DE BEERS CANADA INC.

SNAP LAKE MINE

NITROGEN RESPONSE PLAN

REPORT

December 2013

PLAIN LANGUAGE SUMMARY

Introduction

De Beers Canada Inc. (De Beers) owns and operates the Snap Lake Mine (the Mine), a diamond mine located approximately 220 kilometres northeast of Yellowknife, Northwest Territories. This document, the Nitrogen Response Plan, fulfills the requirements of Part F, Item 17 and Schedule 5, Item 4 of Water Licence MV2011L2-0004 for the Mine.

Two nitrogen compounds, nitrate and ammonia, are specifically discussed in this Plan. Nitrate and ammonia concentrations have increased in Snap Lake as a result of using explosives during mining. The Nitrogen Response Plan describes the tasks that De Beers has completed and is in the process of completing in response to increasing nitrate and ammonia concentrations in Snap Lake:

- determine sources of nitrate and ammonia loadings to Snap Lake including reviewing and improving explosives management practices;
- provide current and ongoing management practices to reduce nitrate and ammonia loadings to Snap Lake;
- recommend a site-specific water quality objective (SSWQO) for nitrate and a water quality guideline (WQG) for ammonia in Snap Lake protective of aquatic life and consider exposure and toxicity modifying factors;
- propose concentrations of nitrate and ammonia that are not to be exceeded in the discharge to Snap Lake (i.e., effluent quality criteria applied at the last point of discharge);
- update modelling predictions; and,
- discuss options to reduce nitrogen loadings in the discharge to Snap Lake.

Sources of Nitrate and Ammonia Loadings to Snap Lake

Nitrate and ammonia loadings to minewater are primarily a result of explosives use in the mining cycle. Explosive residue containing nitrate and ammonia enters the water management system in two ways: underground due to pumping directly to the water treatment plant; and via tailings management in the North Pile and water management pond (WMP).

Current and Ongoing Management Practices to Reduce Nitrate and Ammonia Loadings to Snap Lake

Current practices at the Mine to minimize the amount of nitrate and ammonia in the minewater are:

- A reduction in the number of blast holes and educating Mine personnel on proper loading and blasting techniques that minimize spillage and overloading of blast holes, effectively reducing the amount of explosives used.
- Dilution of minewater from active mining areas containing high concentrations of nitrate and ammonia with minewater from older mined out areas containing low concentrations of nitrate and ammonia. Dilution of water in the North Pile surface sumps and WMP containing high concentrations of ammonia and nitrate with melted snow and ice each year during freshet.

• Design of buildings onsite (i.e., ammonium nitrate storage building, emulsion plant, emulsion storage, and magazine storage area) to contain potential spills of explosives and prevent nitrate and ammonia from entering the environment.

Nitrate and Ammonia Site-Specific Water Quality Benchmarks in Snap Lake

De Beers has developed a SSWQO for nitrate that is protective of aquatic life in Snap Lake. For nitrate, De Beers used the SSWQO that was developed and approved for the EKATI Diamond Mine. De Beers completed laboratory tests on fish and small animals that live in Snap Lake to make sure that the Ekati SSWQO would be appropriate to use for Snap Lake. The laboratory tests used water that was similar to Snap Lake treated water. Nitrate was added to the water to determine what concentration of nitrate would affect the fish and the small animals that form their food chain.

The chronic Canadian WQG and the USEPA acute benchmark were used to develop protective benchmarks for ammonia in Snap Lake. The chronic ammonia WQG protects fish and the small animals and plants that form their food chain from toxicity as a result of long-term exposures to ammonia in the water column. The acute ammonia benchmark protects fish and the small animals and plants that form toxicity as a result of short-term exposures to ammonia in the water column. The proposed SSWQO for nitrate is 16.4 milligrams as nitrogen per litre (mg-N/L); the chronic and acute ammonia benchmarks are 5.21 and 21 mg-N/L (Table 1).

Table S1Proposed Site-specific Water Quality Benchmarks for Nitrate and Ammonia for
Snap Lake

Parameter	SSWQO or WQG (mg-N/L)			
Nitrate	16.4 ^(a)			
Ammonia	5.21 (chronic) ^(b)			
Annonia	21 (acute) ^(b)			

mg-N/L = milligrams as nitrogen per litre;

(a) SSWQO = site-specific water quality objective.

(b) WQG = water quality guideline.

