1.661 Right	skewed	
Mode	7	7.083 µm	Kurtosis:	2.254 Leptokurtic		
d50	6	6.892 µm				
%<	10	25	50	75	90	
μm	1.314	3.063	6.892	15.13	29.91	

Volume	Particle
%	Diameter
	µm <
5	0.863
10	1.314
16	1.966
25	3.063
40	5.143
50	6.892
75	15.13
84	22.08
90	29.91
95	39.63
100	69.61


Channel Number	Channel Diameter	Channel Diameter	Channel Diameter	Diff. Volume	Cum. < Volume	Channel Number	Channel Diameter	Channel Diameter		Diff. Volum	Cum.< Volume
	(Lower) µm	(Center) µm	(Upper) µm	%	%		(Upper)	(Center)	(Lower)	%	%
1	•	•	•	0.13	0	43	18.86	19.76	20.71	2.13	80.5
2			0.452	0.23	0.13	44		21.69	22.73	2.03	82.6
3				0.33	0.36	45	22.73	23.81	24.95	1.92	84.7
4				0.48	0.69	46		26.14	27.39	1.81	86.6
5			0.598	0.59	1.17	47		28.7	30.07	1.72	88.4
6				0.69	1.76	48		31.5	33.01	1.66	90.1
7 8		0.688 0.755		0.79 0.88	2.45 3.24	49		34.58 37.97	36.24 39.78		91.8 93.4
o 9		0.755		0.88	3.24 4.11	50 51		41.68	39.78 43.67	1.65 1.63	93.4 95.1
10			0.868	1.02	5.07	52		41.00	43.07		95.1 96.7
11			1.047	1.02		53		50.22	52.62		98.2
12			1.149			54		55.13	57.77		99.3
13				1.18		55		60.52		0.13	99.9
14		1.321	1.384	1.24	9.47	56		66.44	69.61	0.013	99.99
15	1.384	1.451	1.52	1.3	10.7	57		72.94	76.42	0	100
16				1.37	12			80.07	83.89	0	100
17				1.45		59		87.9	92.09	0	100
18			2.011	1.55	14.8	60		96.49	101.1	0	100
19				1.67	16.4	61		105.9	111	0	100
20				1.79	18.1	62		116.3	121.8	0	100
21 22				1.93 2.09	19.8 21.8	63		127.6 140.1	133.7 146.8	0 0	100
23				2.09	21.8	64 65		140.1	140.0		100 100
23				2.42	26.1	66		168.9	176.9	0	100
25				2.59	28.5	67		185.4			100
26				2.75		68		203.5	213.2		100
27				2.89	33.9	69		223.4	234		100
28				3.02		70		245.2		0	100
29				3.12		71	256.9	269.2	282.1	0	100
30				3.2		72		295.5	309.6		100
31				3.24	46.1	73		324.4	339.9	0	100
32				3.25	49.4	74		356.1	373.1	0	100
33		7.775		3.24		75		390.9	409.6	0	100
34				3.19	55.8	76		429.2	449.7		100
35 36			9.818 10.78	3.12 3.02		77 78		471.1 517.2	493.6 541.9	0 0	100 100
30			10.76	3.02 2.9	65.2	78 79		517.2	541.9 594.8	0	100
38				2.76	68.1	80		623.3	653		100
39			14.26	2.61	70.8	81		684.2	716.8	0	100
40				2.47	73.5	82		751.1	786.9	0	100
41				2.34		83		824.5	863.9		100
42				2.23	78.3	84		905.1	948.3	0	100
							948.3				100

SITE = NW

File Name:	52135-03-0962_2
Sample ID:	L131493-7
Run number:	2
Comments:	1227656
Optical model:	Fraunhofer.rfz
LS 100Q	Fluid Module

Group ID: Enviro-Test Laboratories (Edmonton)

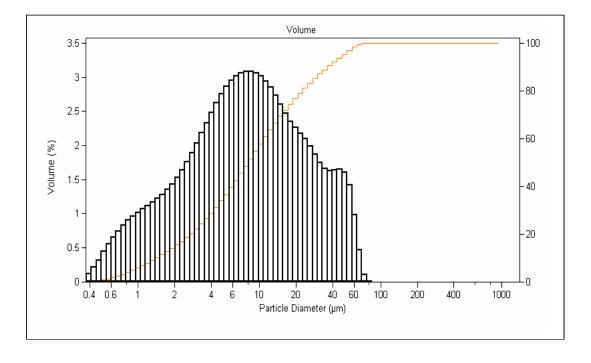
Operator: JN

Volume Statistics (Arithmetic)

52135-03-0962_2

	100%				
	16.45 µm	S.D.:	17.69 µm		
	9.437 µm	Skewness:	1.616 Right skewed		
	8.536 µm	Kurtosis:	2.033 Leptokurtic		
	9.437 µm				
10	25	50	75	90	
1.677	4.072	9.437	22.38	44.02	
		16.45 μm 9.437 μm 8.536 μm 9.437 μm 10 25	16.45 μmS.D.:9.437 μmSkewness:8.536 μmKurtosis:9.437 μm102550	16.45 μm S.D.: 17.69 μm 9.437 μm Skewness: 1.616 Right 8.536 μm Kurtosis: 2.033 Lepto 9.437 μm 25 50 75	

Volume	Particle
%	Diameter
	µm <
5	1.007
10	1.677
16	2.61
25	4.072
40	6.911
50	9.437
75	22.38
84	32.77
90	44.02
95	57.56
100	101.1


Channel Number	Channel Diameter	Channel Diameter	Channel Diameter	Diff. Volume	Cum. < Volume	Channel Number	Channel Diameter	Channel Diameter	Channel Diameter	Diff. Volum	Cum.< Volume
NULLIDEI	(Lower)	(Center)	(Upper)	%	%	Number	(Upper)	(Center)	(Lower)	%	%
	ùm í	μm	μm				(- F F - 7	()	()		
1		0.393			0	43		19.76	20.71	2.4	70.7
2						44		21.69	22.73	2.33	73.1
3				0.25		45		23.81	24.95	2.28	75.4
4				0.36		46		26.14	27.39	2.23	77.7
5 6		0.571 0.627	0.598 0.656	0.44 0.52	0.87 1.32	47 48		28.7 31.5	30.07 33.01	2.17 2.09	79.9 82.1
7		0.627		0.52	1.84	40 49		34.58	36.24	2.09	84.2
8		0.000		0.65		49 50		37.97	39.78	1.89	86.2
9		0.829		0.71	3.08	51		41.68	43.67	1.8	88.1
10		0.91		0.76		52		45.75	47.94	1.75	89.9
11	0.953			0.8	4.54	53	47.94	50.22	52.62	1.73	91.6
12	1.047			0.83	5.34	54		55.13	57.77	1.73	93.3
13		1.204		0.88		55		60.52		1.68	95.1
14		1.321		0.92		56		66.44	69.61	1.52	96.7
15				0.96	7.97	57		72.94	76.42	1.07	98.3
16				1.02		58		80.07	83.89	0.53	99.3
17		1.748		1.08		59		87.9 96.49	92.09	0.12	99.9
18 19		1.919 2.107		1.16 1.26		60 61		96.49 105.9	101.1 111	0.012 0	99.99 100
20		2.107		1.20	12.2	62		116.3	121.8	0	100
21				1.49		63		127.6	133.7	0	100
22		2.787		1.63		64		140.1	146.8	0	100
23				1.78		65		153.8	161.2		100
24		3.358	3.519	1.94	19.7	66	161.2	168.9	176.9	0	100
25		3.687		2.1	21.7	67		185.4			100
26				2.26	23.8	68			213.2		100
27				2.41	26	69		223.4	234	0	100
28				2.55		70		245.2		0	100
29		5.354		2.68	31 33.7	71	256.9 282.1	269.2 295.5	282.1 309.6	0	100
30 31		5.878 6.452		2.79 2.88	36.4	72 73		295.5 324.4	309.6	0 0	100 100
32		7.083		2.00		73		356.1	373.1	0	100
33		7.775		2.00		75		390.9	409.6	0	100
34				3.02		76		429.2	449.7	0	100
35				3.02		77	449.7	471.1	493.6	0	100
36		10.29			51.3	78		517.2		0	100
37		11.29		2.94	54.3	79	541.9	567.7		0	100
38				2.87	57.2	80		623.3	653	0	100
39		13.61		2.79	60.1	81		684.2	716.8	0	100
40		14.94		2.69	62.9	82		751.1	786.9	0	100
41				2.59		83		824.5	863.9	0	100
42	17.18	18	18.86	2.49	68.2	84	863.9 948.3	905.1	948.3	0	100 100
							940.3				100

SITE = SE

File Name:	52135-03-0962_3
Sample ID:	L131493-8
Run number:	3
Comments:	1227664
Optical model:	Fraunhofer.rfz
LS 100Q	Fluid Module

Group ID: Enviro-Test Laboratories (Edmonton)

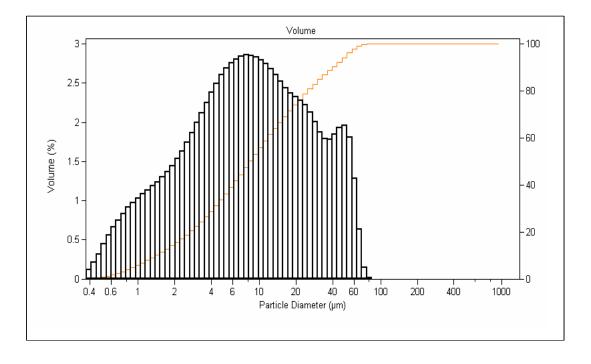
Operator: JN

Volume Statistics (Arithmetic)

52135-03-0962_3

Volume:		100%				
Mean:		13.27 µm	S.D.:	14.32 µm		
Median:		7.779 µm	Skewness:	1.679 Right skewed		
Mode		7.775 µm	Kurtosis:	2.321 Leptokurtic		
d50		7.779 µm				
%<	10	25	50	75	90	
μm	1.374	3.318	7.779	17.65	35.28	

Volume	Particle
%	Diameter
	µm <
5	0.888
10	1.374
16	2.092
25	3.318
40	5.713
50	7.779
75	17.65
84	25.9
90	35.28
95	46.86
100	83.89


Channel Number	Channel Diameter	Channel Diameter		Diff. Volume	Cum. < Volume	Channel Number	Channel Diameter	Channel Diameter	Channel Diameter	Diff. Volum	Cum.< Volume
	(Lower) µm	(Center) µm	(Upper) µm	%	%		(Upper)	(Center)	(Lower)	%	%
1	0.375	•		0.12	0	43	18.86	19.76	20.71	2.26	76.7
2			0.452	0.21	0.12	44	20.71	21.69	22.73	2.18	79
3				0.31	0.33	45		23.81	24.95	2.09	81.1
4				0.45	0.65	46		26.14	27.39	1.99	83.2
5			0.598	0.56	1.09	47		28.7	30.07	1.87	85.2
6				0.65	1.65	48		31.5	33.01	1.75	87.1
7				0.74		49		34.58	36.24	1.66	88.8
8		0.755		0.83	3.05	50		37.97	39.78	1.63	90.5
9		0.829		0.9	3.87	51		41.68	43.67	1.64	92.1
10			0.953	0.96	4.77	52		45.75	47.94		93.8
11 12			1.047 1.149	1.02 1.06		53 54		50.22 55.13	52.62	1.6 1.42	95.4 97
12				1.00	0.75 7.82	54 55		55.13 60.52	57.77 63.41	0.98	97 98.4
13		1.204	1.384	1.12		56		66.44	69.61	0.98	90.4 99.4
15			1.52	1.22		57		72.94	76.42	0.47	99.9
16				1.28	11.3	58		80.07	83.89	0.011	99.99
10				1.35		59		87.9	92.09	0.011	100
18				1.43		60		96.49	101.1	0	100
19				1.53	15.4	61		105.9	111	0	100
20				1.63	16.9	62		116.3	121.8	0	100
21				1.76		63		127.6	133.7	0	100
22	2.66	2.787		1.89	20.3	64	133.7	140.1	146.8	0	100
23			3.205	2.03	22.2	65	146.8	153.8	161.2	0	100
24				2.18	24.2	66		168.9	176.9	0	100
25				2.33		67		185.4	194.2	0	100
26				2.48	28.7	68		203.5	213.2	0	100
27				2.62		69		223.4	234	0	100
28				2.75		70		245.2	256.9	0	100
29		5.354		2.86	36.6	71	256.9	269.2	282.1	0	100
30		5.878 6.452		2.95 3.02	39.4 42.4	72		295.5 324.4	309.6 339.9	0 0	100
31 32				3.02	42.4 45.4	73 74		324.4 356.1	373.1	0	100 100
33		7.003		3.00	43.4	74		390.9	409.6	0	100
34				3.09	51.6	76		429.2	449.7	0	100
35				3.06	54.7	70		471.1	493.6	0	100
36			10.78	3.01	57.7	78		517.2		0	100
37			11.83	2.94	60.7	79		567.7	594.8	0	100
38				2.85	63.7	80		623.3	653	0	100
39			14.26	2.74		81		684.2	716.8	0	100
40				2.61	69.3	82		751.1	786.9	0	100
41	15.65	16.4	17.18	2.47	71.9		786.9	824.5	863.9	0	100
42	17.18	18	18.86	2.35	74.3	84		905.1	948.3	0	100
							948.3				100

SITE = SW

52135-03-0962_4
L131493-9
4
1227672
Fraunhofer.rfz
Fluid Module

Group ID: Enviro-Test Laboratories (Edmonton)

Operator: JN

Volume Statistics (Arithmetic)

52135-03-0962_4

Volume:		100%			
Mean:		14.26 µm	S.D.:	15.34 µm	
Median:		8.111 µm	Skewness:	1.541 Right	skewed
Mode		7.775 μm	Kurtosis:	1.672 Lepto	kurtic
d50		8.111 µm			
%<	10	25	50	75	90
μm	1.361	3.303	8.111	19.68	39.03

Volume	Particle
%	Diameter
	µm <
5	0.885
10	1.361
16	2.065
25	3.303
40	5.833
50	8.111
75	19.68
84	28.83
90	39.03
95	49.95
100	83.89

Channel	Channel	Channel	Channel	Diff.	Cum. <	Channel	Channel	Channel	Channel	Diff.	Cum.<
Number	Diameter (Lower)	Diameter (Center)	Diameter (Upper)	Volume %	Volume %	Number	Diameter (Upper)	Diameter (Center)	Diameter (Lower)	Volum %	Volume %
	μm	μm	μm	70	70		(Opper)	(oenter)	(LOWCI)	70	/0
1				0.12		43		19.76	20.71	2.32	74
2			0.452	0.21	0.12			21.69	22.73	2.28	76.3
3				0.32		45		23.81	24.95	2.22	78.6
4				0.45		46		26.14	27.39	2.13	80.8
5 6			0.598	0.56	1.1 1.66	47		28.7 31.5	30.07 33.01	2 1.88	82.9 84.9
7			0.656 0.721	0.66 0.75		48 49		34.58	36.24	1.00	86.8
8		0.755		0.73		43 50		37.97	39.78	1.78	88.6
9		0.829		0.91	3.9	51		41.68	43.67	1.85	90.4
10				0.98	4.82			45.75			92.2
11				1.03		53	47.94	50.22		1.96	94.2
12	1.047	1.097	1.149	1.08	6.82	54	52.62	55.13	57.77	1.81	96.1
13				1.14		55		60.52		1.28	97.9
14		1.321	1.384	1.19		56		66.44		0.63	99.2
15			1.52	1.24				72.94	76.42	0.15	99.8
16				1.3		58		80.07		0.015	99.99
17				1.37		59		87.9	92.09	0	100
18				1.44 1.53		60		96.49 105.9	101.1 111	0 0	100
19 20				1.53		61 62		105.9		0	100 100
20				1.03		63		127.6	133.7	0	100
22				1.86		64		140.1	146.8	0	100
23				1.99		65		153.8	161.2	0	100
24		3.358		2.12		66		168.9	176.9	0	100
25	3.519	3.687		2.25	26.5	67	176.9	185.4	194.2	0	100
26				2.38		68		203.5	213.2	0	100
27				2.5	31.1	69		223.4	234	0	100
28				2.6		70		245.2		0	100
29		5.354		2.69	36.2			269.2		0	100
30		5.878		2.76		72		295.5	309.6	0	100
31 32		6.452 7.083		2.81 2.84	41.6 44.4	73 74		324.4 356.1	339.9 373.1	0 0	100 100
32		7.063		2.84 2.85		74		390.9	409.6	0	100
34				2.85		76		429.2		0	100
35				2.83		70		471.1	493.6	0	100
36				2.79	55.8	78		517.2		0	100
37		11.29		2.74		79		567.7		0	100
38	11.83			2.68	61.4	80	594.8	623.3	653	0	100
39			14.26	2.61	64	81		684.2		0	100
40				2.52		82		751.1	786.9	0	100
41				2.44		83		824.5		0	100
42	17.18	18	18.86	2.37	71.6	84		905.1	948.3	0	100
							948.3				100

APPENDIX B

HABITAT DATA

		UTM (11)	V) NAD27		5 -	
Site	Location ¹	Easting	Northing	Date	Depth (m)	Velocity (m/s)
1	114 m from South Causeway	471830	6791725	1-Aug-03	Surface	1.06
					1.0	1.22
					2.0	0.95
					3.0	0.84
					3.5	0.67
					3.8 (bottom)	-
					Mean	0.9
2	216 m from South Causeway	471836	6791841	1-Aug-03	Surface	1.22
				-	1.0	1.39
					2.0	1.28
					3.0	1.11
					4.0	0.56
					4.4 (bottom)	-
					Mean	1.1
3	338 m from South Causeway	471834	6791956	1-Aug-03	Surface	1.55
_					1.0	1.50
					2.0	1.50
					3.0	1.44
					4.0	1.22
					4.3	0.95
					4.7 (bottom) Mean	-
4	470 m from Couth Coupourou	471040	6702052	1 Aug 02		1.4
4	470 m from South Causeway	471840	6792053	1-Aug-03	Surface	1.44
					1.0	1.39
					2.0	1.28
					3.0	1.17
					4.0	0.73
					4.3 (bottom)	-
					Mean	1.2
5	588 m from South Causeway	471844	6792203	1-Aug-03	Surface	1.66
					1.0	1.55
					2.0	1.55
					3.0	1.44
					4.0	1.44
					5.0	1.22
					5.7	1.06
					6.1 (bottom)	-
					Mean	1.4
6	728 m from South Causeway	471877	6792343	1-Aug-03	Surface	1.50
				Ũ	1.0	1.55
					2.0	1.61
					3.0	1.44
					4.0	1.39
					5.0	1.33
					6.0	1.17
					7.0	0.84
					7.3 (bottom)	
_	040	171000	0700/07	4 4	Mean	1.4
7	842 m from South Causeway	471890	6792427	1-Aug-03	Surface	1.44
					1.0	1.44
					2.0	1.44
					3.0	1.17
					4.0	1.28
					5.0	0.62
					5.5	0.34
					5.7 (bottom)	-
					Mean	1.1
8	86 m from North Causeway	471927	6792546	1-Aug-03	Surface	0.95
				-	1.0	1.06
					2.0	1.00
					3.0	0.95
					4.0	0.89
					5.0	0.62
					5.6	0.50
					5.9 (bottom)	-
					5.9 (bolloni) Mean	0.9
I				1	weall	0.9

Table B-1. Water velocity and depth data collected at the proposed Deh Cho Bridge 1 Aug, 2003.

APPENDIX C

FISH DATA

Trap Fork Capture Aaeina Captur Weight (g) Mesh Size Sample Species Length Se Date Site Location Comments Method Structure Direction Check # Code (mm) 18-Sep-03 ARG Mackenzie 126 129 ARGR ARGR 555 565 17-Sep-03 17-Sep-03 330 ES SC SC Mackenzie R 0 ES Mackenzie R 377 10 0 130 ARGR 378 705 10 FS SC 17-Sep-03 Mackenzie R 0 SC 17-Sep-03 131 ARGR 380 715 10 ES Mackenzie R 0 127 128 175 431 17-Sep-03 17-Sep-03 ARGR 396 720 10 ES SC Mackenzie R 0 ARGR ES 403 815 10 SC 1 Mackenzie R 0 18-Sep-03 19-Sep-03 4 BURB 102 FS Mackenzie R 0 BURB 261 FN 2 65 5 Mackenzie R Upst 0 423 430 BURB 381 315 500 FN FN 18-Sep-03 19-Sep-03 2 2 Dnst 4 Mackenzie R Regurgitated from NRPK BURB 5 6 5 0 433 Upst Mackenzie R 506 426 525 844 655 3080 20-Sep-03 19-Sep-03 BURB FN FN 2 2 Upst Mackenzie R 0 BURB ОТ Mackenzie R ST = 20 (BURB, LKWH) 14 Upst 1 385 EMSH 12 BS 17-Sep-03 3 Mackenzie R 0 531 EMSH 15 BS 20-Sep-03 9 9 9 Mackenzie R 0 20-Sep-03 20-Sep-03 536 EMSH 15 15 BS Mackenzie R n 551 EMSH BS Mackenzie R 0 908 EMSH 15 15 BS 21-Sep-03 11 Mackenzie R 0 944 21-Sep-03 EMSH BS 11 Mackenzie R 0 972 1010 EMSH 15 15 BS 21-Sep-03 21-Sep-03 12 12 Mackenzie R 0 0 EMSH BS Mackenzie R 374 448 EMSH 16 16 BS BS 17-Sep-03 19-Sep-03 3 5 Mackenzie R 0 0 EMSH Mackenzie R 20-Sep-03 21-Sep-03 625 EMSH 16 BS 10 Mackenzie R 0 EMSH 1001 16 BS Mackenzie R 12 0 1007 EMSH 16 BS 21-Sep-03 12 12 Mackenzie R 0 EMSH 21-Sep-03 1012 BS 16 Mackenzie R 0 1018 EMSH 16 17 BS 21-Sep-03 12 Mackenzie R 0 17-Sep-03 EMSH 381 BS Mackenzie R 0 3 987 222 EMSH 17 18 BS 21-Sep-03 17-Sep-03 12 Mackenzie R 0 0 EMSH BS Mackenzie R 1 226 227 17-Sep-03 17-Sep-03 EMSH 18 18 BS BS Mackenzie R 0 EMSH 0 Mackenzie R 1 382 EMSH 18 BS 17-Sep-03 3 Mackenzie R 0 491 EMSH BS 19-Sep-03 7 18 Mackenzie R 0 540 543 20-Sep-03 20-Sep-03 EMSH 18 BS 9 9 Mackenzie R n EMSH 18 BS Mackenzie R 0 598 EMSH 18 BS 20-Sep-03 10 Mackenzie R 0 610 EMSH 18 BS 20-Sep-03 10 Mackenzie R 0 626 921 EMSH 18 BS 20-Sep-03 21-Sep-03 10 Mackenzie R 0 EMSH BS 18 Mackenzie R 0 11 925 954 BS BS 21-Sep-03 21-Sep-03 EMSH 18 18 11 Mackenzie R 0 0 EMSH 11 Mackenzie R 21-Sep-03 21-Sep-03 957 EMSH 18 BS 11 Mackenzie R 0 EMSH 978 18 BS Mackenzie R 12 0 981 984 EMSH 18 BS 21-Sep-03 12 12 Mackenzie R n EMSH 21-Sep-03 BS 18 Mackenzie R 0 986 EMSH 18 BS 21-Sep-03 12 Mackenzie R 0 21-Sep-03 1000 EMSH 18 BS 12 Mackenzie R 0 1002 192 EMSH 18 BS 21-Sep-03 17-Sep-03 12 Mackenzie R 0 0 EMSH BS 19 Mackenzie R 1 220 221 17-Sep-03 17-Sep-03 EMSH 19 19 BS BS Mackenzie R 0 EMSH 0 Mackenzie R 1 441 936 EMSH 19 BS 19-Sep-03 5 Mackenzie R 0 EMSH BS 21-Sep-03 11 19 Mackenzie R 0 979 191 21-Sep-03 17-Sep-03 EMSH 19 20 BS 12 Mackenzie R Ô EMSH BS 1 Mackenzie R 0 224 379 EMSH 20 BS 17-Sep-03 Mackenzie R 0 EMSH 20 BS 17-Sep-03 3 Mackenzie R 0 380 453 EMSH 20 20 BS 17-Sep-03 19-Sep-03 3 5 Mackenzie R 0 EMSH BS Mackenzie R 0 530 534 BS BS 20-Sep-03 20-Sep-03 EMSH 20 20 9 9 Mackenzie R 0 0 EMSH Mackenzie R 537 538 EMSH 20 20 BS 20-Sep-03 20-Sep-03 9 9 Mackenzie R 0 0 EMSH BS Mackenzie R 542 545 EMSH 20 20 BS 20-Sep-03 9 9 Mackenzie R 0 EMSH 20-Sep-03 BS Mackenzie R 0 547 552 EMSH 20 BS 20-Sep-03 9 Mackenzie R 0 20 20-Sep-03 EMSH 9 BS Mackenzie R 0 560 EMSH 20 20 BS 20-Sep-03 9 10 Mackenzie R 0 575 EMSH BS 20-Sep-03 Mackenzie R 0 577 588 EMSH 20 20 BS BS 20-Sep-03 20-Sep-03 10 10 Mackenzie R 0 EMSH 0 Mackenzie R 589 591 EMSH 20 20 BS 20-Sep-03 10 10 Mackenzie R 0 20-Sep-03 0 EMSH BS Mackenzie R 592 EMSH 20 20 BS 20-Sep-03 20-Sep-03 10 Mackenzie R ٥ 593 EMSH BS Mackenzie R 10 0 594 EMSH 20 BS 20-Sep-03 10 Mackenzie R 0 596 20-Sep-03 EMSH 20 BS 10 Mackenzie R 0 597 EMSH 20 20 BS 20-Sep-03 10 Mackenzie R 0 615 20-Sep-03 EMSH BS 10 Mackenzie R 0 617 618 BS BS 20-Sep-03 20-Sep-03 EMSH 20 20 10 10 Mackenzie R 0 0 EMSH Mackenzie R 909 910 21-Sep-03 21-Sep-03 EMSH 20 20 BS 11 Mackenzie R 0 EMSH BS Mackenzie R 0 11 11 914 EMSH 20 20 BS 21-Sep-03 Mackenzie R 0 21-Sep-03 EMSH 915 BS 11 Mackenzie R 0 21-Sep-03 21-Sep-03 918 EMSH 20 BS 11 Mackenzie R 0 926 EMSH 20 BS Mackenzie R 11 0 927 EMSH 20 BS 21-Sep-03 11 Mackenzie R 0 930 20 21-Sep-03 EMSH BS Mackenzie R 0 11 935 938 21-Sep-03 21-Sep-03 EMSH 20 20 BS BS Mackenzie R 11 n EMSH Mackenzie R 0 11 939 EMSH 20 BS 21-Sep-03 11 Mackenzie R 0 942 20 BS 21-Sep-03 0 EMSH Mackenzie R 11 951 952 EMSH 20 20 BS 21-Sep-03 11 Mackenzie R 0 EMSH BS 21-Sep-03 Mackenzie R 11 0 956 EMSH 20 BS 21-Sep-03 11 Mackenzie R 0

Table C-1. Raw data for fish captured in the vicinity of the proposed Deh Cho Bridge, 2003.

Table C-1.	Raw data for fish	captured in the vicir	nity of the propose	d Deh Cho Bridge, 2003.

Sample	Species	Fork Length	Weight (g)	Sex	Capture Method	Ageing Structure	Date	Site	Mesh Size	Tra Direction	ар	Location	Capture Code	Comments
977	EMSH	(mm) 20			BS		21-Sep-03	12				Mackenzie R.	0	
982	EMSH	20			BS		21-Sep-03	12				Mackenzie R.	0	
990	EMSH	20			BS		21-Sep-03	12				Mackenzie R.	0	
998 1003	EMSH EMSH	20 20			BS BS		21-Sep-03 21-Sep-03	12 12				Mackenzie R. Mackenzie R.	0	
1005	EMSH	20			BS		21-Sep-03	12				Mackenzie R.	Ő	
1008	EMSH	20			BS		21-Sep-03	12				Mackenzie R.	0	
1009 1011	EMSH EMSH	20 20			BS BS		21-Sep-03 21-Sep-03	12 12				Mackenzie R. Mackenzie R.	0 0	
1020	EMSH	20			BS		21-Sep-03 21-Sep-03	12				Mackenzie R.	0	
184	EMSH	21			BS		17-Sep-03	1				Mackenzie R.	0	
188	EMSH EMSH	21			BS BS		17-Sep-03	1				Mackenzie R. Mackenzie R.	0	
297 378	EMSH	21 21			BS		17-Sep-03 17-Sep-03	2 3				Mackenzie R.	0 0	
383	EMSH	21			BS		17-Sep-03	3				Mackenzie R.	0	
384	EMSH	21			BS		17-Sep-03	3				Mackenzie R.	0	
404 409	EMSH EMSH	21 21			BS BS		17-Sep-03 17-Sep-03	4 4				Mackenzie R. Mackenzie R.	0	
469	EMSH	21			BS		19-Sep-03	5				Mackenzie R.	0	
487	EMSH	21			BS		19-Sep-03	7				Mackenzie R.	0	
573 576	EMSH EMSH	21 21			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	
595	EMSH	21			BS		20-Sep-03	10				Mackenzie R.	0	
627	EMSH	21			BS		20-Sep-03	10				Mackenzie R.	0	
928	EMSH	21			BS		21-Sep-03	11				Mackenzie R.	0	
932 940	EMSH EMSH	21 21			BS BS		21-Sep-03 21-Sep-03	11 11				Mackenzie R. Mackenzie R.	0	
943	EMSH	21			BS		21-Sep-03	11				Mackenzie R.	0	
946	EMSH	21			BS		21-Sep-03	11				Mackenzie R.	0	
953 958	EMSH EMSH	21 21			BS BS		21-Sep-03 21-Sep-03	11 11				Mackenzie R. Mackenzie R.	0 0	
970	EMSH	21			BS		21-Sep-03	12				Mackenzie R.	0	
974	EMSH	21			BS		21-Sep-03	12				Mackenzie R.	0	
983 985	EMSH EMSH	21 21			BS BS		21-Sep-03 21-Sep-03	12 12				Mackenzie R. Mackenzie R.	0	
988	EMSH	21			BS		21-Sep-03	12				Mackenzie R.	0	
989	EMSH	21			BS		21-Sep-03	12				Mackenzie R.	0	
1004 1013	EMSH EMSH	21 21			BS BS		21-Sep-03 21-Sep-03	12 12				Mackenzie R. Mackenzie R.	0 0	
1013	EMSH	21			BS		21-Sep-03	12				Mackenzie R.	0	
190	EMSH	22			BS		17-Sep-03	1				Mackenzie R.	0	
203 208	EMSH EMSH	22 22			BS BS		17-Sep-03 17-Sep-03	1 1				Mackenzie R. Mackenzie R.	0 0	
216	EMSH	22			BS		17-Sep-03	1				Mackenzie R.	0	
286	EMSH	22			BS		17-Sep-03	2				Mackenzie R.	0	
377 406	EMSH EMSH	22 22			BS BS		17-Sep-03 17-Sep-03	3 4				Mackenzie R. Mackenzie R.	0 0	
400	EMSH	22			BS		19-Sep-03	5				Mackenzie R.	0	
458	EMSH	22			BS		19-Sep-03	5				Mackenzie R.	0	
485 526	EMSH EMSH	22 22			BS BS		19-Sep-03 20-Sep-03	7 9				Mackenzie R. Mackenzie R.	0 0	
529	EMSH	22			BS		20-Sep-03	9				Mackenzie R.	0	
532	EMSH	22			BS		20-Sep-03	9				Mackenzie R.	0	
535 539	EMSH EMSH	22 22			BS BS		20-Sep-03 20-Sep-03	9 9				Mackenzie R. Mackenzie R.	0	
546	EMSH	22			BS		20-Sep-03	9				Mackenzie R.	0	
549	EMSH	22			BS		20-Sep-03	9				Mackenzie R.	0	
555 561	EMSH EMSH	22 22			BS BS		20-Sep-03 20-Sep-03	9 9				Mackenzie R. Mackenzie R.	0 0	
568	EMSH	22			BS		20-Sep-03	10				Mackenzie R.	0	
572	EMSH	22			BS		20-Sep-03	10				Mackenzie R.	0	
580 607	EMSH EMSH	22 22			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	
609	EMSH	22			BS		20-Sep-03	10				Mackenzie R.	0	
622	EMSH	22			BS		20-Sep-03	10				Mackenzie R.	0	
911 913	EMSH EMSH	22 22			BS BS		21-Sep-03 21-Sep-03	11 11				Mackenzie R. Mackenzie R.	0	
913 916	EMSH	22			BS		21-Sep-03 21-Sep-03	11 11				Mackenzie R. Mackenzie R.	0	
920	EMSH	22			BS		21-Sep-03	11				Mackenzie R.	0	
947 973	EMSH EMSH	22 22			BS BS		21-Sep-03 21-Sep-03	11 12				Mackenzie R. Mackenzie R.	0 0	
973 980	EMSH	22			BS		21-Sep-03 21-Sep-03	12 12				Mackenzie R. Mackenzie R.	0	
1016	EMSH	22			BS		21-Sep-03	12				Mackenzie R.	0	
1019	EMSH	22			BS BS		21-Sep-03	12				Mackenzie R.	0 0	
194 196	EMSH EMSH	23 23			BS BS		17-Sep-03 17-Sep-03	1 1				Mackenzie R. Mackenzie R.	0	
201	EMSH	23			BS		17-Sep-03	1				Mackenzie R.	0	
202	EMSH	23			BS		17-Sep-03	1				Mackenzie R.	0	
209 210	EMSH EMSH	23 23			BS BS		17-Sep-03 17-Sep-03	1 1				Mackenzie R. Mackenzie R.	0 0	
215	EMSH	23			BS		17-Sep-03	1				Mackenzie R.	0	
218 219	EMSH EMSH	23 23			BS BS		17-Sep-03 17-Sep-03	1 1				Mackenzie R. Mackenzie R.	0 0	
219 289	EMSH	23			BS		17-Sep-03	2				Mackenzie R.	0	
290	EMSH	23			BS		17-Sep-03	2				Mackenzie R.	0	
294 403	EMSH EMSH	23 23			BS BS		17-Sep-03 17-Sep-03	2 4				Mackenzie R. Mackenzie R.	0	
449	EMSH	23			BS		19-Sep-03	5				Mackenzie R.	0	
462	EMSH	23			BS		19-Sep-03	5				Mackenzie R.	0	
468 528	EMSH EMSH	23 23			BS BS		19-Sep-03 20-Sep-03	5 9				Mackenzie R. Mackenzie R.	0 0	
553	EMSH	23			BS		20-Sep-03	9				Mackenzie R.	0	
556 559	EMSH EMSH	23 23			BS BS		20-Sep-03 20-Sep-03	9 9				Mackenzie R. Mackenzie R.	0	
563	EMSH	23			BS		20-Sep-03	10				Mackenzie R.	0	
574	EMSH	23			BS		20-Sep-03	10				Mackenzie R.	0	
608 912	EMSH EMSH	23 23			BS BS		20-Sep-03 21-Sep-03	10 11				Mackenzie R. Mackenzie R.	0 0	
		•				· 1			1					1

Table C-1.	Raw data for fish	captured in the vicir	nity of the propose	d Deh Cho Bridge, 2003.