Discharge Concentrations of Nitrate and Ammonia

De Beers calculated what the average monthly and maximum daily concentrations of nitrate and ammonia must be in the discharge to Snap Lake to maintain concentrations below the benchmarks presented in Table 1 at all locations in Snap Lake throughout the life of the Mine. Accordingly, it is proposed that the average monthly and maximum daily concentrations of nitrate in the Water Licence be revised to include the limits in Table 2, and that the existing average monthly and maximum daily concentrations of ammonia in the Water Licence remain the same (Table 2). The limits would be applicable at the final point of discharge (Surveillance Network Program [SNP] 02-17B).

Table S2	Proposed Effluent Quality	Criteria to be Applied at the Last Point of Discharge
----------	---------------------------	---

Parameter	Average Monthly Limit (mg-N/L)	Maximum Daily Limit (mg-N/L)
Nitrate	14	32
Ammonia	10	20

mg-N/L = milligrams as nitrogen per litre.

Modelling Predictions

De Beers updated their water quality models to predict whether concentrations in Snap Lake will remain below the benchmarks (Table 1) and whether the discharge to Snap Lake will remain below the effluent quality criteria (Table 2).

Model predictions were made for two different scenarios. The model scenarios used two different effluent discharge rates. The modelling results showed that nitrate and ammonia concentrations were predicted to remain below the nitrate SSWQO and the chronic CCME WQG for ammonia, respectively, throughout the life of the Mine. However, the average monthly concentrations of nitrate in the discharge were predicted to exceed the proposed average monthly limit (Table 2) in 2025.

Options to Reduce Nitrogen Loadings in the Discharge to Snap Lake

Ongoing management efforts to reduce nitrate loadings to Snap Lake are focused on a phased study initiated by De Beers in 2012 on water treatment technologies. The first phase of the study assessed the feasibility of treating the entire volume of effluent discharged to Snap Lake to remove nitrate. However, due to the large volume of water, treatment of the total volume was determined to be uneconomical. A conceptual estimate of \$174 million was determined to allow treatment of the range of total mine flows over the life of mine. Processes required for this treatment would be energy and chemical-intensive, resulting in annual operating costs for treatment alone of from \$20 to over \$30 million per year. The demand for power from treatment would be unsustainable for the Snap Lake Mine power generation system. Costs of adding generators were not included in the capital cost estimate.

The second phase of the study focused on treatment of water from the WMP. Treatment of water from the WMP was considered appropriate because of the smaller volume needing treatment, and because of the high nitrate concentrations in the WMP. De Beers is completing more detailed evaluations of two water treatment technologies for reducing nitrate concentrations in water from the WMP.

TABLE OF CONTENTS

<u>SE</u>	CTION	<u>I</u>	<u>PAGE</u>
1	INTR	ODUCTION	1
2	NITR	ATE AND AMMONIA SOURCES AND MANAGEMENT	3
	2.1 2.2	 Assessment and Quantification of Sources of Nitrate and Ammonia Loadings Current And Ongoing Practices for Minimizing the Amount of Nitrogen in the Minewater 2.2.1 Underground Initiatives	8 8
	2.3	Recommendations Related to Minimizing Nitrogen Loadings to the Receiving Environment	11
3		LOGICAL IMPLICATIONS OF NITRATE AND AMMONIA LOADINGS TO THE EIVING ENVIRONMENT	12
	3.1	Site-Specific Water Quality Objectives	12
	3.2	S.1.2 Annonia Effluent Quality Criteria 3.2.1 Methods 3.2.2 Results	24 25
	3.3	Recommendations for Effluent Quality Criteria	
4	DISC	ONS TO REDUCE NITROGEN LOADINGS IN THE FINAL TREATED EFFLUENT HARGED TO SNAP LAKE AND ACHIEVE THE LOWEST PRACTICAL EFFLUENT LITY CRITERIA	30
	4.1 4.2	Effluent Treatment Water Management Pond	30
5		OMMENDATIONS TO IMPROVE MINEWATER AND/OR EXPLOSIVES AGEMENT AND MONITORING	34
	5.1 5.2 5.3 5.4 5.5	Blast Design Analysis Explosives Loading and Storage Best Practise/Technology Improvements Dilution Management Advancement of Nitrate Studies	34 34 34
6	SUMI	MARY AND CONCLUSIONS	35
7	REFE	RENCES CITED	37

LIST OF TABLES

Table 2-1	Average Nitrate Loadings for the Snap Lake Mine	5
Table 2-2	Average Total Ammonia Loadings for the Snap Lake Mine	
Table 3-1	AEMP Benchmarks Used for Calculating Effluent Quality Criteria	
Table 3-2	Comparison of Existing and Proposed ^(a) Effluent Quality Criteria for Snap Lake	
	Mine	27