BOD Log Log Log Network I 644 FLOR 23 BD 24 Sector I 645 FLOR 23 BD 24 Sector I 646 FLOR 23 BD 24 Sector I 647 FLOR 23 BD 10 Network 0 648 FLOR 24 BD 11 Network 0 649 FLOR 24 BD 11 Network 0 710 FLOR 24 BD 11 Sector 1 Network 0 717 FLOR 24 BD 11 FLOR 1 Network 0 717 FLOR 24 BD 11 FLOR 1 Network 0 717 FLOR 24 BD 11 FLOR Network 0 717 FLOR 24 BD	Sample	Species	Fork Length (mm)	Weight (g)	Sex	Capture Method	Ageing Structure	Date	Site	Mesh Size	Tra Direction	ap	Location	Capture Code	Comments
	923	EMSH				BS		21-Sep-03	11				Mackenzie R.	0	
													Mackenzie R.		
BADE LADE LADE <thlade< th=""> LADE LADE <thl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thlade<>															
199 LX6 2.3 8.1 1.4 Machenes B. 2 101 LX6 2.4 8.6 7.54,66 1 Machenes B. 0 101 LX6 2.4 8.6 7.54,66 1 Machenes B. 0 101 LX6 2.4 8.6 7.54,66 1 Machenes B. 0 101 LX6 2.4 8.6 7.54,66 1 Machenes B. 0 101 LX6 2.4 8.6 7.54,66 1 Machenes B. 0 101 LX6 2.4 8.6 7.75,465 2 Machenes B. 0 101 LX6 2.4 8.6 7.75,465 2 Machenes B. 0 102 LX6 2.4 8.6 9.5,462 2 Machenes B. 0 102 LX6 2.4 8.6 9.5,462 2 Machenes B. 0 103 LX6 2.4 8.6 9.5,462 <td></td>															
0170 2180 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21-Sep-03</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								21-Sep-03							
100 Like 1 Mathematics R 0 201 Like 10 Like 10 Mathematics R 0 2017 Like 1 10 Mathematics R 0 2017 Like 1 10 Mathematics R 0 2018 Like 10 10 Mathematics R 0 4018 Like <	971	EMSH	23			BS		21-Sep-03						0	
100 101 101 101 Mathematics 0 121 124															
207 LMS 3.4 0.5 1.7 Sec.03 1 Medentic R, 0 217 LMS 3.4 0.5 1.7 Sec.03 2 Madentic R, 0 217 LMS 3.4 0.5 1.7 Sec.03 2 Madentic R, 0 218 LMS 3.4 0.65 1.7 Sec.03 4 Madentic R, 0 410 LMS 3.4 0.65 1.7 Sec.03 4 Madentic R, 0 410 LMS 3.4 0.65 1.7 Sec.03 4 Madentic R, 0 411 LMS 3.4 0.65 1.7 Sec.03 4 Madentic R, 0 414 LMS 3.4 0.65 1.9 Sec.03 7 Madentic R, 0 418 LMS 3.4 0.65 2.9 Sec.03 1.0 Madentic R, 0 418 LMS 3.4 0.65 2.9 Sec.03 1.0 Madentic R, 0 418 LMS 3.4 0.65 2.9 Sec.03 1.0 Madentic R, 0 418 <															
17.1 EMB 4.1 DB 17.58400 1 Machenia R 0 17.0 COM 3.4 DB 17.58400 2 Machenia R 0 18.0 COM 3.4 DB 17.58400 2 Machenia R 0 18.0 COM 3.4 DB 17.58400 4 Machenia R 0 18.0 COM 3.4 DB 17.58400 4 Machenia R 0 18.0 COM 3.4 DB 17.58400 5 Machenia R 0 18.0 COM 3.4 DB 19.58400 7 Machenia R 0 18.0 COM 3.4 DB 20.58400 7 Machenia R 0 18.0 COM 3.4 DB 20.58400 1 Machenia R 0 18.0 COM 3.4 DB 20.58400 1 Machenia R 0 18.0 COM 3.4 DB															
B20 LUAII A Do 17.590.0 2 Materials 0 400 LUAII 2 LIA Materials 0 410 LUAII 2 LIA Materials 0 411 LIA LIA LIA Materials 0 414 LIA LIA LIA Materials 0 414 LIA LIA LIA Materials 0 414 LIA LIA LIA LIA Materials 0 414 LIA LIA LIA LIA LIA Materials 0 414 LIA LIA LIA LIA LIA LIA Materials 0 414 LIA LIA LIA LIA LIA Materials 0 414 LIA LIA LIA LIA Materials 0 414 LIA LIA LIA LIA Materials 0	217	EMSH	24			BS		17-Sep-03					Mackenzie R.	0	
328 EMB 4 MB 17.569.33 4 Mackano R 0 402 EVB 34 BS 17.569.33 4 Mackano R 0 444 LBM 44 BS 17.569.33 4 Mackano R 0 444 LBM 44 BS 17.569.33 6 Mackano R 0 444 LBM 44 BS 17.569.33 6 Mackano R 0 444 LBM 44 BS 19.569.35 7 Mackano R 0 444 LBM 44 BS 20.569.37 7 Mackano R 0 458 LAM BS 20.569.31 10 Mackano R 0 464 LBM 24 BS 20.569.31 11 Mackano R 0 464 LBM 24 BS 20.569.31 11 Mackano R 0 464 LBM 24 BS 21.569.31 12															
440 158 17.580.01 4 Mathema 8 0 443 10281 2.4 105 17.580.00 4 Mathema 8 0 444 10281 2.4 105 11.580.00 4 Mathema 8 0 444 10281 2.4 105 11.580.00 0 Mathema 8 0 444 10281 2.4 105 11.580.00 0 Mathema 8 0 446 10281 2.4 105 11.580.00 7 Mathema 8 0 448 10281 2.4 105 11.580.00 7 Mathema 8 0 448 10281 2.4 105 2.559.00 10 Mathema 8 0 448 10281 2.4 105 2.159.00 11 Mathema 8 0 448 10281 2.4 105 2.159.00 11 Mathema 8 0 450 10281 2.4 105 2.159.00 <td></td>															
442 EMB 7.5.003 4 Modernic R 0 444 LSB 7.5.003 4 Modernic R 0 444 LSB 7.5.003 4 Modernic R 0 447 LSB 7.5.003 6 Modernic R 0 444 LSB 7.5.003 6 Modernic R 0 444 LSB 7.5 0.5.003 6 Modernic R 0 444 LSB 7.5 Modernic R 0 Modernic R 0 444 LSB 7.5 Modernic R 0 Modernic R 0 446 LSB 7.5 Modernic R 0 Modernic R 0 447 LSB 7.5 Modernic R 0 Modernic R 0 448 LSB 7.5 Modernic R 0 Modernic R 0 447 LSB 7.5 Modernic R 0 Modernic R 0 447 LSB															
444 EX8 94 BS 19-Sec03 5 Machattis R, 0 447 LANS 24 BS 19-Sec03 2 Machattis R, 0 447 LANS 24 BS 19-Sec03 2 Machattis R, 0 448 LANS 24 BS 19-Sec03 2 Machattis R, 0 448 LANS 24 BS 19-Sec03 2 Machattis R, 0 448 LANS 24 BS 19-Sec03 1 Machattis R, 0 448 LANS 24 BS 20-Sec03 1 Machattis R, 0 648 LANS 24 BS 20-Sec03 10 Machattis R, 0 648 LANS 24 BS 20-Sec03 11 Machattis R, 0 648 LANS 24 BS 21-Sec03 1 Machattis R, 0 649 LANS 24-Sec03 1 Machattis R, 0 Machattis R, 0 649 LANS 24-Sec03	402	EMSH				BS		17-Sep-03	4				Mackenzie R.	0	
4.47 EUXH 24 BS 19-59-03 5 Mackattis R, 0 4.47 EUXH 24 BS 19-59-03 0 Mackattis R, 0 4.48 EUXH 24 BS 19-59-03 7 Mackattis R, 0 4.48 EUXH 24 BS 19-59-03 7 Mackattis R, 0 4.48 EUXH 24 BS 25-59-03 10 Mackattis R, 0 6.44 EUXH 24 BS 25-59-03 10 Mackattis R, 0 6.45 EUXH 24 BS 22-59-03 10 Mackattis R, 0 6.46 EUXH 24 BS 22-59-03 11 Mackattis R, 0 6.47 EUXH 24 BS 22-59-03 11 Mackattis R, 0 6.48 EUXH 24 BS 22-59-03 11 Mackattis R, 0 6.44 EUXH 24<															
4.47 LUMI 2.4 BS 11.56pc0.0 5. Mackaron R. 0 4.44 LUMI 2.4 BS 11.56pc0.0 7 Mackaron R. 0 4.46 LUMI 2.4 BS 11.56pc0.0 7 Mackaron R. 0 4.46 LUMI 2.4 BS 21.56pc0.0 10 Mackaron R. 0 5.77 LUMI 2.4 BS 22.56pc0.0 10 Mackaron R. 0 6.77 LUMI 2.4 BS 22.56pc0.0 10 Mackaron R. 0 6.77 LUMI 2.4 BS 22.56pc0.0 11 Mackaron R. 0 6.77 LUMI 2.4 BS 21.56pc0.0 11 Mackaron R. 0 6.78 LUMI 2.4 BS 21.56pc0.0 12 Mackaron R. 0 7.77 LUMI 2.4 BS 21.56pc0.0 12 Mackaron R. 0 7.77 LUM															
diff EAS Bis Bis Dispace Dispace <thdispace< th=""> Dispace <thdispace< th=""></thdispace<></thdispace<>															
Heat EASH 94 BS 19-Separat 7 Machamp R, 0 668 EXAH 24 BS 23-Separat 10 Machamp R, 0 677 EXAH 24 BS 23-Separat 10 Machamp R, 0 677 EXAH 24 BS 23-Separat 10 Machamp R, 0 677 EXAH 24 BS 23-Separat 10 Machamp R, 0 674 EXAH 24 BS 23-Separat 11 Machamp R, 0 674 EXAH 24 BS 21-Separat 11 Machamp R, 0 1007 EXAH 24 BS 21-Separat 11 Machamp R, 0 1017 EXAH 24 BS 21-Separat 1 Machamp R, 0 1017 EXAH 24 BS 17-Separat 1 Machamp R, 0 1024 EXAH 25									5						
Head Exists 24 BS 19-Sep-03 7 Medenter R 0 654 EXIS 24 BS 22-Sep-03 10 Medenter R 0 657 EXIS 24 BS 22-Sep-03 10 Medenter R 0 658 EXIS 24 BS 22-Sep-03 10 Medenter R 0 659 EXIS 24 BS 22-Sep-03 11 Medenter R 0 1016 EXIS 24 BS 22-Sep-03 11 Medenter R 0 1026 EXIS 24 BS 22-Sep-03 12 Medenter R 0 1027 EXIS 24 BS 22-Sep-03 1 Medenter R 0 1028 EXIS 25 BS 17-Sep-03 4 Medenter R 0 1274 EXIS 25 BS 17-Sep-03 4 Medenter R 0 1274 EXIS 25															
BSB PAI BS P2-Sep-S3 0 Medcember R 0 064 EXSM 24 BS 225-8p-33 10 Medcember R 0 064 EXSM 24 BS 225-8p-33 10 Medcember R 0 064 EXSM 24 BS 225-8p-33 11 Medcember R 0 056 EXSM 24 BS 225-8p-33 11 Medcember R 0 057 EXSM 24 BS 22-8p-33 11 Medcember R 0 058 EXSM 24 BS 22-8p-33 12 Medcember R 0 0507 EXSM 25 BS 17-5p-33 2 Medcember R 0 0508 EXSM 25 BS 17-5p-33 4 Medcember R 0 0508 EXSM 25 BS 17-5p-33 4 Medcember R 0 0509 EXSM 25 BS															
style BAS 24 BS 24-5-0-33 10 Medenter R 0 600 EXAS 24 BS 23-5-0-33 10 Medenter R 0 610 EXAS 24 BS 23-5-0-33 10 Medenter R 0 612 EXAS 24 BS 22-5-0-33 11 Medenter R 0 612 EXAS 24 BS 22-5-0-33 11 Medenter R 0 612 EXAS 24 BS 21-5-0-33 11 Medenter R 0 777 EXAS 24 BS 21-5-0-33 1 Medenter R 0 7100 EXAS 25 BS 17-5-0-33 1 Medenter R 0 724 EXAS 25 BS 17-5-0-33 4 Medenter R 0 736 EXAS 25 BS 17-5-0-33 4 Medenter R 0 744 EXAS 25 BS								20-Sep-03							
b) EASI 24. BS 23.58-03 10 Matements R 0 00 EXAMP 84. BS 24.58-03 10 Matements R 0 010 EXAMP 84. BS 24.58-03 11 Matements R 0 012 EXAMP 84. BS 24.58-03 11 Matements R 0 010 EXAMP 84. BS 24.58-03 11 Matements R 0 010 EXAMP 84. BS 24.58-03 1 Matements R 0 010 EXAMP 85. BS 17.58-03 1 Matements R 0 020 EXAMP 25. BS 17.58-03 4 Matements R 0 021 EXAMP 25. BS 17.58-03 4 Matements R 0 024 EXAMP 25. BS 17.58-03 4 Matements R 0 041 EXAMP 25. <td>564</td> <td>EMSH</td> <td></td> <td></td> <td></td> <td>BS</td> <td></td> <td>20-Sep-03</td> <td>10</td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td>0</td> <td></td>	564	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	
000 LASII 24 BS 20.5ep.31 10 Mackende R, 0 020 LASII 24 BS 21.5ep.31 11 Mackende R, 0 020 LASII 24 BS 21.5ep.31 11 Mackende R, 0 070 LASII 24 BS 21.5ep.31 12 Mackende R, 0 070 LASII 24 BS 21.5ep.31 12 Mackende R, 0 0206 LASII 25 BS 17.5ep.31 1 Mackende R, 0 0306 LASII 25 BS 17.5ep.31 4 Mackende R, 0 0306 LASII 25 BS 17.5ep.33 4 Mackende R, 0 440 LASII 25 BS 17.5ep.33 4 Mackende R, 0 441 LASII 25 BS 17.5ep.33 5 Mackende R, 0 442 LASII 2															
Box EMS: 24 BS 20.5ep-33 10 Mackende R, 0 912 LMSH 24 BS 21.5ep-03 11 Mackende R, 0 916 LMSH 24 BS 21.5ep-03 11 Mackende R, 0 917 EMSH 24 BS 21.5ep-03 1 Mackende R, 0 9107 EMSH 24 BS 21.5ep-03 1 Mackende R, 0 9244 EMSH 25 BS 17.5ep-03 1 Mackende R, 0 9209 EMSH 25 BS 17.5ep-03 4 Mackende R, 0 930 EMSH 25 BS 17.3ep-03 4 Mackende R, 0 940 EMSH 25 BS 17.3ep-03 4 Mackende R, 0 941 EMSH 25 BS 17.3ep-03 6 Mackende R, 0 942 EMSH 25															
191 EMS1 24 BS 21-Sep-33 11 Mackenoli R, 0 926 ELSK 24 BS 21-Sep-33 12 Mackenoli R, 0 926 ELSK 24 BS 21-Sep-33 12 Mackenoli R, 0 926 ELSK 24 BS 21-Sep-33 12 Mackenoli R, 0 926 ELSK 25 BS 17-Sep-33 1 Mackenoli R, 0 926 ELSK 25 BS 17-Sep-33 1 Mackenoli R, 0 936 ELSK 25 BS 17-Sep-33 4 Mackenoli R, 0 940 ELSK 25 BS 17-Sep-33 4 Mackenoli R, 0 947 ELSK 25 BS 17-Sep-33 4 Mackenoli R, 0 946 ELSK 25 BS 17-Sep-33 5 Mackenoli R, 0 947 ELSK 25 <td></td> <td>EMSH</td> <td></td> <td></td> <td></td> <td>BS</td> <td></td> <td>20-Sep-03</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>		EMSH				BS		20-Sep-03	10					0	
B65 EMSH 24 B5 21-Sep-31 II Mackannic R, 0 1077 EMSH 24 B5 21-Sep-31 I Mackannic R, 0 1077 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 214 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 224 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 2306 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 3306 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 447 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 446 EMSH 25 B5 17-Sep-33 I Mackannic R, 0 447 EMSH 25 B5 19-Sep-33 I Mackannic R, 0 448 EMSH 25 <td>919</td> <td>EMSH</td> <td>24</td> <td></td> <td></td> <td>BS</td> <td></td> <td>21-Sep-03</td> <td>11</td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td>0</td> <td></td>	919	EMSH	24			BS		21-Sep-03	11				Mackenzie R.	0	
9% LMSH 24 BS 21-Sep-33 12 Mademare R. 0 1017 EMSH 26 BS 11-Sep-33 1 Mademare R. 0 224 EMSH 25 BS 17-Sep-33 1 Mademare R. 0 236 EMSH 25 BS 17-Sep-33 2 Mademare R. 0 3368 EMSH 25 BS 17-Sep-33 2 Mademare R. 0 401 EMSH 25 BS 17-Sep-33 4 Mademare R. 0 440 EMSH 25 BS 17-Sep-33 4 Mademare R. 0 444 EMSH 25 BS 17-Sep-33 5 Mademare R. 0 444 EMSH 25 BS 19-Sep-33 5 Mademare R. 0 444 EMSH 25 BS 19-Sep-33 7 Mademare R. 0 444 EMSH 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
1017 EM8H 24 85 12.5ep/30 12 Mademar R. 0 201 EM8H 25 85 17.5ep/30 1 Mademar R. 0 202 EM8H 25 85 17.5ep/30 1 Mademar R. 0 308 EM8H 25 85 17.5ep/30 4 Mademar R. 0 309 EM8H 25 85 17.5ep/30 4 Mademar R. 0 440 EM8H 25 85 17.5ep/30 4 Mademar R. 0 444 EM8H 25 85 17.5ep/30 4 Mademar R. 0 444 EM8H 25 85 19.5ep/30 5 Mademar R. 0 444 EM8H 25 85 19.5ep/30 7 Mademar R. 0 444 EM8H 25 85 20.5ep/30 9 Mademar R. 0 444 EM8H 25 85															
124 KMH 25 BS 17.5ep.03 1 Mademare R 0 286 KMH 25 BS 17.5ep.03 2 Mademare R 0 396 KMH 25 BS 17.5ep.03 2 Mademare R 0 401 KMH 25 BS 17.5ep.03 2 Mademare R 0 401 KMH 25 BS 17.5ep.03 4 Mademare R 0 404 EMH 25 BS 17.5ep.03 5 Mademare R 0 444 EMH 25 BS 19.5ep.03 5 Mademare R 0 454 EMH 25 BS 19.5ep.03 5 Mademare R 0 464 EMH 25 BS 19.5ep.03 7 Mademare R 0 464 EMH 25 BS 29.5ep.03 9 Mademare R 0 564 EMH 25 BS 29.5ep.03 10 Mademare R 0 564 EMH 25 BS 29.5ep.03 10 Mademare R 0 564 EMH 25 BS 29.5ep.03 10 Mademare R 0<								21-Sep-03							
1235 LMSH 25 BS 17.5ep-03 1 Madkerzie R 0 336 LMSH 25 BS 17.5ep-03 4 Madkerzie R 0 401 LMSH 25 BS 17.5ep-03 4 Madkerzie R 0 401 LMSH 25 BS 17.5ep-03 4 Madkerzie R 0 407 LMSH 25 BS 17.5ep-03 4 Madkerzie R 0 444 LMSH 25 BS 17.5ep-03 5 Madkerzie R 0 446 LMSH 25 BS 19.5ep-03 5 Madkerzie R 0 471 LMSH 25 BS 19.5ep-03 7 Madkerzie R 0 441 LMSH 25 BS 20.5ep-03 0 Madkerzie R 0 564 LMSH 25 BS 20.5ep-03 10 Madkerzie R 0 564 LMSH 25 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
286 EMSH 25 BS 17.5ep-03 2 Madkerrois R 0 386 EMSH 25 BS 17.5ep-03 4 Madkerrois R 0 400 EMSH 25 BS 17.5ep-03 4 Madkerrois R 0 446 EMSH 25 BS 17.5ep-03 5 Madkerrois R 0 446 EMSH 25 BS 17.5ep-03 5 Madkerrois R 0 446 EMSH 25 BS 19.5ep-03 6 Madkerrois R 0 441 EMSH 25 BS 19.5ep-03 7 Madkerrois R 0 441 EMSH 25 BS 19.5ep-03 7 Madkerrois R 0 544 EMSH 25 BS 20.5ep-03 9 Madkerrois R 0 554 EMSH 25 BS 20.5ep-03 10 Madkerrois R 0 564 EMSH 25															
386 EMSH 25 BS 17.5mp.03 4 Madkenzie R 0 400 EMSH 25 BS 17.5mp.03 4 Madkenzie R 0 446 EMSH 25 BS 17.5mp.03 4 Madkenzie R 0 446 EMSH 25 BS 19.5mp.03 5 Madkenzie R 0 444 EMSH 25 BS 19.5mp.03 5 Madkenzie R 0 444 EMSH 25 BS 19.5mp.03 5 Madkenzie R 0 444 EMSH 25 BS 19.5mp.03 7 Madkenzie R 0 444 EMSH 25 BS 19.5mp.03 7 Madkenzie R 0 444 EMSH 25 BS 29.5mp.03 0 Madkenzie R 0 444 EMSH 25 BS 29.5mp.03 10 Madkenzie R 0 444 EMSH 25 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
401 EMSH 25 B5 17.58p-03 4 Mackentie R. 0 446 EMSH 25 B5 19.58p-03 5 Mackentie R. 0 446 EMSH 25 B5 19.58p-03 5 Mackentie R. 0 446 EMSH 25 B5 19.58p-03 6 Mackentie R. 0 441 EMSH 25 B5 19.58p-03 7 Mackentie R. 0 441 EMSH 25 B5 19.58p-03 7 Mackentie R. 0 441 EMSH 25 B5 20.58p-03 9 Mackentie R. 0 554 EMSH 25 B5 20.58p-03 10 Mackentie R. 0 649 EMSH 25 B5 20.58p-03 10 Mackentie R. 0 757 EMSH 25 B5 21.58p-03 11 Mackentie R. 0 840 EMSH 25															
447 EMSH 25 BS 17.5mp03 4 Mackenzie R. 0 446 EMSH 25 BS 19.5mp03 5 Mackenzie R. 0 446 EMSH 25 BS 19.5mp03 5 Mackenzie R. 0 447 EMSH 25 BS 19.5mp03 6 Mackenzie R. 0 441 EMSH 25 BS 19.5mp03 6 Mackenzie R. 0 444 EMSH 25 BS 19.5mp03 7 Mackenzie R. 0 444 EMSH 25 BS 20.5mp03 9 Mackenzie R. 0 554 EMSH 25 BS 20.5mp03 10 Mackenzie R. 0 564 EMSH 25 BS 20.5mp03 11 Mackenzie R. 0 669 EMSH 25 BS 21.5mp03 11 Mackenzie R. 0 644 EMSH 25 <															
445 EMSH 25 BS 19-Sep0.3 5 Mackenzie R. 0 446 EMSH 25 BS 19-Sep0.3 5 Mackenzie R. 0 446 EMSH 25 BS 19-Sep0.3 6 Mackenzie R. 0 441 EMSH 25 BS 19-Sep0.3 7 Mackenzie R. 0 441 EMSH 25 BS 19-Sep0.3 7 Mackenzie R. 0 444 EMSH 25 BS 20-Sep0.3 9 Mackenzie R. 0 444 EMSH 25 BS 20-Sep0.3 10 Mackenzie R. 0 564 EMSH 25 BS 20-Sep0.3 10 Mackenzie R. 0 581 EMSH 25 BS 20-Sep0.3 10 Mackenzie R. 0 646 EMSH 25 BS 21-Sep0.3 12 Mackenzie R. 0 716 EMSH 25 <td></td>															
446 ENSH 25 BS 19-Sep0.3 5 Mackenzie R. 0 449 ENSH 25 BS 19-Sep0.3 5 Mackenzie R. 0 449 ENSH 25 BS 19-Sep0.3 6 Mackenzie R. 0 441 ENSH 25 BS 19-Sep0.3 7 Mackenzie R. 0 444 ENSH 25 BS 20-Sep0.3 9 Mackenzie R. 0 544 ENSH 25 BS 20-Sep0.3 9 Mackenzie R. 0 544 ENSH 25 BS 20-Sep0.3 0 Mackenzie R. 0 554 ENSH 25 BS 20-Sep0.3 10 Mackenzie R. 0 583 ENSH 25 BS 21-Sep0.3 11 Mackenzie R. 0 696 ENSH 25 BS 21-Sep0.3 12 Mackenzie R. 0 1010 ENSH 25 <td></td>															
469 EMSH 25 BS 19-Sep-03 5 Mackenzie R. 0 441 EMSH 25 BS 19-Sep-03 7 Mackenzie R. 0 441 EMSH 25 BS 19-Sep-03 7 Mackenzie R. 0 444 EMSH 25 BS 19-Sep-03 9 Mackenzie R. 0 554 EMSH 25 BS 20-Sep-03 9 Mackenzie R. 0 557 EMSH 25 BS 20-Sep-03 10 Mackenzie R. 0 569 EMSH 25 BS 20-Sep-03 10 Mackenzie R. 0 583 EMSH 25 BS 20-Sep-03 10 Mackenzie R. 0 948 EMSH 25 BS 20-Sep-03 11 Mackenzie R. 0 949 EMSH 25 BS 21-Sep-03 11 Mackenzie R. 0 940 EMSH 26 <td></td>															
471 EMSH 25 BS 19-569-03 6 Mackenzie R. 0 444 EMSH 25 BS 19-569-03 7 Mackenzie R. 0 444 EMSH 25 BS 19-569-03 7 Mackenzie R. 0 541 EMSH 25 BS 20-569-03 9 Mackenzie R. 0 557 EMSH 25 BS 20-569-03 10 Mackenzie R. 0 569 EMSH 25 BS 20-569-03 10 Mackenzie R. 0 683 EMSH 25 BS 20-569-03 10 Mackenzie R. 0 969 EMSH 25 BS 21-569-03 11 Mackenzie R. 0 1005 EMSH 25 BS 21-569-03 12 Mackenzie R. 0 1015 EMSH 25 BS 21-569-03 1 Mackenzie R. 0 1016 EMSH 26															
481 EMSH 25 BS 19.5ep-03 7 Mackenzie R. 0 541 EMSH 25 BS 20.5ep-03 9 Mackenzie R. 0 544 EMSH 25 BS 20.5ep-03 9 Mackenzie R. 0 557 EMSH 25 BS 20.5ep-03 9 Mackenzie R. 0 569 EMSH 25 BS 20.5ep-03 10 Mackenzie R. 0 569 EMSH 25 BS 20.5ep-03 10 Mackenzie R. 0 980 EMSH 25 BS 20.5ep-03 11 Mackenzie R. 0 980 EMSH 25 BS 21.5ep-03 11 Mackenzie R. 0 1010 EMSH 25 BS 17.5ep-03 1 Mackenzie R. 0 1101 EMSH 26 BS 17.5ep-03 Mackenzie R. 0 1213 EMSH 26 BS															
444 EMSH 25 BS 19-Sep-0.3 7 Mackenzie R. 0 541 EMSH 25 BS 20-Sep-0.3 9 Mackenzie R. 0 554 EMSH 25 BS 20-Sep-0.3 9 Mackenzie R. 0 557 EMSH 25 BS 20-Sep-0.3 9 Mackenzie R. 0 561 EMSH 25 BS 20-Sep-0.3 10 Mackenzie R. 0 561 EMSH 25 BS 20-Sep-0.3 11 Mackenzie R. 0 943 EMSH 25 BS 21-Sep-0.3 11 Mackenzie R. 0 1016 EMSH 25 BS 21-Sep-0.3 1 Mackenzie R. 0 1016 EMSH 25 BS 21-Sep-0.3 1 Mackenzie R. 0 116 EMSH 26 BS 17-Sep-0.3 4 Mackenzie R. 0 116 EMSH															
644 EMSH 25 BS 20.Sep.03 9 Mackanzie R. 0 554 EMSH 25 BS 20.Sep.03 9 Mackanzie R. 0 567 EMSH 25 BS 20.Sep.03 10 Mackanzie R. 0 569 EMSH 25 BS 20.Sep.03 10 Mackanzie R. 0 581 EMSH 25 BS 20.Sep.03 10 Mackanzie R. 0 948 EMSH 25 BS 21.Sep.03 11 Mackanzie R. 0 960 EMSH 25 BS 21.Sep.03 12 Mackanzie R. 0 1015 EMSH 26 BS 17.Sep.03 1 Mackanzie R. 0 11015 EMSH 26 BS 17.Sep.03 1 Mackanzie R. 0 211 EMSH 26 BS 17.Sep.03 4 Mackanzie R. 0 375 EMSH 26			25			BS		19-Sep-03	7					0	
554 EMSH 25 BS 22-Sep-03 9 Mackanzie R 0 557 EMSH 25 BS 22-Sep-03 10 Mackanzie R 0 569 EMSH 25 BS 22-Sep-03 10 Mackanzie R 0 581 EMSH 25 BS 22-Sep-03 10 Mackanzie R 0 948 EMSH 25 BS 22-Sep-03 10 Mackanzie R 0 948 EMSH 25 BS 21-Sep-03 11 Mackanzie R 0 1006 EMSH 25 BS 21-Sep-03 12 Mackanzie R 0 1015 EMSH 26 BS 17-Sep-03 1 Mackanzie R 0 213 EMSH 26 BS 17-Sep-03 1 Mackanzie R 0 376 EMSH 26 BS 17-Sep-03 4 Mackanzie R 0 418 EMSH 28															
557 EMSH 25 BS 20-Sep-03 9 Mackenzie R. 0 569 EMSH 25 BS 20-Sep-03 10 Mackenzie R. 0 583 EMSH 25 BS 20-Sep-03 10 Mackenzie R. 0 948 EMSH 25 BS 21-Sep-03 11 Mackenzie R. 0 960 EMSH 25 BS 21-Sep-03 11 Mackenzie R. 0 960 EMSH 25 BS 21-Sep-03 11 Mackenzie R. 0 1006 EMSH 25 BS 21-Sep-03 1 Mackenzie R. 0 1106 EMSH 26 BS 17-Sep-03 1 Mackenzie R. 0 211 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 375 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 440 EMSH 26<															
660 EMSH 25 BS 20-Sep-03 10 Mackenzie R, 0 581 EMSH 25 BS 20-Sep-03 10 Mackenzie R, 0 948 EMSH 25 BS 21-Sep-03 11 Mackenzie R, 0 960 EMSH 25 BS 21-Sep-03 11 Mackenzie R, 0 969 EMSH 25 BS 21-Sep-03 12 Mackenzie R, 0 1016 EMSH 25 BS 21-Sep-03 12 Mackenzie R, 0 1116 EMSH 25 BS 17-Sep-03 1 Mackenzie R, 0 211 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 375 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 400 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 410 EMSH 26															
583 EMSH 25 BS 20-Sep-33 10 Mackenzie R. 0 960 EMSH 25 BS 21-Sep-33 11 Mackenzie R. 0 969 EMSH 25 BS 21-Sep-33 12 Mackenzie R. 0 1006 EMSH 25 BS 21-Sep-33 12 Mackenzie R. 0 1015 EMSH 26 BS 21-Sep-33 1 Mackenzie R. 0 198 EMSH 26 BS 17-Sep-33 1 Mackenzie R. 0 211 EMSH 26 BS 17-Sep-33 1 Mackenzie R. 0 375 EMSH 28 BS 17-Sep-33 4 Mackenzie R. 0 400 EMSH 28 BS 17-Sep-33 4 Mackenzie R. 0 441 EMSH 26 BS 17-Sep-33 4 Mackenzie R. 0 442 EMSH 26 </td <td>569</td> <td>EMSH</td> <td>25</td> <td></td> <td></td> <td>BS</td> <td></td> <td>20-Sep-03</td> <td>10</td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td>0</td> <td></td>	569	EMSH	25			BS		20-Sep-03	10				Mackenzie R.	0	
948 EMSH 25 BS 21-Sep-33 11 Mackenzie R 0 960 EMSH 25 BS 21-Sep-33 12 Mackenzie R 0 1006 EMSH 25 BS 21-Sep-33 12 Mackenzie R 0 1015 EMSH 25 BS 21-Sep-33 12 Mackenzie R 0 1918 EMSH 26 BS 17-Sep-33 1 Mackenzie R 0 211 EMSH 26 BS 17-Sep-33 1 Mackenzie R 0 375 EMSH 26 BS 17-Sep-33 4 Mackenzie R 0 397 EMSH 26 BS 17-Sep-33 4 Mackenzie R 0 408 EMSH 26 BS 17-Sep-33 4 Mackenzie R 0 410 EMSH 26 BS 17-Sep-33 4 Mackenzie R 0 410 EMSH 26															
960 EMSH 25 BS 21-Sep-03 11 Mackenzie R, 0 1006 EMSH 25 BS 21-Sep-03 12 Mackenzie R, 0 1015 EMSH 25 BS 21-Sep-03 12 Mackenzie R, 0 1918 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 211 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 375 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 376 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 408 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 441 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 442 EMSH 26 BS 19-Sep-03 5 Mackenzie R, 0 4463 EMSH 26<															
999 EMSH 25 BS 21-Sep0.3 12 Mackenzie R, 0 1015 EMSH 25 BS 21-Sep0.3 12 Mackenzie R, 0 1015 EMSH 26 BS 21-Sep0.3 1 Mackenzie R, 0 211 EMSH 26 BS 17-Sep0.3 1 Mackenzie R, 0 213 EMSH 26 BS 17-Sep0.3 1 Mackenzie R, 0 397 EMSH 26 BS 17-Sep0.3 4 Mackenzie R, 0 398 EMSH 26 BS 17-Sep0.3 4 Mackenzie R, 0 410 EMSH 26 BS 17-Sep0.3 4 Mackenzie R, 0 421 EMSH 26 BS 17-Sep0.3 4 Mackenzie R, 0 441 EMSH 26 BS 19-Sep0.3 5 Mackenzie R, 0 442 EMSH 26 <td></td>															
1015 EMSH 25 BS 21-Sep-03 12 Mackenzie R. 0 211 EMSH 26 BS 17-Sep-03 1 Mackenzie R. 0 213 EMSH 26 BS 17-Sep-03 1 Mackenzie R. 0 375 EMSH 26 BS 17-Sep-03 3 Mackenzie R. 0 397 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 398 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 400 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 410 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 441 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 442 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 4461 EMSH 26								21-Sep-03							
198 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 213 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 375 EMSH 26 BS 17-Sep-03 3 Mackenzie R, 0 397 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 408 EMSH 28 BS 17-Sep-03 4 Mackenzie R, 0 410 EMSH 28 BS 17-Sep-03 4 Mackenzie R, 0 441 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 451 EMSH 26 BS 19-Sep-03 5 Mackenzie R, 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R, 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R, 0 490 EMSH 26															
211 EMSH 26 BS 17-Sep-03 1 Mackenzie R, 0 375 EMSH 26 BS 17-Sep-03 3 Mackenzie R, 0 397 EMSH 28 BS 17-Sep-03 4 Mackenzie R, 0 408 EMSH 28 BS 17-Sep-03 4 Mackenzie R, 0 410 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 441 EMSH 26 BS 17-Sep-03 4 Mackenzie R, 0 442 EMSH 26 BS 19-Sep-03 5 Mackenzie R, 0 443 EMSH 26 BS 19-Sep-03 5 Mackenzie R, 0 4463 EMSH 26 BS 19-Sep-03 7 Mackenzie R, 0 478 EMSH 26 BS 19-Sep-03 7 Mackenzie R, 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R, 0 490 EMSH									1						
213 EMSH 26 BS 17-Sep-03 3 Mackenzie R. 0 337 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 388 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 408 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 410 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 441 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 442 EMSH 26 BS 17-Sep-03 5 Mackenzie R. 0 443 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 443 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 566 EMSH 26 BS 20-Sep-03 10 <td>211</td> <td>EMSH</td> <td>26</td> <td></td> <td></td> <td>BS</td> <td></td> <td>17-Sep-03</td> <td></td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td>0</td> <td></td>	211	EMSH	26			BS		17-Sep-03					Mackenzie R.	0	
397 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 398 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 408 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 410 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 441 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 441 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 445 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 446 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 466 EMSH 26 BS 19-Sep-03 10 Mackenzie R. 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 603 EMSH 26															
398 EMSH 26 BS 17.Sep.03 4 Mackenzie R 0 408 EMSH 26 BS 17.Sep.03 4 Mackenzie R 0 440 EMSH 26 BS 17.Sep.03 4 Mackenzie R 0 441 EMSH 26 BS 19.Sep.03 5 Mackenzie R 0 443 EMSH 26 BS 19.Sep.03 5 Mackenzie R 0 446 EMSH 26 BS 19.Sep.03 7 Mackenzie R 0 446 EMSH 26 BS 19.Sep.03 7 Mackenzie R 0 446 EMSH 26 BS 19.Sep.03 7 Mackenzie R 0 456 EMSH 26 BS 20.Sep.03 10 Mackenzie R 0 666 EMSH 26 BS 20.Sep.03 10 Mackenzie R 0 600 EMSH 26 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
408 EMSH 26 BS 17-Sep-03 4 Mackenzie R. 0 4410 EMSH 26 BS 17-Sep-03 5 Mackenzie R. 0 442 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 4451 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 4463 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 490 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 555 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 666 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 603 EMSH 26 <td></td> <td></td> <td></td> <td></td> <td></td> <td>BS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						BS									
442 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 463 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 490 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 590 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 <td>408</td> <td>EMSH</td> <td>26</td> <td></td> <td></td> <td>BS</td> <td></td> <td>17-Sep-03</td> <td>4</td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td>0</td> <td></td>	408	EMSH	26			BS		17-Sep-03	4				Mackenzie R.	0	
451 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 463 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 478 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 490 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 580 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 949															
463 EMSH 26 BS 19-Sep-03 5 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R 0 476 EMSH 26 BS 19-Sep-03 7 Mackenzie R 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R 0 490 EMSH 26 BS 19-Sep-03 7 Mackenzie R 0 565 EMSH 26 BS 19-Sep-03 7 Mackenzie R 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R 0 590 EMSH 26 BS 20-Sep-03 10 Mackenzie R 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R 0 917 EMSH 26 BS <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
476 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 478 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 486 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 490 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 582 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 621 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 949 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>BS</td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						BS			5						
486 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 490 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 582 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 603 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 9475	476	EMSH	26			BS		19-Sep-03	7				Mackenzie R.	0	
490 EMSH 26 BS 19-Sep-03 7 Mackenzie R. 0 565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 582 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 582 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 603 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 19-Sep-03 5 Mackenzie R. 0 946															
565 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 566 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 582 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 590 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 603 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 460 EMSH															
566 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 582 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 590 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 621 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 949 EMSH 26 BS 20-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 212 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465	565		26			BS		20-Sep-03							
590 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 601 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 975 EMSH 27 BS 17-Sep-03 1 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465 EMSH 27	566	EMSH						20-Sep-03							
600 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 603 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 621 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 975 EMSH 27 BS 17-Sep-03 1 Mackenzie R. 0 1212 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27															
603 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 621 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 212 EMSH 26 BS 17-Sep-03 1 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 931 EMSH 27 </td <td></td>															
611 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 621 EMSH 26 BS 20-Sep-03 10 Mackenzie R. 0 917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 931 EMSH 27<		EMSH	26			BS		20-Sep-03	10					0	
917 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 949 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 212 EMSH 27 BS 17-Sep-03 1 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 <td>611</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20-Sep-03</td> <td></td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td></td> <td></td>	611							20-Sep-03					Mackenzie R.		
949 EMSH 26 BS 21-Sep-03 11 Mackenzie R. 0 975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 212 EMSH 27 BS 21-Sep-03 1 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0															
975 EMSH 26 BS 21-Sep-03 12 Mackenzie R. 0 212 EMSH 27 BS 17-Sep-03 1 Mackenzie R. 0 460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0															
460 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 465 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0	975	EMSH	26			BS		21-Sep-03	12				Mackenzie R.	0	
465 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0															
466 EMSH 27 BS 19-Sep-03 5 Mackenzie R. 0 929 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0															
929 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 931 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0															
934 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0 937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0	929	EMSH	27			BS		21-Sep-03	11				Mackenzie R.	0	
937 EMSH 27 BS 21-Sep-03 11 Mackenzie R. 0															

Table C-1.	Raw data for fish	captured in the vicinit	v of the proposed De	h Cho Bridge, 2003.

Product Product <t< th=""><th>Sample</th><th>Species</th><th>Fork Length</th><th>Weight (g)</th><th>Capture Method</th><th>Ageing</th><th>Date</th><th>- </th><th>Mesh Size</th><th>Tra</th><th>ap</th><th>Location</th><th>Capture</th><th>Comments</th></t<>	Sample	Species	Fork Length	Weight (g)	Capture Method	Ageing	Date	- 	Mesh Size	Tra	ap	Location	Capture	Comments
BR DS DS <thds< th=""> DS DS DS<!--</th--><th></th><th>-</th><th>(mm)</th><th></th><th></th><th>Structure</th><th></th><th></th><th></th><th>Direction</th><th>UNECK #</th><th></th><th>Code</th><th></th></thds<>		-	(mm)			Structure				Direction	UNECK #		Code	
Intra BUS 23 BS 22.54-33 12 Note: Sec.	584	EMSH	28		BS		20-Sep-03	10				Mackenzie R.	0	
BB DS TS-BO3 Z No. Network P, O 443 EMH 33 BS TS-BO3 C Network P, O 444 EMH 33 BS TS-BO3 S Network P, O 4 EMH 33 BS TS-BO3 S Network P, O 4 EMH 60 CN 32.0.03 S Network P, O 4 EMH 60 CN 32.0.03 Z NTS Network P, O 502 EMH 60 CN 32.0.03 Z NTS Network P, O 777 EMH 60 CN 32.0.03 Z NtS														
B38 E48 B3 E28-000 T1 No Madentie R 0 141 EX84 80 CN 33400 2 C7 No Madentie R 0 147 EX84 80 CN 33400 2 C7 No Madentie R 0 147 EX84 82 E5 IE86 1 No Madentie R 0 160 EX84 82 E5 IE86 1 No Madentie R 0 170 EX84 83 E5 IE86 4 No Madentie R 0 1710 EX84 93 E5 IE86 4 No Madentie R 0 RND 1710 EX84 83 E7.860 1 No Madentie R 0 RND 223 EX84 83 E7.860 1 No Madentie R 0 RND 234 EX84 B8 E7.860 <td></td> <td>EMSH</td> <td>29</td> <td></td> <td>BS</td> <td></td> <td>17-Sep-03</td> <td>2</td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td></td> <td></td>		EMSH	29		BS		17-Sep-03	2				Mackenzie R.		
def: Ends: 12 End 11 Serp.0 5 No Machemie R. 0 161 EXMS 80 CM 30.400 2 0.75 Machemie R. 0 177 EXMS 80 CM 30.400 2 0.75 Machemie R. 0 170 EXMS 85 CM 30.400 2 0.75 Machemie R. 0 170 EXMS 85 CM 30.400 2 0.75 Machemie R. 0 170 EXMS 85 CM 30.400 4 Machemie R. 0 RND 170 EXMS 25 CM 84.90 4 Machemie R. 0 RND 170 EXMS ES 18.96.00 4 Machemie R. 0 RND 223 EXMS ES 17.96.00 1 Machemie R. 0 RND 234 EXMS ES 17.96.00 1 Machemie R.														
3 EASH 0.0 CH 300.00 2 0.75 Madernic R. 1 177 EASH 82 ES His Septe 2 0.75 Madernic R. 0 178 EASH 82 ES His Septe 2 0.75 Madernic R. 0 179 EASH 80 PS His Septe 3 4 Madernic R. 0 179 EASH 83 ES His Septe 3 4 Madernic R. 0 179 EASH 93 ES His Septe 3 4 Madernic R. 0 RND 179 EASH 100 ES His Septe 3 1 His Septe 3 Madernic R. 0 RND 230 EASH ES His Septe 3 1 His Septe 3 His Septe 3 His Septe 3 His Septe 3 RND 231 EASH ES His Septe 3 His Sept														
4 EDS 60 CP SOLUCO 2 CP Madernic R. 0 177 EDS 86 FN SOLUCO 2 L D D 170 EDS 86 FN SOLUCO 2 L D <td>161</td> <td>EMSH</td> <td></td> <td></td> <td>ES</td> <td></td> <td>18-Sep-03</td> <td>3</td> <td>0.75</td> <td></td> <td></td> <td>Mackenzie R.</td> <td></td> <td></td>	161	EMSH			ES		18-Sep-03	3	0.75			Mackenzie R.		
ITT LMSI 80 ES 19.5ep.31 4 Machening R 0 20 LMSI 00 CS 19.5ep.31 2 Upst 0 Machening R 0 20 LMSI 00 CS 19.5ep.31 2 0.75 Machening R 0 100 LMSI 00 CS 19.5ep.31 4 Machening R 0 110 LMSI 10 CS 19.5ep.31 4 Machening R 0 RND 1231 LMSI 10 ES 19.5ep.31 1 Machening R 0 RND 2332 LMSI 10 ES 17.5ep.33 1 Machening R 0 RND 2342 LMSI 10 ES 17.5ep.33 1 Machening R 0 RND 2343 LMSI ES 17.5ep.33 1 Machening R 0 RND 2344 LMSI BS 17.5ep.33 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
BOD EMSH BB FN 20 Sen-33 2 Upst 9 Mackenge R 0 100 EMSH 03 ES 13 Sen-03 4 1 <td>177</td> <td>EMSH</td> <td>80</td> <td></td> <td>ES</td> <td></td> <td>18-Sep-03</td> <td>4</td> <td></td> <td></td> <td></td> <td>Mackenzie R.</td> <td>0</td> <td></td>	177	EMSH	80		ES		18-Sep-03	4				Mackenzie R.	0	
2 LMSH 90 CN 30.4.03 2 0.75 Mackering R 0 119 EXSH 95 ES 19.59xp0 4 Mackering R 0 119 EXSH 95 ES 19.59xp0 4 Mackering R 0 RND 220 EXSH 95 19.59xp0 1 Mackering R 0 RND 231 EXSH 95 17.59xp0 1 Mackering R 0 RND 232 EXSH 85 17.59xp0 1 Mackering R 0 RND 233 EXSH 85 17.59xp0 1 Mackering R 0 RND 234 EXSH 85 17.59xp0 1 Mackering R 0 RND 235 EXSH 85 17.59xp0 1 Mackering R 0 RND 234 EXSH 85 17.59xp0 1 Mackering R 0 RND 234 EXSH<										Linet	6			
1719 E.MSI 0.9 E.S 115.Smo.0 4 Mackande R. 0 1719 E.MSI 100 E.S 115.Smo.0 1 Mackande R. 0 RND 220 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 220 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 221 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 222 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 235 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 236 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 236 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 236 E.MSI B.S 17.Smo.0 1 Mackande R. 0 RND 236 <								2	0.75	Opsi	0			
178 EMSH 95 ES 185-8p-03 4 Moderaria R, 0 181 EMSH 0 65 17.59p-03 1 Moderaria R, 0 RD 220 EMSH 85 17.59p-03 1 Moderaria R, 0 RD 231 EMSH 85 17.59p-03 1 Moderaria R, 0 RD 232 EMSH 85 17.59p-03 1 Moderaria R, 0 RD 233 EMSH 85 17.59p-03 1 Moderaria R, 0 RD 234 EMSH 85 17.59p-03 1 Moderaria R, 0 RDD 234 EMSH 85 17.59p-03 1 Moderaria R, 0 RDD 235 EMSH 85 17.59p-03 1 Moderaria R, 0 RDD 234 EMSH 85 17.59p-03 1 Moderaria R, 0 RDD 234 EMSH 85 17.59p-03 1 Moderaria R, 0 RDD 234 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
228 EM84 BS 17.5mp.03 1 Modemore R 0 FND 220 EM84 BS 17.5mp.03 1 Mademore R 0 RND 221 EM84 BS 17.5mp.03 1 Mademore R 0 RND 223 EM84 BS 17.5mp.03 1 Mademore R 0 RND 233 EM84 BS 17.5mp.03 1 Mademore R 0 RND 234 EM84 BS 17.5mp.03 1 Mademore R 0 RND 235 EM84 BS 17.5mp.03 1 Mademore R 0 RND 236 EM84 BS 17.5mp.03 1 Mademore R 0 RND 236 EM84 BS 17.5mp.03 1 Mademore R 0 RND 240 EM84 BS 17.5mp.03 1 Mademore R 0 RND 244 EM84 BS					ES									
229 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 231 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 232 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 233 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 234 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 235 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 236 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 237 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 240 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 244 EM84 BS 17.5mp.03 1 Mederatire R 0 RND 245 EM84			100											
230 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 232 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 232 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 234 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 234 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 236 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 237 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 238 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 241 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 242 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 243 EMSH BS 17.5ep.03 1 Medicartic R, 0 PRND 244														
222 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 233 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 234 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 235 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 236 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 237 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 236 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 241 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 242 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 244 EMSH BS [7/Sape-03] 1 Mackening R 0 RND 245 EMSH							17-Sep-03							
233 EMS BS 17/Sapp.03 1 Mackanua R, Mackanua R, Mackan														
236 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 236 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 237 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 239 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 240 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 241 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 243 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 244 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 245 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 246 EMSH BS 17/Sap-03 1 Mackenia R 0 RND 247 EMSH BS	233	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
238 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 237 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 236 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 240 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 241 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 242 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 244 EMSH BS 17.5ap.03 1 Mackennie R 0 PND0 244 EMSH BS 17.5ap.03 1 Mackennie R 0 PND 244 EMSH BS 17.5ap.03 1 Mackennie R 0 PND 244 EMSH BS 17.5ap.03 1 Mackennie R 0 PND 245 EMSH BS<														
238 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 240 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 241 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 242 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 243 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 244 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 245 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 246 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 247 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 248 EMSH BS 17.5apr.03 1 Mackernie R. 0 PND 249 EMSH					BS									
230 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 241 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 241 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 243 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 244 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 244 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 244 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 244 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 245 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 255 EMSH BS 17.5apr.03 1 Machemie R. 0 RND 254 EMSH														
240 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 241 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 242 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 244 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 244 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 244 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 246 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 247 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 243 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 245 EMSH BS 17-5ep-03 1 Mackangle R 0 RND 255 EMSH BS														
242 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 244 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 244 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 244 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 244 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 244 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 245 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 251 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 253 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 254 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 255 EMSH	240	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
243 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 244 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 246 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 246 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 247 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 248 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 249 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 251 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 252 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 254 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 255 EMSH BS														
246 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 247 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 248 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 249 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 240 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 251 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 252 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 255 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 255 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 260 EMSH BS 17.5ep.03 1 Mackenzie R. 0 RND 261 EMSH	243	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
246 EMSH BS 17.5ep.03 1 Mackenzie R, 0 PND 247 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 248 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 249 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 249 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 252 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 254 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 255 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 266 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 261 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 262 EMSH														
246 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 240 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 250 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 251 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 252 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 254 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 260 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 261 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 262 EMSH BS					BS		17-Sep-03							
249 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 251 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 252 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 252 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 253 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 254 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 260 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 261 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 262 EMSH														
250 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 251 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 252 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 253 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 254 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 257 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 260 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 261 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 263 EMSH BS 17.Sep-03 1 Mackenzie R. 0 RND 264 EMSH														
252 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 253 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 254 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 260 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 261 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 262 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 264 EMSH	250	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
223 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 255 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 256 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 257 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 258 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 259 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 261 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 262 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 263 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 264 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 265 EMSH														
255 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 257 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 258 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 259 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 260 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 261 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 262 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 263 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 264 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 265 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 267 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 270 EMSH	253	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
266 EMSH BS 17-Sep-03 1 Mackenzie R, 0 0 RND 257 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 258 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 260 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 261 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 262 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 264 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 266 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 268 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 268 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 270 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 271														
288 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 260 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 261 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 262 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 263 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 264 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 266 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 266 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 268 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 270 EMSH BS 17.5ep-03 1 Mackenzie R 0 RND 271 EMSH BS	256	EMSH			BS		17-Sep-03					Mackenzie R.	0	RND
259 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 260 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 261 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 262 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 263 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 264 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 265 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 266 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 269 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 271 EMSH BS 17.5ep.03 1 Mackenzie R 0 RND 273 EMSH BS														
260 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 261 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 263 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 264 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 265 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 266 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 267 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 269 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 271 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 273 EMSH BS 17.5ep.03 1 Mackenzie R, 0 RND 276 EMSH														
262 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 264 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 265 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 266 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 266 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 266 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 268 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 270 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 274 EMSH	260	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
263 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 265 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 266 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 267 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 268 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 269 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 270 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 272 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R, 0 RND 274 EMSH														
265 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 266 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 267 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 268 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 269 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 270 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 272 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 274 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 276 EMSH BS	263	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
266 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 267 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 268 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 269 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 270 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 274 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 275 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie 0 RND 277 EMSH BS 17-Sep-03<														
268 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 269 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 270 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 272 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 274 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 277 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 277 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 278 EMSH														
269 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 272 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 274 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 275 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 278 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 279 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 318 EMSH BS														
270 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 271 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 274 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 275 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 277 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 278 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 280 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 319 EMSH BS														
272 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 273 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 274 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 275 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 277 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 278 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 280 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 318 EMSH BS 17-Sep-03 2 Mackenzie R 0 RND 322 EMSH BS														
273 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 274 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 276 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 276 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 277 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 278 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 279 EMSH BS 17.Sep-03 1 Mackenzie R 0 RND 280 EMSH BS 17.Sep-03 2 Mackenzie R 0 RND 318 EMSH BS 17.Sep-03 2 Mackenzie R 0 RND 320 EMSH BS 17.Sep-03 2 Mackenzie R 0 RND 321 EMSH BS								1						
275 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 276 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 277 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 278 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 279 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 280 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 318 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 319 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH	273	EMSH			BS		17-Sep-03					Mackenzie R.	0	RND
276 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 277 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 278 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 279 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 280 EMSH BS 17-Sep-03 1 Mackenzie R 0 RND 318 EMSH BS 17-Sep-03 2 Mackenzie R 0 RND 319 EMSH BS 17-Sep-03 2 Mackenzie R 0 RND 320 EMSH BS 17-Sep-03 2 Mackenzie R 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R 0 RND 324 EMSH BS														
278 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 279 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 280 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 318 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 319 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 320 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH	276	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
279 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 280 EMSH BS 17-Sep-03 1 Mackenzie R. 0 RND 318 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 319 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 320 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 325 EMSH														
318 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 319 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 320 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 325 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH	279	EMSH			BS		17-Sep-03	1				Mackenzie R.	0	RND
319 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 320 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 325 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 328 EMSH														
320 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 321 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 325 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 328 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH	319	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
322 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 325 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 328 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH	320	EMSH					17-Sep-03	2				Mackenzie R.	0	RND
323 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 324 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 325 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 328 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 329 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH								2						
325 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 328 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 329 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	323	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
326 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 327 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 328 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 329 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND								2						
329 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	326	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
329 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND								2						
330 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 331 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	329	EMSH			BS		17-Sep-03	2					0	RND
332 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	330	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
	333	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
334 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 335 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND														
336 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	336	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
337 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 338 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND								2						
339 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	339				BS		17-Sep-03	2						RND
340 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND	340	EMSH			BS		17-Sep-03	2				Mackenzie R.	0	RND
341 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 342 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND					BS			2						
342 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND 343 EMSH BS 17-Sep-03 2 Mackenzie R. 0 RND								2]		l			