Table 3-3	Comparison of Proposed ^(a) Effluent Quality Criteria to Treated Effluent Discharge Quality in 2012 and to Predicted Treated Effluent Discharge Quality for Snap Lake	
	Mine	28
Table 3-4	Recommended Effluent Quality Criteria for Snap Lake Mine	28
Table 4-2	Weighted Matrix Criterion for Total Suspended Solids and/or Nitrate Treatment	32
Table 4-3	Nitrate Concentrations in Water Management Pond and Required Reduction	
	Based on 2012 and 2015 Water Licences	33
Table 4-4	Costs Shown for the Total Suspended Solids and Nitrate Removal Options	33
Table 4-5	Costs Shown for the Total Suspended Solids and Nitrate Removal Options –	
	These are Alternative Options as They are a Combination of Removal	
	Technologies	33

vi

LIST OF FIGURES

Figure 2-1	Aerial View of the Mine Site	4
Figure 2-2	Minewater Inflows Upper Bound and Lower Bound Scenarios	4
Figure 2-3	Nitrate Loading Estimates for Snap Lake Mine	6
Figure 2-4	Total Ammonia Loading Estimates for Snap Lake Mine	7
Figure 3-1	Nitrate Concentrations in Treated Effluent, 2004 to 2012	13
Figure 3-2	Nitrate Concentrations in Snap Lake, 2004 to 2012	14
Figure 3-3	Predicted Nitrate Concentrations in Snap Lake Compared to Existing AEMP	
	Benchmarks, 2004 to 2029	15
Figure 3-4	Comparison of Snap Lake Validation Toxicity Test Results to Rescan (2012)	
	Toxicity Data and Proposed Hardness-Dependent Benchmark	17
Figure 3-5	Predicted Nitrate Concentrations in Snap Lake Compared to the Site-Specific	
	Water Quality Objective, 2004 to 2029	18
Figure 3-6	Ammonia Concentrations in Treated Effluent, 2004 to 2012	20
Figure 3-7	Total Ammonia Concentrations in Snap Lake, 2004 to 2012	21
Figure 3-8	Predicted Total Ammonia Concentrations in Snap Lake, 2004 to 2029	23
Figure 3-9	Predicted Un-ionized Ammonia Concentrations in Snap Lake, 2004 to 2029	24

ACRONYMS

Term	Definition
AEMP	Aquatic Effects Monitoring Program
AEP	Alberta Environmental Protection
ALL	annual loading limit
AML	average monthly limit
AN	ammonium nitrate
ANFO	ammonium nitrate fuel oil
BC	British Columbia
CaCO₃	calcium carbonate
CCME	Canadian Council of Ministers of the Environment
De Beers	De Beers Canada Inc.
EAR	Environmental Assessment Report
EQC	effluent quality criteria
Golder	Golder Associates Ltd.
ISO	Internationals Standards Organization
MDL	maximum daily limit
MF	Microfiltration Filtration
Mine	Snap Lake Mine
MPCA	Minnesota Pollution Control Agency
MVLWB	Mackenzie Valley Land and Water Board
Ν	nitrogen
N/A	not applicable
NH_4^+	ionized ammonium ion
NH ₃	un-ionized ammonia
NWT	Northwest Territories
Policy	Mackenzie Valley Land and Water Board's Effluent Quality Management Policy
RO	reverse osmosis
SMCV	species mean chronic value
SN	sodium nitrate
SNP	Surveillance Network Program
SSD	species sensitivity distribution
SSWQO	site-specific water quality objective
TDS	total dissolved solids
TSS	total suspended solids
UF	Ultra filtration
US\$M	millions of dollars in United States currency
USEPA	United States Environmental Protection Agency
WL	Water Licence
WMP	water management pond
WQG WTP	water quality guideline

UNITS OF MEASURE

Unit	Definition
>	greater than
°C	degrees Celsius
%	percent
d	day
kg-N/d	kilograms nitrogen per day
kg	kilogram
kg/yr	kilograms per year
km	kilometre
L	litre
m	metre
m³/d	cubic metres per day
m	metre
mg/L	milligrams per litre
mg/L as CaCO₃	milligrams per litre as calcium carbonate
mg-N/L	milligrams as nitrogen per litre
mg-NO ₃ ⁻ /L	milligrams as nitrate per litre
t	tonne

1 INTRODUCTION

De Beers Canada Inc. (De Beers) owns and operates the Snap Lake Mine (Mine) in the Northwest Territories (NWT). The Mine is located approximately 220 kilometres (km) northeast of Yellowknife, 30 km south of MacKay Lake, and 100 km south of Lac de Gras where the Diavik Diamond Mine and the Ekati Diamond Mine are located. Final regulatory approvals for construction and operation of the Mine were granted in May 2004, and construction began in April 2005. The Mine officially opened on July 25, 2008.