Table C-1.	Raw data for fish	captured in the vicir	nity of the propose	d Deh Cho Bridge, 2003.

ample	Species	Fork Length (mm)	Weight (g)	Sex	Capture Method	Ageing Structure	Date	Site	Mesh Size	Tra Direction	Location	Capture Code	Comments
344 345	EMSH EMSH				BS BS		17-Sep-03 17-Sep-03	2 2			Mackenzie R. Mackenzie R.	0 0	RND RND
346	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
347	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
348	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
349	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
350 351	EMSH EMSH				BS BS		17-Sep-03 17-Sep-03	2 2			Mackenzie R. Mackenzie R.	0 0	RND RND
352	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
353	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
354	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
355	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
356	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
357	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
358 359	EMSH EMSH				BS BS		17-Sep-03 17-Sep-03	2 2			Mackenzie R. Mackenzie R.	0 0	RND RND
360	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
361	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
362	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
363	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
364	EMSH			1	BS		17-Sep-03	2			Mackenzie R.	0	RND
365 366	EMSH EMSH			1	BS BS		17-Sep-03 17-Sep-03	2 2			Mackenzie R. Mackenzie R.	0 0	RND RND
366 367	EMSH			1	BS		17-Sep-03 17-Sep-03	2			Mackenzie R. Mackenzie R.	0	RND
368	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
369	EMSH				BS		17-Sep-03	2			Mackenzie R.	0	RND
370	EMSH			1	BS		17-Sep-03	2			Mackenzie R.	0	RND
371	EMSH			1	BS		17-Sep-03	2			Mackenzie R.	0	RND
372	EMSH			1	BS		17-Sep-03	2			Mackenzie R.	0	RND
386 387	EMSH EMSH				BS BS		17-Sep-03 17-Sep-03	3 3			Mackenzie R. Mackenzie R.	0 0	RND RND
388	EMSH			1	BS		17-Sep-03 17-Sep-03	3			Mackenzie R.	0	RND
389	EMSH			1	BS		17-Sep-03	3			Mackenzie R.	0	RND
390	EMSH			1	BS		17-Sep-03	3			Mackenzie R.	0	RND
391	EMSH			1	BS		17-Sep-03	3			Mackenzie R.	0	RND
392	EMSH			1	BS		17-Sep-03	3			Mackenzie R.	0	RND
393	EMSH			1	BS		17-Sep-03	3			Mackenzie R.	0	RND
394 395	EMSH EMSH				BS BS		17-Sep-03 17-Sep-03	3 3			Mackenzie R. Mackenzie R.	0 0	RND RND
395 411	EMSH				BS		17-Sep-03 17-Sep-03	4			Mackenzie R.	0	RND
412	EMSH			1	BS		17-Sep-03	4			Mackenzie R.	0	RND
413	EMSH			1	BS		17-Sep-03	4			Mackenzie R.	0	RND
414	EMSH				BS		17-Sep-03	4			Mackenzie R.	0	RND
415	EMSH				BS		17-Sep-03	4			Mackenzie R.	0	RND
416	EMSH			1	BS		17-Sep-03	4			Mackenzie R.	0	RND
629 630	EMSH EMSH			1	BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
630	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	0	RND RND
632	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
633	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
634	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
635	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
636 637	EMSH			1	BS		20-Sep-03	10			Mackenzie R. Mackenzie R	0	RND
637 638	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
639	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
640	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
641	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
642	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
643	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
644	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
645 646	EMSH EMSH			1	BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
646 647	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
648	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
649	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
650	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
651	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
652 653	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
653 654	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	0	RND
655 655	EMSH			1	BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
656	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
657	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
658	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
659	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
660 661	EMSH			1	BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R	0 0	RND RND
661 662	EMSH EMSH			1	BS		20-Sep-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	0	RND
663	EMSH			1	BS		20-Sep-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	0	RND RND
664	EMSH			1	BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
665	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
666	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
667	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
668	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
669	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
670 671	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
671 672	EMSH			1	BS		20-Sep-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	0	RND
673	EMSH			1	BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
674	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
675	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
676	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
677	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
678	EMSH			1	BS		20-Sep-03	10			Mackenzie R.	0	RND
679	EMSH		1	I I	BS		20-Sep-03	10			Mackenzie R.	0	RND
680	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND

Table C-1.	Raw data for fish	a captured in the	vicinity of the prop	posed Deh Cho Bridge, 200	03.

ample	Species	Fork Length	Weight (g)	Sex	Capture	Ageing	Date	Site	Mesh Size	Tra		Location	Capture	Comments
-	-	(mm)		000	Method	Structure				Direction	Check #		Code	
682 683	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
684	EMSH				BS		20-Sep-03	10				Mackenzie R.	Ō	RND
685	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
686	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
687 688	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
689	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
690	EMSH				BS		20-Sep-03	10				Mackenzie R.	ů 0	RND
691	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
692	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
693	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
694	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
695 696	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
697	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
698	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
699	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
700	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
701	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
702	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
703 704	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
704	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
706	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
707	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
708	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
709	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
710	EMSH				BS		20-Sep-03	10 10				Mackenzie R. Mackenzie R	0	RND
711 712	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
712	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
714	EMSH				BS		20-Sep-03	10				Mackenzie R.	Ő	RND
715	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
716	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
717	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
718 719	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
720	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
721	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
722	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
723	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
724	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
725	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
726 727	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
728	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
729	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
730	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
731	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
732	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
733	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
734 735	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
736	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
737	EMSH				BS		20-Sep-03	10				Mackenzie R.	Ő	RND
738	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
739	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
740	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
741 742	EMSH				BS BS		20-Sep-03	10 10				Mackenzie R.	0 0	RND RND
742 743	EMSH EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R. Mackenzie R.	0	RND
743	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
745	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
746	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
747	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
748	EMSH				BS		20-Sep-03	10				Mackenzie R.	0 0	RND
749 750	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	RND RND
750 751	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R. Mackenzie R.	0	RND
752	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
753	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
754	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
755	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
756	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
757	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
758 759	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
760	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
761	EMSH				BS		20-Sep-03 20-Sep-03	10				Mackenzie R.	0	RND
762	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
763	EMSH		1		BS		20-Sep-03	10				Mackenzie R.	0	RND
764	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
765	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
766	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
767 768	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
768 769	EMSH				BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	RND
770	EMSH		1		BS		20-Sep-03	10				Mackenzie R.	0	RND
771	EMSH			l	BS		20-Sep-03	10				Mackenzie R.	0	RND
772	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
773	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
774	EMSH		1		BS		20-Sep-03	10				Mackenzie R.	0	RND
775	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
776 777	EMSH EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
	LIVISH		1	l I	BS		20-Sep-03	10	1			Mackenzie R.	0	RND
778	EMSH				BS		20-Sep-03	10				Mackenzie R.	0	RND

Table C-1.	Raw data for fish	captured in the vicir	nity of the propose	d Deh Cho Bridge, 2003.

ample	Species	Fork Length (mm)	Weight (g)	Sex	Capture Method	Ageing Structure	Date	Site	Mesh Size	Tra Direction	Location	Capture Code	Comments
780	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
781 782	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
783	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
784	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
785	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
786	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
787 788	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
789	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
790	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
791	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
792	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
793 794	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0	RND RND
795	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
796	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
797	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
798	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
799 800	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0	RND RND
801	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
802	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
803	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
804	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
805 806	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0	RND RND
807	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
808	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
809	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
810 911	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
811 812	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0	RND RND
813	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
814	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
815	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
816	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
817 818	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0 0	RND RND
819	EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R.	0	RND
820	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
821	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
822	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
823 824	EMSH EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R. Mackenzie R.	0	RND RND
825	EMSH				BS		20-Sep-03	10			Mackenzie R.	Ő	RND
826	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
827	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
828 829	EMSH				BS BS		20-Sep-03 20-Sep-03	10 10			Mackenzie R.	0	RND
830	EMSH EMSH				BS		20-Sep-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	0	RND RND
831	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
832	EMSH				BS		20-Sep-03	10			Mackenzie R.	0	RND
963	EMSH				BS		21-Sep-03	11			Mackenzie R.	0	RND
964 965	EMSH EMSH				BS BS		21-Sep-03 21-Sep-03	11 11			Mackenzie R. Mackenzie R.	0	RND RND
966	EMSH				BS		21-Sep-03	11			Mackenzie R.	0	RND
967	EMSH				BS		21-Sep-03	11			Mackenzie R.	Ő	RND
1022	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
1023	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
1024	EMSH				BS		21-Sep-03	12			Mackenzie R. Mackenzie R.	0	RND
1025 1026	EMSH EMSH				BS BS		21-Sep-03 21-Sep-03	12 12			Mackenzie R.	0	RND RND
1027	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
1028	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
1029	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
1030 1031	EMSH EMSH				BS BS		21-Sep-03 21-Sep-03	12 12			Mackenzie R. Mackenzie R.	0 0	RND RND
032	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
033	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
034	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
035	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
036 037	EMSH EMSH				BS BS		21-Sep-03 21-Sep-03	12 12			Mackenzie R. Mackenzie R.	0 0	RND RND
037	EMSH				BS		21-Sep-03 21-Sep-03	12			Mackenzie R.	0	RND
039	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
040	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
041	EMSH				BS		21-Sep-03	12			Mackenzie R.	0	RND
042 043	EMSH EMSH				BS BS		21-Sep-03 21-Sep-03	12 12			Mackenzie R. Mackenzie R.	0 0	RND RND
043	EMSH				BS		21-Sep-03 21-Sep-03	12			Mackenzie R.	0	RND
107	LKWH	117	10		ES		17-Sep-03	1			Mackenzie R.	0	
141	LKWH	219	300		ES		18-Sep-03	2			Mackenzie R.	0	
1	LKWH	248	230		GN	SC	30-Jul-03	2	2.50		Mackenzie R.	0	CT = 10 (Coddi-#:/#:- '
902 61	LKWH LKWH	264 270	215 285	1	GN GN	SC	21-Sep-03 2-Aug-03	14 10			Mackenzie R. Mackenzie R.	1 1	ST = 10 (Caddisflies/mayflies/scud ST = 0
511	LKWH	270 285	285 345		GN	30	2-Aug-03 20-Sep-03	10			Mackenzie R. Mackenzie R.	1	31 - 0
103	LKWH	289	355		ES	SC	17-Sep-03	1			Mackenzie R.	0	
20	LKWH	293	390		GN	SC	31-Jul-03	5	3.50		Mackenzie R.	0	
156	LKWH	305	370		ES	00	18-Sep-03	3	0.50		Mackenzie R.	0	
5 140	LKWH LKWH	324 340	480 470		GN ES	SC	30-Jul-03	2 2	2.50		Mackenzie R. Mackenzie R.	1 0	ST = 10 (plants and clams)
140 15	LKWH	340 347	470 465		ES GN	SC	18-Sep-03 30-Jul-03	2	3.50		Mackenzie R. Mackenzie R.	0	
147	LKWH	360	680		ES	00	18-Sep-03	3	5.00		Mackenzie R.	0	
	LKWH	365	840	1	ES		18-Sep-03	2			Mackenzie R.	Ő	
135								~			Wackenzie R.	0	
135 168 105	LKWH	368 370	740 645		ES ES	SC	18-Sep-03 17-Sep-03	4 1			Mackenzie R. Mackenzie R.	0	

Table C-1. Raw data for fish captured in the vicinity of the proposed Deh Cho Bridge, 2003.

Sample	Species	Fork Length	Weight (g)		Capture Method	Ageing Structure	Date	Site	Mesh Size	Tra Direction	ар	Location	Capture Code	Comments
152 474	LKWH LKWH	(mm) 375 384	760 805		ES GN		18-Sep-03 19-Sep-03	3 12				Mackenzie R. Mackenzie R.	0 1	ST = 20 (Water boatmen, clams)
891	LKWH	385 386	770	1	GN		21-Sep-03	14				Mackenzie R.	1	
898 59	LKWH LKWH	390	890 920	15 14	GN GN	SC	21-Sep-03 2-Aug-03	14 10				Mackenzie R. Mackenzie R.	1 1	ST =15 (scuds) ST = 10 (caddis fly, mayfly,beetles)
133	LKWH	395	875	5	ES		18-Sep-03	2				Mackenzie R.	1	ST = 20 (back swimmers)
136 900	LKWH LKWH	402 402	1025 920	17	ES GN		18-Sep-03 21-Sep-03	2 14				Mackenzie R. Mackenzie R.	0 1	ST = 20 (Water boatmen)
83	LKWH	402	920 1005	14	GN	SC	21-Sep-03 2-Aug-03	14				Mackenzie R.	1	ST = 20 (water boatmen) ST = 5 (clams)
60	LKWH	409	985	4	GN	SC	2-Aug-03	10				Mackenzie R.	1	ST = 5 (plants and clams)
182 148	LKWH LKWH	410 412	895	17	ES ES		18-Sep-03 18-Sep-03	5 3				Mackenzie R. Mackenzie R.	0 1	ST = 10 (Aquatic veg)
78	LKWH	412	855	11	GN	SC	2-Aug-03	7	2.50			Mackenzie R.	1	ST = 0
895	LKWH	416	915	5	GN		21-Sep-03	14	0.50			Mackenzie R.	1	ST = 15 (Water boatmen)
96 73	LKWH LKWH	417 418	1220 1025	14 4	GN GN	SC SC	3-Aug-03 2-Aug-03	8 8	3.50 3.50			Mackenzie R. Mackenzie R.	1 1	ST = 10 (water boatmen, back swimmers) ST = 5 (clams)
516	LKWH	419	1005	7	GN	SC	20-Sep-03	12	0.00			Mackenzie R.	1	ST = 0
102	LKWH	420	1095	15	ES	OT/SC	17-Sep-03	1				Mackenzie R.	1	OT = 5 (classe)
518 897	LKWH LKWH	420 420	1145 1145	15 5	GN GN	SC	20-Sep-03 21-Sep-03	12 14				Mackenzie R. Mackenzie R.	1 1	ST = 5 (clams) ST = 5 (Water boatmen)
77	LKWH	425	1120	4	GN	SC	2-Aug-03	7	2.50			Mackenzie R.	1	ST = 0
132 110	LKWH LKWH	425 427	1065 1160	15	ES ES	SC	18-Sep-03 17-Sep-03	2 1				Mackenzie R. Mackenzie R.	1 0	ST = 10 (back swimmers)
26	LKWH	432	1255	14	GN	SC	31-Jul-03	5	3.50			Mackenzie R.	1	ST = 5 (clams)
170	LKWH	433	1295	-	ES		18-Sep-03	4				Mackenzie R.	0	07 - 0
893 167	LKWH LKWH	434 435	1035 1380	5	GN ES		21-Sep-03 18-Sep-03	14 4				Mackenzie R. Mackenzie R.	1 0	ST = 0
424	LKWH	439	1090		FN		18-Sep-03	2		Dnst	4	Mackenzie R.	0	
899	LKWH	440	1225	5	GN		21-Sep-03	14				Mackenzie R.	1	ST = 0
138 149	LKWH LKWH	442 442	990 1080		ES ES		18-Sep-03 18-Sep-03	2 3				Mackenzie R. Mackenzie R.	0 0	
894	LKWH	442	1175	7	GN		21-Sep-03	14				Mackenzie R.	1	ST = 10 (Caddisflies)
134 892	LKWH LKWH	445 445	1225 1600	17	ES GN		18-Sep-03 21-Sep-03	2 14				Mackenzie R. Mackenzie R.	0 1	ST = 15 (Water boatmen)
164	LKWH	445	1290	17	ES		21-Sep-03 18-Sep-03	4				Mackenzie R.	0	ST = 15 (Water boatmen)
166	LKWH	447	1545		ES		18-Sep-03	4				Mackenzie R.	0	-
890 513	LKWH LKWH	449 450	1350 1390	17 7	GN GN	SC	21-Sep-03 20-Sep-03	15 12				Mackenzie R. Mackenzie R.	1 1	ST = 10 (Water boatmen) ST =10 (clams, caddisflies)
886	LKWH	454	935	5	GN	00	21-Sep-03	15				Mackenzie R.	1	ST = 15 (Snails, clams)
887	LKWH	455	1240	17 15	GN	07/80	21-Sep-03	15				Mackenzie R.	1	ST = 0
104 514	LKWH LKWH	460 462	1245 1595	15	ES GN	OT/SC SC	17-Sep-03 20-Sep-03	1 12				Mackenzie R. Mackenzie R.	1 1	ST =5 (clams)
512	LKWH	468	1410	17	GN	SC	20-Sep-03	12				Mackenzie R.	1	ST = 0
50 146	LKWH LKWH	470 474	1605 1410		GN ES		1-Aug-03 18-Sep-03	7 3	2.50			Mackenzie R. Mackenzie R.	1 1	ST = 0
150	LKWH	475	1715	15	ES		18-Sep-03	3				Mackenzie R.	1	ST = 20 (Snails, back swimmers)
522	LKWH	475	1420	17	GN	SC	20-Sep-03	13				Mackenzie R.	1	ST = 0
896 517	LKWH LKWH	475 479	1690 1555	17 7	GN GN	SC	21-Sep-03 20-Sep-03	14 12				Mackenzie R. Mackenzie R.	1 1	ST = 10 (Water boatmen) ST = 0
169	LKWH	480	1700		ES		18-Sep-03	4				Mackenzie R.	0	
25 58	LKWH LKWH	485 485	1820 1640	14 14	GN GN	SC SC	31-Jul-03	5 10	3.50			Mackenzie R. Mackenzie R.	1	ST = 10 (clams)
50	LKWH	485	2020	14	GN	SC	2-Aug-03 20-Sep-03	12				Mackenzie R.	1 1	ST = 10 (caddis fly, mayfly,beetles) ST = 5 (Unid)
76	LKWH	490	1475	4	GN	SC	2-Aug-03	7	2.50			Mackenzie R.	1	ST = 0
165 151	LKWH LKWH	498 524	1830 2020		ES ES		18-Sep-03 18-Sep-03	4 3				Mackenzie R. Mackenzie R.	0 0	
475	LKWH	555	1555		GN		19-Sep-03	12				Mackenzie R.	1	ST = 5 (Caddisflies)
519	LKWH				GN		20-Sep-03	12				Mackenzie R.	0	RND
520 521	LKWH LKWH				GN GN		20-Sep-03 20-Sep-03	12 12				Mackenzie R. Mackenzie R.	0 0	RND RND
174	LNSC	175	70		ES		18-Sep-03	4				Mackenzie R.	0	
157 158	LNSC LNSC	184 210	75 105		ES ES		18-Sep-03 18-Sep-03	3 3				Mackenzie R. Mackenzie R.	0 0	
82	LNSC	313	380		GN		2-Aug-03	11	2.50			Mackenzie R.	0	
969 492	NNST NNST	27 30			BS BS		21-Sep-03 19-Sep-03	12 7				Mackenzie R. Mackenzie R.	0 0	
455	NNST	33			BS		19-Sep-03	5				Mackenzie R.	0	
472	NNST	35			BS		19-Sep-03	6				Mackenzie R.	0	
470 499	NNST NNST	36 37			BS BS		19-Sep-03 19-Sep-03	6 8				Mackenzie R. Mackenzie R.	0 0	
498	NNST	38			BS		19-Sep-03	8				Mackenzie R.	0	
373 493	NNST NNST	42 42			BS BS		17-Sep-03 19-Sep-03	3 8				Mackenzie R. Mackenzie R.	0 0	
968	NNST	42			BS		21-Sep-03	12				Mackenzie R.	0	
497	NNST	44			BS		19-Sep-03	8				Mackenzie R.	0	
496 494	NNST NNST	45 46			BS BS		19-Sep-03 19-Sep-03	8 8				Mackenzie R. Mackenzie R.	0 0	
495	NNST	48			BS		19-Sep-03	8				Mackenzie R.	0	
550 17	NNST NRPK	50 88	8		BS MT		20-Sep-03 31-Jul-03	9 1				Mackenzie R. Mackenzie R.	0 0	
39	NRPK	88 100	8 6		FN		31-Jui-03 1-Aug-03	1			1	Mackenzie R.	0	
37	NRPK	102	6		FN		1-Aug-03	1			1	Mackenzie R.	0	
35 38	NRPK NRPK	105 105	6 8		FN FN		1-Aug-03 1-Aug-03	1 1			1 1	Mackenzie R. Mackenzie R.	0 0	
36	NRPK	109	6		FN		1-Aug-03	1			1	Mackenzie R.	0	
33 29	NRPK NRPK	110 113	8 10		FN FN		1-Aug-03	1 1			1 1	Mackenzie R. Mackenzie R.	1 0	
29 90	NRPK	113 114	10 10		FN FN	OT/SC	1-Aug-03 3-Aug-03	1 1			1	Mackenzie R. Mackenzie R.	0 1	
101	NRPK	114	10		FN	SC	3-Aug-03	1			3	Mackenzie R.	0	
32 34	NRPK NRPK	115 120	8 14		FN FN		1-Aug-03 1-Aug-03	1 1			1 1	Mackenzie R. Mackenzie R.	0 0	
30	NRPK	122	10		FN		1-Aug-03	1			1	Mackenzie R.	0	
13 85	NRPK NRPK	124 127	20 15		GN GN	SC	30-Jul-03 2-Aug-03	2 11	1.50 0.75			Mackenzie R. Mackenzie R.	0 0	
145	NRPK	130	5		ES	50	18-Sep-03	2	0.75			Mackenzie R.	0	
183	NRPK	134			ES	80	18-Sep-03	5				Mackenzie R.	0	
122 144	NRPK NRPK	135 140	15 20		ES ES	SC	17-Sep-03 18-Sep-03	1 2				Mackenzie R. Mackenzie R.	0 0	
•				•				•	•					I I

Table C-1. Raw data for fish captured in the vicinity of the proposed Deh Cho Bridge, 2003.

Sample	Species	Fork Length (mm)	Weight (g)	Sex	Capture Method	Ageing Structure	Date	Site	Mesh Size	Tra Direction		Location	Capture Code	Comments
160	NRPK	141	20		ES		18-Sep-03	3				Mackenzie R.	0	
31 562	NRPK NRPK	148 152	16		FN BS	FR	1-Aug-03 20-Sep-03	1 10			1	Mackenzie R. Mackenzie R.	0 0	
143	NRPK	155	30		ES		18-Sep-03	2				Mackenzie R.	0	
100	NRPK	161	30		FN	OT/SC	3-Aug-03 18-Sep-03	1			3	Mackenzie R.	1	
159 121	NRPK NRPK	228 290	75 140		ES ES	FR	18-Sep-03 17-Sep-03	3 1				Mackenzie R. Mackenzie R.	0 0	
14	NRPK	306	170	11	GN	FR	30-Jul-03	2	3.50			Mackenzie R.	1	ST = 0
142	NRPK	325	190		ES		18-Sep-03	2	0.50			Mackenzie R.	0	
86 23	NRPK NRPK	360 415	395 520		GN GN	FR FR	2-Aug-03 31-Jul-03	7 6	2.50 2.50			Mackenzie R. Mackenzie R.	0 0	
12	NRPK	424	455		GN	FR	30-Jul-03	1	3.50			Mackenzie R.	0	
53	NRPK	428	552		GN	FR	1-Aug-03	10				Mackenzie R.	0	
45 80	NRPK NRPK	440 440	595 650	4	GN GN	FR FR	1-Aug-03 2-Aug-03	7 7	2.50 2.50			Mackenzie R. Mackenzie R.	1 1	ST = 0 ST = 20 (mouse)
52	NRPK	440	612	4	GN	FR	1-Aug-03	7	2.50			Mackenzie R.	0	31 - 20 (mouse)
11	NRPK	450	600		GN	FR	30-Jul-03	1	2.50			Mackenzie R.	0	
65	NRPK	450	630	1	GN	FR	2-Aug-03	10		11		Mackenzie R.	1	ST = 0
417 22	NRPK NRPK	456 457	635 745		FN GN	FR	18-Sep-03 31-Jul-03	2 5	3.50	Upst	4	Mackenzie R. Mackenzie R.	0 0	
118	NRPK	463	575		ES	FR	17-Sep-03	1				Mackenzie R.	0	
67	NRPK	473	700	4	GN	FR	2-Aug-03	10	0.50			Mackenzie R.	1	ST = 0
81 113	NRPK NRPK	474 493	680 765		GN ES	FR FR	2-Aug-03 17-Sep-03	7 1	2.50			Mackenzie R. Mackenzie R.	0 0	
10	NRPK	495	810	14	GN	FR	30-Jul-03	2	3.50			Mackenzie R.	1	ST = 20 (pike and shiner)
418	NRPK	495	845		FN		18-Sep-03	2		Upst	4	Mackenzie R.	0	
6	NRPK	497	875		GN FN	FR	30-Jul-03 20-Sep-03	2 2	2.50	Linet	6	Mackenzie R.	0 0	
504 48	NRPK NRPK	505 510	830 780	1	GN		20-Sep-03 1-Aug-03	2 7	2.50	Upst	υ	Mackenzie R. Mackenzie R.	1	
70	NRPK	514	980	14	GN	FR	2-Aug-03	10				Mackenzie R.	1	ST = 0
97	NRPK	514	970	4	GN	FR	3-Aug-03	7	2.50			Mackenzie R.	1	ST = 0
120 510	NRPK NRPK	514 514	885 925	1	ES GN	FR	17-Sep-03 20-Sep-03	1 12				Mackenzie R. Mackenzie R.	0 0	
171	NRPK	518	945		ES		18-Sep-03	4				Mackenzie R.	0	
139	NRPK	520	855		ES		18-Sep-03	2 7				Mackenzie R.	0	
79 903	NRPK NRPK	525 527	1095 945	4 14	GN GN	FR	2-Aug-03 21-Sep-03	7 14	2.50			Mackenzie R. Mackenzie R.	1 1	ST = 0 ST = 0
438	NRPK	527	945 945	14	FN		21-Sep-03 19-Sep-03	2		Dnst	5	Mackenzie R.	0	51 = 0
508	NRPK	529	985		GN		20-Sep-03	12			-	Mackenzie R.	0	
69	NRPK	532	1060	4	GN	FR	2-Aug-03	10				Mackenzie R.	1	ST = 0
68 429	NRPK NRPK	534 538	1080 920	4	GN FN	FR	2-Aug-03 19-Sep-03	10 2		Upst	5	Mackenzie R. Mackenzie R.	1 0	ST = 0
509	NRPK	538	1120		GN		20-Sep-03	12		opst	Ŭ	Mackenzie R.	õ	
439	NRPK	542	1065		FN		19-Sep-03	2		Dnst	5	Mackenzie R.	0	
906 47	NRPK NRPK	544 550	1045 1195	14	GN GN		21-Sep-03	14 8	3.50			Mackenzie R. Mackenzie R.	1 1	ST = 0
51	NRPK	550	1195		GN		1-Aug-03 1-Aug-03	0 10	3.50			Mackenzie R.	0	
71	NRPK	550	1235		GN	FR	2-Aug-03	8	3.50			Mackenzie R.	0	
9	NRPK	551	1230	4	GN	FR	30-Jul-03	1	3.50			Mackenzie R.	1	
44 84	NRPK NRPK	555 557	1240 1285	4	GN GN	FR FR	1-Aug-03 2-Aug-03	8 10	3.50			Mackenzie R. Mackenzie R.	1 1	ST = 0 ST = 20 (pike)
503	NRPK	559	1180	-	FN		20-Sep-03	2		Upst	6	Mackenzie R.	0	51 – 20 (pike)
91	NRPK	560	1320		GN	FR	3-Aug-03	8	3.50			Mackenzie R.	0	
89 172	NRPK NRPK	562 563	980 1165		FN ES	FR	3-Aug-03 18-Sep-03	1 4			3	Mackenzie R. Mackenzie R.	0 0	
40	NRPK	565	1345		GN	FR	1-Aug-03	8	3.50			Mackenzie R.	0	
72	NRPK	565	1280	4	GN	FR	2-Aug-03	8	3.50			Mackenzie R.	1	ST = 0
119 422	NRPK NRPK	573 573	1435 1335		ES FN	FR	17-Sep-03 18-Sep-03	1 2		Dnst	4	Mackenzie R. Mackenzie R.	0 0	
98	NRPK	575	750	14	GN	FR	3-Aug-03	7	2.50	Diist	4	Mackenzie R.	1	ST = 0
16	NRPK	584	1355	4	GN	FR	31-Jul-03	4	4.50			Mackenzie R.	0	
49	NRPK	585	1480		GN		1-Aug-03	7	2.50	Deat	5	Mackenzie R.	0	
433 114	NRPK NRPK	588 590	1310 1525	1	FN ES	FR	19-Sep-03 17-Sep-03	2 1		Dnst	5	Mackenzie R. Mackenzie R.	0 0	
419	NRPK	594	805	1	FN		18-Sep-03	2		Upst	4	Mackenzie R.	0	
428	NRPK	594	1285	4	FN	ED.	19-Sep-03	2		Upst	5	Mackenzie R.	0	ST - 0
66 115	NRPK NRPK	604 605	1580 1880	4	GN ES	FR FR	2-Aug-03 17-Sep-03	10 1				Mackenzie R. Mackenzie R.	1 0	ST = 0
7	NRPK	606	1705	1	GN	FR	30-Jul-03	1	2.50			Mackenzie R.	0	
112	NRPK	608	1305	1	ES GN	FR	17-Sep-03	1	2.50			Mackenzie R.	0	
8 117	NRPK NRPK	627 635	1800 1840	1	GN ES	FR FR	30-Jul-03 17-Sep-03	1 1	2.50			Mackenzie R. Mackenzie R.	0 0	
888	NRPK	650	1845	14	GN		21-Sep-03	15				Mackenzie R.	1	ST = 0
905	NRPK	650	2410	14	GN		21-Sep-03	14		Devi	-	Mackenzie R.	1	ST = 10 (BURB)
437 525	NRPK NRPK	655 656	1705 2385	1	FN GN		19-Sep-03 20-Sep-03	2 13		Dnst	5	Mackenzie R. Mackenzie R.	0 0	
421	NRPK	657	1750	1	FN		20-Sep-03 18-Sep-03	2		Dnst	4	Mackenzie R.	0	
427	NRPK	668	1770	1	FN		19-Sep-03	2		Upst	5	Mackenzie R.	0	
21 54	NRPK NRPK	672 680	2045 2410	1	GN FN	FR FR	31-Jul-03 2-Aug-03	5 1	3.50		2	Mackenzie R. Mackenzie R.	0 0	
54 889	NRPK	680	2410 2695	14	GN	ΓN	2-Aug-03 21-Sep-03	15			4	Mackenzie R.	1	ST = 20 (LKWH)
500	NRPK	697	1550	1	FN		20-Sep-03	2		Dnst	6	Mackenzie R.	0	
88	NRPK	698	1805	1	FN	FR	3-Aug-03	1		11-11	3	Mackenzie R.	0	Skinny
420 116	NRPK NRPK	715 720	2520 2825	1	FN ES	FR	18-Sep-03 17-Sep-03	2 1		Upst	4	Mackenzie R. Mackenzie R.	0 0	
436	NRPK	722	2200	1	FN		19-Sep-03	2		Dnst	5	Mackenzie R.	0	
435	NRPK	729	3060	1	FN		19-Sep-03	2		Dnst	5	Mackenzie R.	0	
505 907	NRPK NRPK	733 735	2405 3330	14	FN GN		20-Sep-03 21-Sep-03	2 14		Upst	6	Mackenzie R. Mackenzie R.	0 1	ST =20 (BURB)
904	NRPK	740	2265	14	GN		21-Sep-03 21-Sep-03	14				Mackenzie R.	1	ST = 0
524	NRPK	764	3675	1	GN	FR	20-Sep-03	13				Mackenzie R.	0	
173 163	NRPK NRPK	765 802	3170 4475	1	ES ES		18-Sep-03 18-Sep-03	4 3				Mackenzie R. Mackenzie R.	0 0	Tumor on jaw
523	NRPK	802 910	4475 3875	1	ES GN	FR	18-Sep-03 20-Sep-03	3 13				Mackenzie R.	0	
	NRPK	928	5485	1	FN	FR	19-Sep-03	2		Dnst	5	Mackenzie R.	0	
434		173	65	1	ES	SC	17-Sep-03	1	1	1		Mackenzie R.	0	
434 123 111	RNWH RNWH	388	790		ES	SC	17-Sep-03	1				Mackenzie R.	0	

Table C-1.	Raw data for fish	captured in the vicinit	v of the proposed De	h Cho Bridge, 2003.