The Environmental Assessment Report (EAR; De Beers 2002) predicted that concentrations of total dissolved solids (TDS), and its component ions, nutrients, and some metals would increase in Snap Lake over the operational life of the Mine. Water quality in Snap Lake is changing over time predominantly due to influences from treated effluent discharge (De Beers 2012). Specifically, nitrate and ammonia concentrations have increased as a result of using an emulsion type explosive and ammonium nitrate fuel oil (ANFO) as blasting agents.

Nitrate concentrations in Snap Lake have increased as predicted and, in 2012, measured concentrations were above the Aquatic Effects Monitoring Program (AEMP) benchmark of 2.93 milligrams as nitrogen per litre (mg-N/L) (CCME 2003), which was implemented after the EAR was submitted. As a result of that increasing trend, De Beers has evaluated current on-site practices, quantified nitrogen (i.e., nitrate and ammonia) loadings to the receiving environment, and has identified areas for improvement in treated effluent and explosives management. In addition to those efforts, De Beers initiated the process of developing a site-specific water quality objective (SSWQO) for nitrate. The SSWQO would then be used to establish effluent quality criteria (EQC) that would allow the Mine to discharge treated effluent into Snap Lake while maintaining nitrate concentrations in the lake below SSWQOs. Existing EQC for both nitrate and ammonia were reviewed to evaluate the appropriateness of the existing limits, and, if warranted, identify opportunities for refining them or proposing new limits that would continue to provide protection to the aquatic environment and to human health.

De Beers' self-initiated efforts regarding nitrogen are consistent with the principles of adaptive management and the Response Framework and provide the basis for the present *Nitrogen Response Plan* required in the current Water Licence (MVLWB 2013; Part F, Item 17 and Schedule 5, Item 4):

- 1. A description of current nitrogen (i.e., ammonia and nitrate) sources and management including:
 - a) an assessment and quantification of sources of nitrogen loadings to minewater (Section 2.1);
 - b) a description of current practices for minimizing the amount of nitrogen in the minewater (Section 2.2);
 - c) a summary of ongoing investigations into improvements to minewater and/or explosives management that would reduce nitrogen loadings (Section 2.3); and,
 - d) any other information necessary to describe issues related to minimizing the nitrogen loadings to the receiving environment (Section 2.4).

- 2. A description of the ecological implications of nitrogen loadings to the receiving environment including:
 - a) Recommendations and supporting rationale for appropriate water quality objectives for ammonia and nitrate in Snap Lake derived from toxicity testing and/or published toxicology studies (Section 3.1); and,
 - b) recommendations and rationale for revised EQCs for ammonia and nitrate, to be applied at SNP station 02-17B that would ensure protection of aquatic like in Snap Lake (Section 3.2).
- 3. A discussion of options for reducing the amount of nitrogen in the final effluent discharged to Snap Lake in order to achieve the lowest practical effluent quality criteria at the site (Section 4); and,
- 4. Recommendations for improvements to minewater or explosives management and monitoring to be implemented through the Water Management Plan and a schedule for implementation (Section 5).

2 NITRATE AND AMMONIA SOURCES AND MANAGEMENT

2.1 Assessment and Quantification of Sources of Nitrate and Ammonia Loadings

Nitrate and ammonia loadings to minewater are primarily a result of explosives use in the mining cycle. Explosive residue enters the water management system underground and is pumped to the water treatment plant (WTP) as part of the underground water system. Loadings of nitrate and ammonia from 2012 to 2028 at the final minewater collection sump (i.e., Surveillance Network Program [SNP 02-01]), the North Pile drainage collection ditch (i.e., SNP 02-02), the water management pond (WMP) (i.e., SNP 02-14), and the treated effluent discharge from the permanent WTP (i.e., SNP 02-17B) (Figure 2-1) were predicted using the Snap Lake Site Model (De Beers 2013a,b) for the following four modelling scenarios:

- Upper Bound Scenario A;
- Upper Bound Scenario B;
- Lower Bound Scenario A; and,
- Lower Bound Scenario B.