Sample	Species	Fork Length	Weight (g)		Capture Method	Ageing Structure	Date	Site	Mach Siza	Direction	ар	Location	Capture Code	Comments
109	RNWH	(mm) 410	940		ES	SC	17-Sep-03	1		Direction	SHOUK #	Mackenzie R.	0	
106 108	RNWH RNWH	412 445	985 1060	17 7	ES ES	OT/SC OT/SC	17-Sep-03 17-Sep-03	1 1				Mackenzie R. Mackenzie R.	1 1	
483 548	SPSH SPSH	21 21			BS BS		19-Sep-03 20-Sep-03	7 9				Mackenzie R. Mackenzie R.	0	
585	SPSH	21			BS		20-Sep-03	10				Mackenzie R.	0	
604 997	SPSH SPSH	21 21			BS BS		20-Sep-03 21-Sep-03	10 12				Mackenzie R. Mackenzie R.	0 0	
623 962	SPSH SPSH	22 22			BS BS		20-Sep-03 21-Sep-03	10 11				Mackenzie R. Mackenzie R.	0	
996	SPSH	22			BS		21-Sep-03	12				Mackenzie R.	0	
199 376	SPSH SPSH	23 23			BS BS		17-Sep-03 17-Sep-03	1 3				Mackenzie R. Mackenzie R.	0 0	
480 482	SPSH SPSH	23 23			BS BS		19-Sep-03 19-Sep-03	7 7				Mackenzie R. Mackenzie R.	0	
533	SPSH	23			BS		20-Sep-03	9				Mackenzie R.	0	
578 602	SPSH SPSH	23 23			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	
612 292	SPSH SPSH	23 24			BS BS		20-Sep-03 17-Sep-03	10 2				Mackenzie R. Mackenzie R.	0 0	
477	SPSH	24			BS		19-Sep-03	7				Mackenzie R.	0	
579 616	SPSH SPSH	24 24			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	
994 195	SPSH SPSH	24 25			BS BS		21-Sep-03 17-Sep-03	12 1				Mackenzie R. Mackenzie R.	0 0	
479	SPSH	25			BS		19-Sep-03	7				Mackenzie R.	0	
586 599	SPSH SPSH	25 25			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	
605 613	SPSH SPSH	25 25			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	
614	SPSH	25			BS		20-Sep-03	10				Mackenzie R.	0	
197 204	SPSH SPSH	26 26			BS BS		17-Sep-03 17-Sep-03	1 1				Mackenzie R. Mackenzie R.	0 0	
570 587	SPSH SPSH	26 26			BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	
628	SPSH SPSH	26			BS BS		20-Sep-03 21-Sep-03	10				Mackenzie R.	0	
991 187	SPSH	26 27			BS		17-Sep-03	12 1				Mackenzie R. Mackenzie R.	0	
189 456	SPSH SPSH	27 27			BS BS		17-Sep-03 19-Sep-03	1 5				Mackenzie R. Mackenzie R.	0	
619	SPSH SPSH	27 28			BS		20-Sep-03 17-Sep-03	10				Mackenzie R.	0	
185 186	SPSH	28			BS BS		17-Sep-03	1 1				Mackenzie R. Mackenzie R.	0	
284 452	SPSH SPSH	28 28			BS BS		17-Sep-03 19-Sep-03	2 5				Mackenzie R. Mackenzie R.	0	
620 527	SPSH SPSH	28 29			BS BS		20-Sep-03 20-Sep-03	10 9				Mackenzie R. Mackenzie R.	0	
293	SPSH	30			BS		17-Sep-03	2				Mackenzie R.	0	
995 291	SPSH SPSH	30 31			BS BS		21-Sep-03 17-Sep-03	12 2				Mackenzie R. Mackenzie R.	0	
288 467	SPSH SPSH	32 33			BS BS		17-Sep-03 19-Sep-03	2 5				Mackenzie R. Mackenzie R.	0	
450	SPSH	34			BS		19-Sep-03	5				Mackenzie R.	0	
282 432	SPSH SPSH	36 78			BS FN		17-Sep-03 19-Sep-03	2 2		Dnst	5	Mackenzie R. Mackenzie R.	0 0	
425 306	SPSH SPSH	80	5		FN BS		18-Sep-03 17-Sep-03	2 2		Dnst	4	Mackenzie R. Mackenzie R.	0 0	RND
307	SPSH				BS		17-Sep-03	2				Mackenzie R.	0	RND
308 309	SPSH SPSH				BS BS		17-Sep-03 17-Sep-03	2 2				Mackenzie R. Mackenzie R.	0 0	RND RND
310 311	SPSH SPSH				BS BS		17-Sep-03 17-Sep-03	2 2				Mackenzie R. Mackenzie R.	0	RND RND
312	SPSH				BS		17-Sep-03	2				Mackenzie R.	0	RND
313 314	SPSH				BS BS		17-Sep-03 17-Sep-03	2 2				Mackenzie R. Mackenzie R.	0	RND RND
315 316	SPSH SPSH				BS BS		17-Sep-03 17-Sep-03	2 2				Mackenzie R. Mackenzie R.	0 0	RND RND
317 833	SPSH SPSH				BS BS		17-Sep-03 20-Sep-03	2 10				Mackenzie R. Mackenzie R.	0	RND RND
834	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
835 836	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
837 838	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
839	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
840 841	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
842 843	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
844 845	SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	RND RND
846	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
847 848	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
849 850	SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	RND RND
851	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
852 853	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
854 855	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	RND RND
856	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
857 858	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0	RND RND
859 860	SPSH SPSH				BS BS		20-Sep-03 20-Sep-03	10 10				Mackenzie R. Mackenzie R.	0 0	RND RND
861	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
862	SPSH		l	I	BS		20-Sep-03	10	I I			Mackenzie R.	0	RND

		Fork			_					Tra	ар			
Sample	Species	Length (mm)	Weight (g)	Sex	Capture Method	Ageing Structure	Date	Site	Mesh Size	Direction		Location	Capture Code	Comments
863	SPSH	,,			BS		20-Sep-03	10				Mackenzie R.	0	RND
864	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
865	SPSH				BS		20-Sep-03	10				Mackenzie R.	Ő	RND
866	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
867	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
868	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
869	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
870	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
871	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
872	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
873	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
874	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
875	SPSH				BS		20-Sep-03	10				Mackenzie R.	Ő	RND
876	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
877	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
878	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
879	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
880	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
881	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
882	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
883	SPSH				BS		20-Sep-03	10				Mackenzie R.	Ő	RND
884	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
885	SPSH				BS		20-Sep-03	10				Mackenzie R.	0	RND
		04			BS									KIND
299	TRPR	21					17-Sep-03	2				Mackenzie R.	0	
301	TRPR	22			BS		17-Sep-03	2				Mackenzie R.	0	
993	TRPR	23			BS		21-Sep-03	12				Mackenzie R.	0	
285	TRPR	24			BS		17-Sep-03	2				Mackenzie R.	0	
281	TRPR	25			BS		17-Sep-03	2				Mackenzie R.	0	
300	TRPR	25			BS		17-Sep-03	2				Mackenzie R.	0	
302	TRPR	27			BS		17-Sep-03	2				Mackenzie R.	0	
303	TRPR	33			BS		17-Sep-03	2				Mackenzie R.	Ō	
283	TRPR	40			BS		17-Sep-03	2				Mackenzie R.	0	
203 507	TRPR	40 55			FN		20-Sep-03	2		Upst	6	Mackenzie R.	0	
501	TRPR	56			FN		20-Sep-03	2		Upst	6	Mackenzie R.	0	
304	TRPR				BS		17-Sep-03	2				Mackenzie R.	0	RND
305	TRPR				BS		17-Sep-03	2				Mackenzie R.	0	RND
99	WALL	318	685	14	GN	FR	3-Aug-03	7	2.50			Mackenzie R.	1	ST = 0
75	WALL	387	700	4	GN	FR	2-Aug-03	7	2.50			Mackenzie R.	1	ST = 0
94	WALL	400	675	4	GN	FR	3-Aug-03	8	3.50			Mackenzie R.	1	ST = 5 (fish remains)
41	WALL	405	675		GN	FR	1-Aug-03	8	3.50			Mackenzie R.	1	ST = 20 (pike)
95	WALL	417	800	4	GN	FR	3-Aug-03	8	3.50			Mackenzie R.	1	ST = 0
95 19	WALL	475	1200	-	GN	FR	31-Jul-03	5	4.50			Mackenzie R.	0	51-0
		475 517	1200	4	GN	FR	2-Aug-03	5 10	4.50				1	ST = 0
57	WALL								0.50			Mackenzie R.		
74	WALL	535	1500	4	GN	FR	2-Aug-03	8	3.50			Mackenzie R.	1	ST = 0
46	WALL	540	1805		GN	FR	1-Aug-03	8	3.50			Mackenzie R.	0	
27	WHSC	350	655	4	GN		31-Jul-03	5	3.50			Mackenzie R.	1	ST = 0
125	WHSC	350	605		ES		17-Sep-03	1				Mackenzie R.	0	
93	WHSC	357	755		GN		3-Aug-03	8	3.50			Mackenzie R.	0	
62	WHSC	358	710		GN		2-Aug-03	10				Mackenzie R.	1	
18	WHSC	417	990		GN		31-Jul-03	5	3.50			Mackenzie R.	0	
64	WHSC	417	1305		GN		2-Aug-03	10	0.00			Mackenzie R.	1	
	WHSC	420					2-Aug-03 18-Sep-03	3					0	
155			975		ES				0.50			Mackenzie R.		
24	WHSC	430	1280		GN		31-Jul-03	5	3.50			Mackenzie R.	0	
56	WHSC	435	1340		GN		2-Aug-03	10				Mackenzie R.	0	
137	WHSC	435	1165		ES		18-Sep-03	2	1			Mackenzie R.	0	
87	WHSC	442	1430		GN		2-Aug-03	8	3.50			Mackenzie R.	0	
63	WHSC	445	1280		GN		2-Aug-03	10				Mackenzie R.	1	
154	WHSC	447	1350		ES		18-Sep-03	3				Mackenzie R.	0	
28	WHSC	449	1266		FN		1-Aug-03	1			1	Mackenzie R.	0	Small Lesion
	WHSC						2-Aug-03				· ·			Siliali Lesion
55		452	1460		GN			10	0.50			Mackenzie R.	0	
43	WHSC	465	1545		GN		1-Aug-03	8	3.50			Mackenzie R.	0	
153	WHSC	465	1740		ES		18-Sep-03	3				Mackenzie R.	0	
		475	1600		GN		1-Aug-03	8	3.50	1	1	Mackenzie R.	1	ST = 0
42 92	WHSC WHSC	507	1867		GN		3-Aug-03	8	3.50			Mackenzie R.	0	

Table C-1. Raw data for fish captured in the vicinity of the proposed Deh Cho Bridge, 2003.

For a list of species codes see Table 4.4 Species: Explanation of Codes:

Sex:

1 = male; immature, never spawned before and will not spawn during the coming season 2 = male; maturity questionable due to small gonad size

3 = male; developing, never spawned before but will spawn during the coming season 4 = male; definite gonad development, has spawned before

5 = male; definite gonad development, has spawned before but will not spawn during the coming season 7 = male; gravid, fully developed

8 = male; ripe, milt is extruded by slight pressure on the belly 9 = male; spent, spawning completed but residual milt still present

10 = male; determined by external characteristics 11 = female; immature, never spawned before and will not spawn during the coming season

12 = female; maturity questionable due to small gonad size 13 = female; developing, never spawned before but will spawn during the coming season

14 = female; definite gonad development, has spawned before 15 = female; definite gonad development, has spawned before but will not spawn during the coming season

16 = female; definite gonad development, cannot be determined if it is 13, 14 or 15 17 = female; gravid, fully developed

 18 = female; ripe, roe are extruded by slight pressure on the belly
 19 = female; spent, spawning completed, resorbtion of residual eggs not yet completed
 20 = female; determined by external characteristics SC = scales Ageing methods: Capture code: 0 = first capture, released FR = fin rays OT = otoliths 1 = first capture, sacrificed Capture method: FN = fyke net GN = gill net MT = Minnow trap BS = beach seine ES= boat electrofishing Comments: RND = released no data ST = Stomach contents; number indicates fullness 100% = 20 points (items encountered in brackets)

APPENDIX D

CONSTRUCTION MONITORING PROGRAM

Monitoring Water Quality in the Mackenzie River During Construction of the Deh Cho Bridge – Proposed Work Plan

Introduction

The Deh Cho Bridge Corporation Ltd. (DCBC) of Fort Providence, NT, is currently investigating the construction and operation of a bridge across the Mackenzie River at Km 23 of Highway #3 (Latitude: 61° 15' 45", Longitude: 117° 31' 30"). The proposed bridge would replace the existing ferry and ice bridge crossings, making Highway #3 an all-weather corridor, and creating an uninterrupted link between the City of Yellowknife and southern Canada. The proposed bridge is 1045 m in length and will consist of nine continuous spans, steel girder-concrete deck composite construction. The superstructure will be supported on eight piers constructed in the watercourse and two abutments constructed on approach causeways.

The Mackenzie Valley Land and Water Board and the federal Department of Indian and Northern Affairs, South Mackenzie District (DIAND-SMD) reviewed the water license application for the proposed bridge. As a result of this review, the DCBC was requested to provide a document outlining their approach to monitoring water quality (particularly suspended possible sediment and ammonia loadings into the Mackenzie River) during construction phases with instream components. The main instream activities and associated water quality concerns include:

- Installation of eight instream bridge piers involves the excavation and removal of • riverbed materials. Drilled and excavated riverbed materials will be temporarily stored (on the ice if construction occurs during winter, and in a barge if construction occurs during the open-water season). The stored materials will then be disposed of off-site or returned to the river (i.e., controlled monitored release into the main channel). During the temporary storage of riverbed material on barges, excess water will be drained from the barges with the released waters being returned to the river. The rate of the release of runoff waters from the barges can be controlled such that excessive sediment loads are not realized (i.e., below established guideline concentrations). Preliminary data indicate that the clay till underlaying river sediments is not prone to suspension [i.e., no more than 5% of mass is liberated following one minute laboratory shake tests (Ed Hoeve, EBA Engineering Consultants Ltd., Yellowknife, NT, personal communication)]. Thus, the controlled release of runoff water from barges containing clay till should be easy to manage. Installation and removal of the sheet-pile cofferdams, release of sediment-laden water contained by the cofferdams, and controlled disposal of excavated materials into the river (should this occur) will introduce sediments into the river.
- The bridge approaches will utilize existing ferry causeways, although some modifications will be required (north and south causeways widened, south causeway extended, north causeway shortened). Excavation and subsequent placement of materials will result in the release of suspended sediment into the river. In addition, ammonia may be introduced to the watercourse as a result of explosive residues leaching from recently blasted rock placed into the river. The construction and subsequent removal of a detour access road on the west perimeter of the north causeway also will facilitate the release of sediments and ammonia into the Mackenzie River.
- Seepage and other sources of water will be pumped out of each pier cofferdam. Some of this water may come in contact with fresh concrete used to construct the piers and footings. Fresh concrete is typically alkaline (i.e., high pH), thereby potentially affecting

waters that have contacted it. During pier construction, all waters pumped from cofferdams will be monitored for pH and, where necessary, neutralized with the use an approved, environmentally benign agent prior to release.

• Blasted rock will be used for fill and armouring material on various aspects of the bridge. The regulatory agencies have indicated some concern with respect to possible elevated levels of regulated metals (e.g., arsenic, lead) in the rock. DCBC commissioned a geochemical assessment of limestone from three quarries in the project area; heavy metal concentrations were found to be well below levels established for regulated metals. Additional sampling will be carried out as required (i.e., for rock originating from sources other than tested or at the request of the regulatory agencies).

Monitoring can be applied at a wide range of levels (i.e., synoptic to detailed). The level of effort selected for implementation depends on the desired results (comprehensiveness, reliability of data, etc.) and the level of funding available. In the present work, we have focused our efforts largely at monitoring the effects (and safeguards) specific areas and sites that have been identified as, or are suspected to be, important sensitive fish habitats. These habitats are located in nearshore areas along both the north and south banks. Given the high flow volume and the relatively deep/high velocity conditions in much of the main channel (which will result in a rapid flushing and dilution of sediment and ammonia) we recommend a synoptic level program for this zone (e.g., sampling of selected instream pier construction events). In order to capture a wide range of construction activities and events while keeping costs reasonable, the sampling strategy would incorporate a stratified sampling regime.

OBJECTIVES

The main objectives of the water quality monitoring program are as follows:

- To monitor total suspended sediment (TSS) and ammonia concentrations in the vicinity of the crossing according to a spatially (crossing, upstream and downstream) and temporally (sampling periods during major construction events and different seasons) stratified sampling regime.
- To provide timely feedback on sediment and ammonia concentrations to construction managers, thus allowing adjustment to construction activity (i.e., to minimize/mitigate potential effect on the aquatic environment).
- To establish the distance of downstream sediment and ammonia travel with particular reference to the loadings reaching aquatic habitats of known or potentially high fisheries value or sensitivity.
- To assess the impacts of suspended sediment and ammonia on fish populations, benthic macroinvertebrates, and aquatic habitat based on concentrations recorded and a summary of key published scientific literature.

APPROACH

Due to the large size of the river, and the requirement for representative sampling at widely spaced locations, the monitoring program would be most effectively conducted using two, 2-person crews (i.e., four individuals including two specifically trained and two local assistants).

Two boats (18' Lunds with minimum 25 hp outboards) would be utilized during the open-water season, whereas four snow machines and ice augers will be required during the winter. One of the crew members would be a project biologist who would be responsible for overall coordination of the monitoring program. Specific duties of the project biologist, however, include a Safety Watch role (i.e., in constant site to site communication with the boat crews, implementation of a rescue program if necessary), providing a liaison between the construction supervisors and the monitoring team (i.e., provide advice and feedback as required, logging construction activities for correlation to the sediment and ammonia data), and participating in the sampling program.

Due to the extended duration of the construction period, field sampling effort will be stratified. This will involve representative sampling in the major construction phases: excavation and infilling of causeway approaches, placement and removal of cofferdams, etc. Representative sampling also will be required during critical fisheries periods (e.g., spring and fall spawning periods) or when construction activity occurs in close proximity to valued fish habitats. Close contact will be maintained with DCBC field personnel and construction contractors to optimize the timing of the sampling/monitoring events.

RATIONALE

Preliminary habitat surveys indicate that the Mackenzie River in the vicinity of the existing ferry crossing can be characterized, on a gross level, as: rapidly flowing deep-run habitat in the main channel bracketed by nearshore, backwater habitats that receive protection from natural spur-like structures (peninsulas) and the ferry causeways, and discrete riffle/run habitats positioned off the tip of the peninsulas. As a consequence, instream construction activities that are nearshore (e.g., modification of causeway approaches) are likely to have a greater influence on fish and habitat resources than main channel (e.g., instream piers) construction. This is partly due to fish being able to utilize nearshore habitats for holding, rearing, and spawning and the fact that any materials entering the mainstem thalweg are expected to be quickly dispersed downstream and diluted. As such, monitoring pier construction activities is anticipated to result in sediment loadings that will be difficult to detect, with the possible exception of the piers located nearest the north and south shorelines.

The Mackenzie River is used by residents of Fort Providence for domestic fishing. Furthermore, the town's drinking water is drawn from the river; the intake pipe is approximately 11 km downstream of the proposed bridge. To address concerns that citizens of Fort Providence and DIAND-SMD will likely have, it is recommended that the monitoring program include important fishing areas and Fort Providence's water intake.

Based on the above, the monitoring program would include the following sampling locations and construction events:

- The program would focus on the construction of the two outside piers (i.e., the northern and southern-most piers). These piers are situated nearest to important/sensitive fish habitat (the nearshore backwater areas and riffle-run complexes which may be used for spawning and rearing by key species such as northern pike and lake whitefish.
- A sub-set of the remaining pier structures (i.e., one or two) will be monitored. Should results indicate negligible effects to the aquatic environment, monitoring during construction of the remaining piers will not be carried out. However, if monitoring proves to be useful (i.e., detectable sediment loads and ability to provide feedback to construction crews), a decision could be made (based on preliminary data, and following

discussions with the DCBC and the regulatory authorities) as to continue or suspend main channel monitoring.

- Pier construction will be monitored for suspended sediment and ammonia. The water pumped from the coffer dams will be tested and treated to balance pH levels prior to release. Since blasted rock will be used to develop protective aprons around instream piers ammonia monitoring will be required (i.e., ammonia from explosive residues).
- Habitats in the vicinity of the approach causeways will be monitored during all construction phases (for suspended sediments and ammonia) due to their high fisheries value and depositional nature (i.e., tendency to collect and store sediment).
- The sampling design will include upstream reference areas (e.g., 100 to 500 m upstream of construction zones) and appropriate downstream reaches and locations, as follows:
 - *Piers* downstream sampling locations will be established based on site-specific channel and flow features and observations by field crew members, but will likely involve sampling within observed or anticipated sediment plumes at 100 m, 500 m, and 1000 m downstream.
 - Approach Causeways on both the north and south sides, upstream reference samples should be collected from a typical backwater habitat and riffle-run complex; downstream sites should include at least two backwater and two rifflerun habitats.
 - *Fort Providence Water Intake* one monitoring location should be established immediately upstream of the town's water intake manifold.
 - *Areas of Domestic Fisheries* monitoring sites should be established in known domestic fishing areas.

METHODOLOGY

Coordination (DCBC, Contractors, and Field Staff)

The importance of effective and timely communication between the fisheries consultant, DCBC (office and on-site), and construction supervisors is recognized. This will ensure that monitoring is completed in a professional and safe manner and the data collected meets the requirements of the client and regulatory agencies. The monitoring contractor is expected to provide the following services:

- Pre-construction meetings at the crossing site with the DCBC field supervisor and the contractor to discuss the day-to-day operations at the site and establishment of a meeting schedule (e.g., daily tail-gate meetings to discuss progress, problems, and safety concerns).
- The monitoring field crew will be equipped with a satellite telephone and site-to-site communications systems (two-way radios). As such, they will be in close communication with the DCBC staff (office/field), construction contractors, and the monitoring contractor's home office.

• An experienced Project Biologist, with bridge construction and sediment monitoring experience, should be on-site at the bridge location during major construction events (e.g., pier and approach causeway construction) to record a detailed log of construction activities as they pertain to the downstream sediment and ammonia monitoring and to advise the contractor/client on fisheries mitigation issues as required.

Field Sampling

It should be stressed that the actual locations of monitoring sites will be adjusted in the field as necessary and will take into consideration stream and habitat configuration, water depth, current velocity and turbulence, site access, and worker safety. An attempt will be made to determine the maximum linear extent of sediment and ammonia transport; however, since fine particles such as silt and clay can travel substantial distances, particularly if entrained in the main channel thalweg, this may not be practical. In this case, downstream sample sites should be established at areas of greatest impact on aquatic resources or of human interest (e.g., high quality holding, potential spawning, and rearing habitats; immediately upstream of Fort Providence's water intake).