Upper Bound Scenarios were based on minewater inflows from Scenario 4 of the groundwater model, and Lower Bound Scenarios were based on minewater inflows from Base Case of the groundwater model (Figure 2-2) (Itasca 2013). Scenarios A and B were developed based on TDS concentration differences from the deep groundwater (Itasca 2013). The main source of nitrate and ammonia loadings to minewater is from explosives use, not deep groundwater; therefore, Scenarios A and B are identical (Figures 2-3 and 2-4).

Figure 2-1 Aerial View of the Mine Site

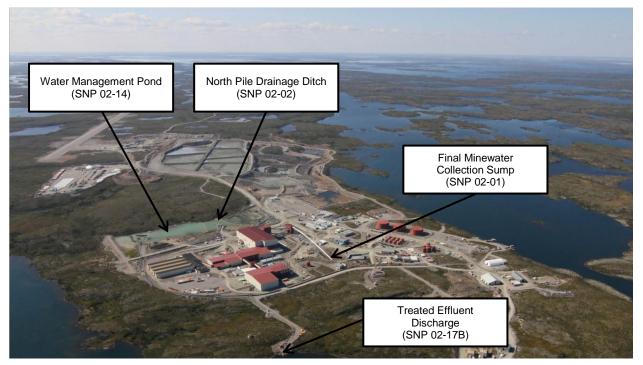
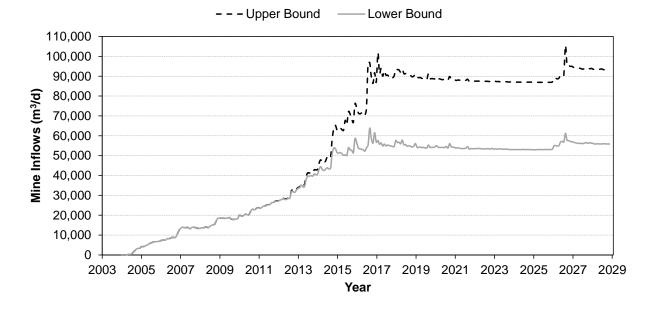



Figure 2-2 Minewater Inflows Upper Bound and Lower Bound Scenarios

 m^3/d = cubic metres per day

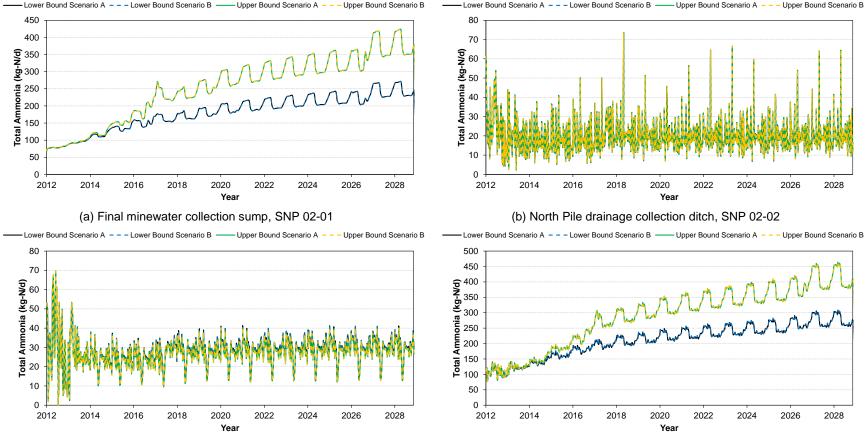
Average loadings of nitrate (Table 2-1 and Figure 2-3) and ammonia (Table 2-2 and Figure 2-4) at SNP 02-01, SNP 02-02, SNP 02-14, and SNP 02-17B were predicted to increase from 2014 to 2028. On average, 87 percent (%) and 85% of the nitrate loadings in the treated effluent discharge from the WTP to Snap Lake were predicted to originate from minewater for the Upper and Lower Bound Scenarios, respectively; and, 77% and 72% of the ammonia loadings in the treated effluent discharge from the WTP to Snap Lake were predicted to originate from minewater for the Upper and Lower Bound Scenarios, respectively.

		Average Nitrate Load (kg-N/d)								
			Upper Bound Scenario A		Upper Bound Scenario B		Lower Bound Scenario A		Bound ario B	
Location	Description	2014	2028	2014	2028	2014	2028	2014	2028	
SNP 02-01	Final minewater collection sump	293	878	293	878	273	543	273	543	
SNP 02-02	North Pile drainage collection ditch	128	143	128	143	128	143	128	143	
SNP 02-14	Water management pond	142	165	142	165	143	168	143	168	
SNP 02-17B	Treated effluent discharge	437	1,046	437	1,046	411	702	411	702	

 Table 2-1
 Average Nitrate Loadings for the Snap Lake Mine

kg-N/d = kilograms as nitrogen per day; SNP = Surveillance Network Program.

Table 2-2 Average Total Ammonia Loadings for the Snap Lake Mine


			Average Total Ammonia Load (kg-N/d)						
			Upper Bound Scenario A		Upper Bound Scenario B		Lower Bound Scenario A		Bound ario B
Location	Description	2014	2028	2014	2028	2014	2028	2014	2028
SNP 02-01	Final minewater collection sump	123	369	123	369	117	240	117	240
SNP 02-02	North Pile drainage collection ditch	18	20	18	20	18	20	18	20
SNP 02-14	Water management pond	24	29	24	29	24	30	24	30
SNP 02-17B	Treated effluent discharge	149	401	149	401	141	269	141	269

kg-N/d = kilograms as nitrogen per day; SNP = Surveillance Network Program.

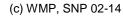

----- Lower Bound Scenario A - - - Lower Bound Scenario B ----- Upper Bound Scenario A - - - Upper Bound Scenario B - Lower Bound Scenario A - - - Lower Bound Scenario B -1,200 1,000 **Nitrate (kg-N/d)** 300 200 Nitrate (kg-N/d) Year Year (a) Final minewater collection sump, SNP 02-01 (b) North Pile drainage collection ditch, SNP 02-02 - Lower Bound Scenario A - - - Lower Bound Scenario B -- Upper Bound Scenario A - - - Upper Bound Scenario B - Lower Bound Scenario A - - - Lower Bound Scenario B -- Upper Bound Scenario A - - - Upper Bound Scenario B 1,400 1,200 1,000 80 , **Nitrate (kg-N/d)** 300 250 200 150 Year Year (c) WMP, SNP 02-14 (d) Treated effluent discharge, SNP 02-17B

Figure 2-3 Nitrate Loading Estimates for Snap Lake Mine

Figure 2-4 Total Ammonia Loading Estimates for Snap Lake Mine

(d) Treated effluent discharge, SNP 02-17B

2.2 Current And Ongoing Practices for Minimizing the Amount of Nitrogen in the Minewater

A number of initiatives have been carried out at the Mine site to reduce nitrogen loadings to Snap Lake caused by blasting residue in the underground minewater. To minimize the amount of nitrogen in the minewater, the primary source of the nitrogen concentration must be addressed. The primary source is from the use of explosives in mining; therefore, if the volume of explosives usage can be reduced relative to the new mining ground opened up, the resulting nitrate and ammonia concentrations can be reduced. The Mine Operations team has made concerted efforts over the past 12 months to improve blasting practices at the Mine designed to reduce explosives use along with better handling/management of explosives to minimize wastage or spillage (Section 2.2.1). This work will continue to be refined over the Life of Mine.

2.2.1 Underground Initiatives

2.2.1.1 Re-design of Blast Rounds

A re-design of the blasting round was done based on the fragmentation and throw of the broken rock. This resulted in the drill holes being reduced from 50 holes per round to 43 holes per round. Therefore, there has been a 15% reduction in the amount of emulsion used and subsequent reduction in nitrate releases.

2.2.1.2 Loading Methodology

Mine operations have improved and will continue concentrating on the emulsion loading practices. The collar length has been revised from one foot to a three foot collar. This gives the loading crews more control on spillage or over-loading blast holes. Loading crews, as well as the explosive attendant, have been cautioned on the importance of controlling any and all product into the system. Time will be spent educating all the crews on proper loading and blasting techniques to encourage crews to load product appropriately minimizing overuse of emulsion. This will result in an additional reduction of approximately 7% of emulsion used.

2.2.1.3 Dilution Management

Although not necessarily a sustainable long term solution, dilution of water containing nitrate and ammonia with water containing low or zero nitrate and ammonia is currently used at the Mine in both man-made and natural ways. Water inflows from older mined out areas are segregated from the active mine areas producing nitrate and ammonia contaminated water. This segregated clear water passes through separate filters and is discharged into the pH tank prior to final discharge through the diffuser. Currently clear water makes up roughly 8,500 cubic metres per day (m³/d) or 21% of the total volume of water pumped to the surface. Dilution of nitrates in the surface sumps and WMP occurs naturally each year during freshet whereby high volumes of "clean" snow and ice melt and dilute the concentrations.