Initially, a turbidity/TSS relationship (turbidity is positively correlated to TSS concentrations for a given waterbody and is typically used as a surrogate during field monitoring programs; see below) will be developed for the bridge project area and will be used to calculate TSS values from turbidity data and aid in locating affected river reaches (e.g., distance downstream at which the sediment guidelines of above federal guidelines are no longer exceeded). This relationship will be derived from data historically collected at the present crossing area; however, a sufficient number and range of TSS samples will need to be collected during the proposed monitoring program for further refinement of the turbidity/TSS relationship.

Frequency of Sampling

As outlined in above, sampling events will be stratified and will cover the main instream construction events at the crossing. Sampling has been based on a 12 h day for four crew members. During each sampling event, the frequency of sampling will depend on such factors as instream activity at the crossing and the linear spread of the sediment and ammonia plumes. Sampling at one-hour intervals is expected at most locations; however, the first downstream locations will be sampled more frequently since sediment and ammonia increases will presumably be greatest at such locations and the duration of the sediment episode will be more rapid than at downstream sites. At minimum, the upstream control (reference) sites will be sampled three times per day (morning, mid-day, evening).

Suspended Sediment Sampling

Turbidity will be recorded to provide a surrogate measurement of TSS, since turbidity is more readily measured in the field. A relationship between the two variables will be derived (e.g., linear regression) using data from a subset of samples sent to a commercial lab for analysis of suspended solids. This relationship will then be used to predict TSS values on-site given the turbidity values. Samples will be analyzed using a portable turbidity meter.

Water samples for turbidity analysis will be collected using either a hand-held (shallow water habitats) or a hand line/winch operated, depth-integrated sediment sampler (deep water areas or

areas of greater velocity). Depth-integrated sediment sampling is method used by the Water Survey of Canada.

For quality assurance/quality control (QA/QC) purposes, replicate sampling will be undertaken and will consist of two components. Triplicate turbidity measurements will be taken from 10% of all samples collected. Triplicate water samples will also be taken for 10% of each sampling event and turbidity will be measured for each sample.

Turbidity values will be determined for each vertical haul and can be reported as a mean for each potential transect monitored. Total Suspended Sediment will generally be reported as a mean value; however, the use of weighted averages will be investigated.

Bridge construction may be during any part of the year and instream activities will occur at any time, except for periods in the early spring and early winter when ice flows are considerable. Close communication will be maintained with the construction crew and DCBC personnel prior to the commencement of the sampling program, to obtain updates on ice conditions. In the event that ice cover is still present at the time of initiation of sampling a modified program will be implemented. If ice cover permits, an ice auger will be used to drill transect holes for collection of water samples. Access to sampling sites will be made with the use of snow machines. Due to safety concerns, should monitoring programs be required during ice break-up or early winter ice flow periods, sampling would be limited to near shore areas (i.e., grab samples) and locations.

Ammonia Sampling

It is not known whether or not the ammonia content of blasted rock will be high enough to considerably affect aquatic habitats of the Mackenzie River (see Potential Impacts section). To evaluate this situation, representative rock samples from existing rock in the ferry approaches and from blasted rock imported to the construction sites should be collected and submitted to an analytical laboratory for ammonia analyses. The laboratory would test for the presence of ammonia leachate (shake flask extraction test) in the rock samples. Should the laboratory results and the initial field monitoring results indicate that ammonia levels are negligible or of no concern to aquatic life, a decision would be made to suspend or significantly reduce the scope of the ammonia sampling program. This decision would be made only after a thorough review of the preliminary data and following discussions with the DCBC and the regulatory authorities

Initially, the sampling program for ammonia will be similar to that described above for TSS; however, ammonia will be analysed only when blasted rock materials are disturbed or introduced into the Mackenzie River. In the field, ammonia concentrations will be determined with the use of portable singe-parameter test kits. A representative number of samples from both the river and the blasted rock material will be collected and submitted to an analytical laboratory to verify: a) the presence of ammonia in blasted rock, and b) field data collections. A field QA/QC program for ammonia will be developed similar to that described above for TSS.

Total Suspended Solids (TSS) and Ammonia Determination and Relevant Guidelines

Analysis of TSS and ammonia will be conducted at a commercial laboratory. To obtain an accurate relationship between TSS and turbidity, samples that span the entire range of measured turbidities will be collected and analyzed (minimum of 30 samples per season).

Current federal TSS water quality guidelines for the protection of aquatic (freshwater) life (CCME 1999) are as follows:

• Total Suspended Sediment (TSS) guidelines

1) Clear flow conditions (TSS \leq 25 mg/L)

a) short-term exposure (≤ 24 h); levels not to exceed 25 mg/L above background.

b) long-term exposure (24 h - 30 d); levels not to exceed 5 mg/L above background.

2) High flow conditions (TSS 25 – 250 mg/L) maximum allowable increase of 25 m/L above background.

3) Highflow conditions (TSS > 250 mg/L) maximum allowable increase of not more than 10% above background.

Current federal ammonia water quality guidelines for the protection of aquatic (freshwater) life are fairly complex, in comparison to TSS guidelines. Although ammonia guideline concentrations are dependent on ambient pH and water temperature, recommended maximum concentrations generally vary between 1.0 and 25 mg/L for most surface waters (CCME 1999). The maximum ammonia concentration for the Deh Cho Bridge will be established based upon a review of background water quality data and site-specific pH and temperature levels during monitoring periods. For example, total ammonia concentrations should not exceed 0.499 mg/L at a temperature of 20°C and pH of 8.0 and should not exceed 7.32 mg/L at a temperature of 0°C and pH of 7.5 (i.e., conditions expected in the Mackenzie River).

These guidelines will be used to track the sediment and ammonia loading events for reporting purposes (i.e., post-field data collections) and to comment on the linear and aerial extent downstream of various bridge construction phases that the existing guidelines are exceeded. Comparisons of TSS data collected at the bridge crossing and guideline values will be based on calculated values for TSS (i.e., the majority of TSS values will be derived from the turbidity/TSS relationship).

Sediment Deposition Monitoring (Optional)

Measurement of sediment deposition can be achieved using a variety of methods including substrate sampling, sediment traps, and visual analyses. The feasibility (and necessity) of quantifying sediment deposition will be assessed following a detailed review of the site conditions an the results of the fisheries impact assessment. The methods which will be considered are outlined below.

To assess substrate composition for size distribution and percent of fine material, a core sampler may be used. The sediments and water collected are strained through a series of sieves to determine the particle size distribution and percent fines.

A second option to assess sediment deposition involves the use of sediment traps which would be placed in valued fish habitats (e.g., riffle-run areas potentially used for spawning by lake whitefish), including the upstream control (minimum of five per transect). Each trap would be buried flush with the surface of the stream bed. Traps would be installed prior to instream construction activities and would be removed at the end of the sampling program for particle-size analysis and determination of fine material accumulation. While this technique works well in many situations, it is thought that its applicability to the present crossing may be limited due to the large size of the river (i.e., deep, high velocity channel) and high percentage of fine materials

in the substrate. Use of this method will be evaluated further following a more detailed review of the construction plans and a field test.

Visual analyses such as embeddedness rates the degree that the larger particles (e.g., gravel, cobble) are surrounded or covered by fine sediment. The rating is a measurement of how much of the surface and interstitial area of the larger size particles is covered by fine sediment. Embeddedness ratings would be taken at several locations before and after construction activities.

Other Parameters

Water velocity (mean column velocity) will be measured during the sampling periods at the various monitoring sites established. Discharge data will be obtained from Water Survey of Canada. Water temperature will be recorded continuously with a thermograph; the data can then be correlated to potential spawning activity by key fish species in the area. In addition, daily water temperatures will be measured with a pocket thermometer and recorded (particularly required for establishment of ammonia criteria). Conductivity, pH, dissolved oxygen will be measured daily at monitoring locations both upstream and downstream of the crossing; measurements also will be taken in the thalweg and at several points across the channel.

Potential Impacts on Aquatic Life and Habitat

TSS

The effects of introduced suspended sediment on fish are many and varied, ranging from direct mortality (in extreme cases) to various sub-lethal effects including: habitat avoidance and redistribution, reduced feeding and growth, respiratory impairment, and reduced tolerance to disease (Waters 1995). Deposited sediment has the potential to alter the diversity and density of benthic macroinvertebrates (a major food source for stream-dwelling fish populations) and reduce habitat suitability for a range of critical life-requisite functions (e.g., spawning, incubation of eggs, rearing, overwintering). It is generally accepted that the severity of effects of suspended sediment pollution on fish increases as a function of sediment concentration and duration of exposure, or dose (the product of concentration and exposure time).

Since a determination of the potential impacts on aquatic life and habitat are objectives of the monitoring program, the assessment will relate the turbidity/TSS data collected as well as effects documented in the scientific literature. It is recommended that the results of previous investigations regarding fish species presence and abundance in the Deh Cho Bridge study area be consulted when using assessing potential effects of sediment loading.

Ammonia

It was determined from reviewing toxicity and exposure data that freshwater organisms are most at risk from releases of ammonia in the aquatic environment. Rainbow trout, freshwater shrimp, walleye, mountain whitefish, and fingernail clams were identified as species with higher sensitivity to ammonia. Of these organisms, freshwater shrimp, walleye, and several whitefish species are present in the study area. Aquatic insects and micro-crustaceans are more resistant to ammonia, although there is a large variation in sensitivity within aquatic insects (Environment Canada and Health Canada 2001).

The ecological impact of ammonia in aquatic ecosystems is likely to occur through chronic toxicity to fish and benthic invertebrate populations as a result of reduced reproductive capacity

and reduced growth of young. These are subtle impacts that will likely not be noticed for some distance below an outfall. The zone of impact varies greatly with discharge conditions, river flow rate, temperature, and pH. Under estimated average conditions, some municipal wastewater discharges could be harmful for 10 to 20 km. Severe disruption of the benthic flora and fauna has been noted below municipal wastewater discharges. Recovery may not occur for many (20 to 100) kilometres. It is not clear whether these impacts are solely from ammonia or from a combination of factors, but ammonia is a major, potentially harmful constituent of municipal wastewater effluents (Environment Canada and Health Canada 2001).

The issue of ammonia residue from blasted rock is likely not to be of concern in relation to the construction of the Deh Cho Bridge in the Mackenzie River. Although ammonia can be toxic, it is unlikely to be a problem in this situation. While Environment Canada and Health Canada (2001) clearly states that freshwater may be potentially affected, the toxicity concerns are focused primarily on the municipal sewage treatment facilities that produce ammonia in substantial quantities and on a continual basis. The report also mentioned that they had concerns with some of the industrial operations (e.g., intensive livestock operations). There was no mention in the synopsis report of concerns associated with ammonia residues in riprap or other rock material. The report also noted that the degree of toxicity is strongly dependent on several key factors in the receiving water body, including:

- dilutional capacity (the greater the flows the lower the concern);
- water temperature (the lower the water temperature the lower the concern);
- pH (lower concern at basic pH values); and,
- dissolved oxygen (higher dissolved oxygen results in rapid decline in ammonia concentrations).

Environment Canada and Health Canada (2001) also indicated that ammonia toxicity was more of a problem in southern regions of Canada (presumably due to higher prevailing water temperatures). In the end, it is unlikely that ammonia will be a problem in the Deh Cho Bridge study area, for a number of reasons: high flow through (dilutional capacity), generally low water temperatures, high dissolved oxygen content of the river and the potential inputs associated with bridge construction represents a one time exposure.

REPORTING

The report will summarize (in tabular form) the turbidity, ammonia, and velocity data for the various monitoring locations. The site-specific relationship between turbidity and TSS for the Mackenzie River will be determined using linear regression. This relationship (and its associated mathematical equation) will be represented graphically. The equation will be used to calculate TSS values for recorded turbidity measurements.

Data on TSS and ammonia concentrations at the various locations over the duration of the study period will be presented both in tabular and graphic form and a linkage of the TSS regime to individual construction events will be described. Comparison of the data collected with federal water quality guidelines will be conducted. The downstream extent of sediment and ammonia transport will be determined to the extent feasible (i.e., for TSS it will be based on travel of larger particle sizes; not wash-load component).

A literature review of potential effects of the bridge crossing due to suspended sediment and sediment deposition, and ammonia loadings on aquatic biota will be conducted. It will concentrate on key sport fish species (e.g., whitefish species, Arctic grayling, northern pike, and walleye). The potential effects of TSS will take into consideration sediment concentration and duration. The potential effects of ammonia will include a review of the scientific literature in comparison with results obtained.

LITERATURE CITED

- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian water quality guidelines. Prepared by the Task Force on Water Quality Guidelines of the Canadian Council of Ministers of the Environment, Inland Water Directorate, Ottawa, Ontario. + updates through to 2002.
- Environment Canada and Health Canada. 2001. Priority substances list assessment report ammonia in the environment. *Canadian Environmental Protection Act, 1999.* 96 p.
- Waters, T.F. 1995. Sediment in streams: Sources, biological effects, and control. American Fisheries Society. Bethesda, Maryland. AFS Monograph 7. 251 p.

APPENDIX E

SEDIMENT TRANSPORT

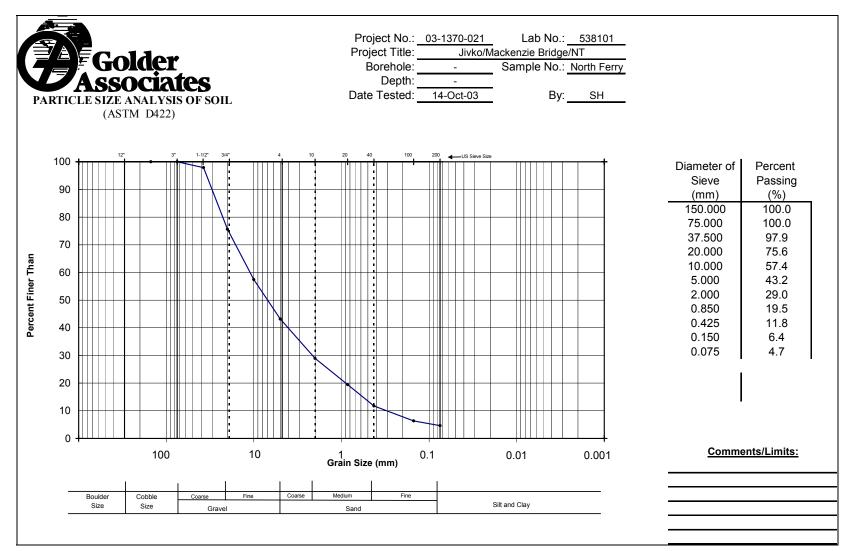


Figure E-1. Grain Size Analysis of Silty Gravel Fill Material from North Ferry Stockpile

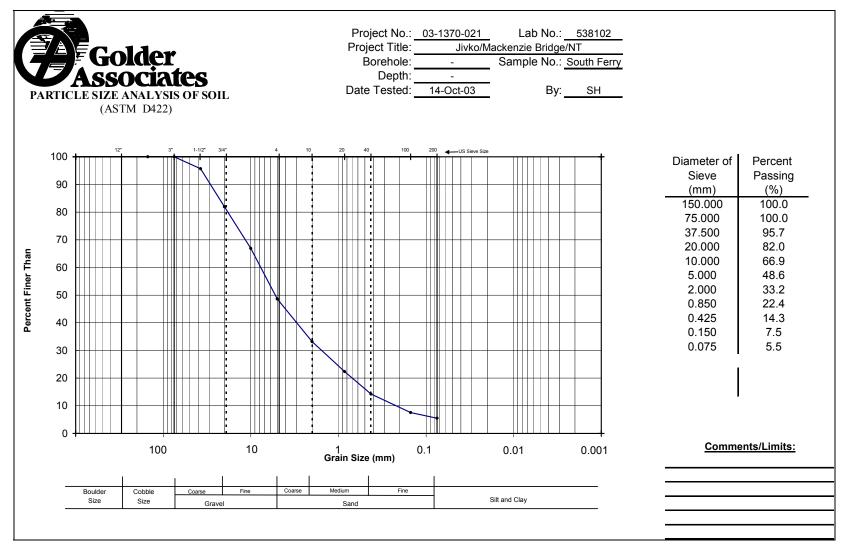


Figure E-2. Grain Size Analysis of Silty Gravel Fill Material from North Ferry Stockpile

APPENDIX F

WILDLIFE ISSUES MEMORANDUM

MEMORANDUM

10525 – 170 th Stree Edmonton, Alberta T5P 4W2	The second secon	Golder Associates Ltd. Telephone No.: 780-483-3499 Fax No.: 780-483-1574
DATE:	November 10, 2003	03-1370-021
TO:	Mr. Jivko Jivkov, JIVKO Engineering, Yellowk	xnife, NT
FROM:	Corey De La Mare, Mark Dunnigan and Jim O'	Neil
RE:	Wildlife Issues Related to the proposed Deh River near Fort Providence.	Cho Bridge on the Mackenzie

During the regulatory review process for the proposed Deh Cho Bridge Project, the following wildlife-related issues were identified:

- interaction of wildlife with infrastructure (i.e., bridge structure itself and associated lighting); and,
- creation of bird nesting habitat, and subsequent conflicts with maintenance/operations;

The remainder of this document discusses these issues in the context of the proposed bridge and outlines potential mitigation strategies.

Interaction of Wildlife with Infrastructure

The proposed Deh Cho Bridge may affect aerial wildlife (e.g., waterfowl, raptors, songbirds and bats) by impeding flight patterns resulting in strikes, and by associated lighting which may act as an attractant during migration periods. Structures (e.g., bridges, towers, poles, associated overhead powerlines and other vertical towers) may lead to bird or bat strikes, especially during migration under adverse weather conditions, such as fog, and during night feeding.

Many species of birds, especially small insect-eaters, migrate at night (FLAP 2000). Navigational tools used by birds include the constellations. Thus, birds are attracted to illuminated towers, stacks and other tall structures such as bridges. These lighted structures may cause birds to become confused or to strike the structure. Bird strikes occur most often during spring and fall migration when large flocks of birds are moving, especially during inclement weather (e.g., fog, rain and low cloud) (Blokpoel and Hatch 1976; Avery et al. 1977). When there is low cloud ceiling or foggy conditions, lights on towers refract off water particles in the air creating an illuminated area (Towerkill 2003).

Jivko Engineering		November 10, 2003
Mr. Jivko Jivkov	2-	03-1370-021

Strikes may occur to a variety of birds, including songbirds, waterbirds and raptors. It is anticipated that with effective mitigation strategies negative effects can be minimized.

Bridge and Nesting Habitat

The proposed bridge, once constructed, will provide potential nesting habitat for species such as pigeons, raptors and in particular swallows. Although, the provision of nesting habitat as a result of the construction of the bridge is not an issue, nesting birds may hinder maintenance operations during breeding months (May-July), particularly for communal nesters such as swallows. Visual maintenance operations are likely unobtrusive, and will not require detailed mitigation strategies. It is anticipated that with effective mitigation strategies, the effects of intensive maintenance operations on nesting birds will be minimized.

Mitigation

Mitigation measures that will minimize the effects of wildlife interactions with infrastructure resulting from construction and operation of the Deh Cho Bridge include the following:

Interaction of Wildlife with Infrastructure

- markers, such as aviation spheres, can be used to mark suspension lines guy wires and appropriate infrastructure;
- the use of solid red or pulsating red lights should be avoided (USDOI 2000);
- use the minimum number of lights required with the following specifications (FLAP 2003):
 - solid backing or down-shielded to keep light within the boundaries of the bridge deck;
 - lights directed downwards towards the bridge deck; and
 - use lighting with the minimum intensity necessary to meet lighting objectives.

Bridge and Nesting Habitat

- ensure visual inspections are as unobtrusive as possible, particularly during the breeding season;
- restrict any obtrusive mechanical inspections and maintenance until after the breeding season (15 May-15 July); and

• during years of intensive maintenance, prevent nesting of species, if required, through strategies such as visual deterrents or surface gels.

Closure

We trust this document meets your needs, should you require any further information or have any questions please feel free to contact either of the undersigned at 780-483-3499.

3-

Prepared By:

Reviewed By:

Corey De La Mare, P. Biol.	Jim O'Neil, P. Biol.
Terrestrial Ecologist	Principal, Senior Fisheries Biologist

References

- Avery, M., P.F. Springer and J.F. Cassel. 1977. Weather Influences on Nocturnal Bird Mortality at a North Dakota Tower. Wilson Bulletin. 89:291-299.
- Blokpoel, H. and D.R.M. Hatch. 1976. Snow Geese, Disturbed by Aircraft, Crash into Power Lines. Canadian Field-Naturalist. 90:195.
- FLAP (Fatal Light Awareness Program). 2003. Nocturnal Collisions. Accessed in: November 2003. http://www.flap.org/new/nocturnfr.htm.
- Towerkill. 2003. Towerkill Mechanisms. Accessed on November 2003. http://www.towerkill.com/issues/mech.html.
- United States Department of Interior (USDOI). 2000. Service Guidance on the Siting, Construction, Operation and Decommissioning of Communications Towers. Letter to Regional Directors from Director J. R. Clark, Washington, D.C.