2.2.1.4 Explosives Magazines Underground

Explosives are stored in the various authorized Explosive Magazines, close to the underground workings. All the magazines are under the control of an appointed Magazine Master who is responsible for ensuring that explosives are properly handled. The Magazine Master must have a Blasting ticket and have prior experience with explosives use, preferably at least 5 years.

2.2.1.5 Emulsion Storage

Two emulsion storage tanks are used at two separate working levels. The first tank, situated on the 5250 level, has a storage capacity of 24,000 litres (L). The second tank, situated at B-12, has a capacity of 23,000 L. Both tanks are stainless steel covered with fiberglass. The floor below the tanks is grated with a reservoir below. The emulsion storage areas are situated in locations where, if spillage should occur, the product would be contained within the storage area.

2.2.2 Surface Initiatives

2.2.2.1 Storage and Offloading

Ammonium nitrate (AN) and sodium nitrate (SN) are shipped to site via the winter road, using standard twenty foot ISO shipping containers and/or bottom dump grain hoppers. Upon arrival at site, the containers are transported to the bulk AN storage facility and unloaded. If the volume of nitrate material exceeds the maximum allowable indoor storage, the surplus material remains in the containers until it can be unloaded into the AN storage building and subsequently moved to the existing AN Pad near the emulsion plant.

Unloading within the building consists of a controlled dump onto the concrete floor. Stacking or piling of the AN is completed through the use of a loader and/or electric auger(s) as required to develop a pile that is contained within large, engineered concrete bunkers lined with zinc.

As the pile of AN is drawn down and consumed, and when storage volumes permit, it is replenished with material that is stored.

2.2.2.2 Loading and Transport On-Site

A bulk emulsion haul truck (approximately 8 metric tonne [t] capacity), equipped with an on-board screw conveyor for offloading, is used to transport the nitrate on-site. To prevent nitrate escaping into the environment, the truck is washed in the shop where there is a self-contained sump. This keeps the nitrate dust that accumulates from the loading procedure in a controlled and manageable environment. The wash water is pumped into an evaporator. The evaporator is then cleaned out and the resulting 400 L of high nitrate effluent is shipped off site for disposal.

The truck is filled with AN by using a loader and an electric screw feeder. All truck loading activities take place within the building. Once the truck is full, the truck travels to the emulsion plant, where the on-board screw feeder is positioned to feed the plant directly. This eliminates any handling of the nitrate outside of the buildings. When not in use, the truck is parked in the garage at the emulsion plant.

2.2.2.3 Ammonium Nitrate Storage Building

The storage facility is a flat cylindrical coverall structure with a maximum height of 8 metres (m), which consists of a 30 m x 49 m plastic tarp Quonset and has a bund walled concrete floor. Inside there are two sets of wing walls for containment of product stored within it, separated by a drive-through alley for loading and unloading product. The concrete floor and concrete bunker walls have been constructed within the building to safely contain the nitrate material and avoid contaminating the water system.

Ammonium nitrate and SN are stored in the AN storage building. The factory licence allows storage of up to 2,500 t of AN and 300 t of SN. Both substances are group compatible so they can be stored in the same location with a degree of separation.

2.2.2.4 Emulsion Plant

The emulsion plant is a steel structure with its own containment and elevated thresholds on the doorways. Any spill within the plant is thus contained.

The emulsion plant licence allows a maximum of 500 kilograms (kg) of emulsion in the plant while in process and the capacity of the silo is 14 t. To prevent spills, the fill capacity is lowered to 13.5 t while mixing.

Emulsion is manufactured according to a specific recipe. Quality control checks and the tank levels are recorded on the mix log sheet during the process to account for all materials used. In the process, an oil phase (fuel) is combined with an AN/SN solution water phase (oxidizer) in a pre-blend coarse emulsion mix pot with the mixer moving vigorously. The coarse emulsion is pumped through a "static mixer" to refine the product and is then pumped to a "Young's Blend Table" where the refined emulsion is introduced to glass micro-balloons and blended thoroughly to adjust the end product density to sensitize it. During the entire process samples are taken to confirm the product is in the specification range for both viscosity and density. The finished product is pumped to a 14 t overhead silo, where it is stored until the conveyance unit hauls it underground.

2.2.2.5 Stick Explosives

Stick explosives are stored in a separate magazine. Different types of explosives are stored together. Storage capacity of this magazine is 68,000 kg (Magnafrac - 20,200 kg, ANFO - 40,000 kg, Xactex - 8,000 kg).

The magazine storage area was engineered by the Mine and plans were sent to the government for approval, which was provided. The storage area was constructed with a concrete floor, steel gratings for spill prevention, a fiber-glass roof, and barricades to prevent unauthorized entry.

2.2.2.6 Old Emulsion

Old emulsion is emulsion that has previously been loaded into a blast hole but has been unusable for some reason (for example, an overloaded hole resulting in spillage). This material is scraped from the mine floor and stored in totes in an area constructed with concrete floor, steel frame, and fiberglass roof. As it is unable to be reloaded into the underground holes due to impurities (grit from the scraping) it is packed into plastic sleeves and blasted at the surface quarry when blasting is needed. The holes that are

used in surface blasting are larger and the practice generally more efficient making it possible to reuse the material in this manner.

2.3 Recommendations Related to Minimizing Nitrogen Loadings to the Receiving Environment

Recommendations related to the reduction of nitrogen loadings to the receiving environment are:

- 1. Continue monitoring conformance with the preventive practices described above.
- 2. Investigate the use of a fixed quantity loader like the Handi-Loader manufactured by Orica. This will enable a pre-determined quantity of emulsion to be pumped into the blast holes. Human error, and therefore, spills are eliminated as the holes cannot be overfilled using this technique. These types of loaders also allow for the thickening of emulsion through a system of orifices, delivering a thickened product where slumping and running is minimized.
- 3. Continue to monitor trends in the amount of explosives used per tonne of ore mined (kg/tonne) as a means of monitoring the effectiveness of explosives management measures.

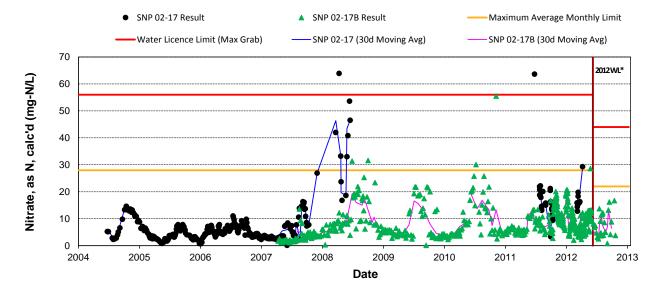
3 ECOLOGICAL IMPLICATIONS OF NITRATE AND AMMONIA LOADINGS TO THE RECEIVING ENVIRONMENT

3.1 Site-Specific Water Quality Objectives

3.1.1 Nitrate

Nitrate is present in Snap Lake primarily as a result of the use of an emulsion type explosive and ANFO as blasting agents. The EAR (De Beers 2002) predicted that nitrate concentrations would increase in Snap Lake over the operational life of the Mine, to concentrations higher than the conservative Canadian water quality guideline (WQG) for nitrate for protection of freshwater aquatic life. This conservative WQG is currently used as the AEMP benchmark for Snap Lake. Nitrate concentrations in Snap Lake were above the AEMP benchmark in 2012; therefore, it is appropriate to develop a site-specific nitrate benchmark for Snap Lake to determine whether there is the risk of adverse effects above the AEMP benchmark, and to adopt that new benchmark as a SSWQO for nitrate in Snap Lake.

Water Quality Benchmarks for Nitrate


The Canadian Council of Ministers of the Environment (CCME 2003) interim WQG was 13 milligrams as nitrate per litre (mg-NO₃⁻/L), equivalent to 2.93 mg-N/L¹; this is the current AEMP benchmark for nitrate. This interim WQG was derived by multiplying the result from the most sensitive chronic toxicity test by a safety factor of 0.1. The CCME updated the nitrate WQG in 2012 (CCME 2012); although new toxicity data were added, and an updated WQG derivation procedure was applied (CCME 2007), and there was no net change to the nitrate WQG of 13 mg-NO₃⁻/L (3.0 mg-N/L). British Columbia's WQG for nitrate is 3.0 mg-N/L (Meays 2009; Nordin and Pommen 2009), although the derivation procedure differed from that used by CCME. Although the United States do not have a national WQG, some states such as Minnesota have proposed draft standards of 4.9 or 3.1 mg-N/L depending on water usage (MPCA 2010). None of the above benchmark guidelines consider the effect of water hardness concentration on nitrate toxicity.

Rescan (2012) developed a nitrate SSWQO for the EKATI Diamond Mine that is hardness-dependent over a range of water hardness concentrations from 10 to 160 mg/L as calcium carbonate (CaCO₃). This SSWQO was adopted as the nitrate EQC for the EKATI Diamond Mine in May 2013 (Wek'èezhìi Land and Water Board 2013).

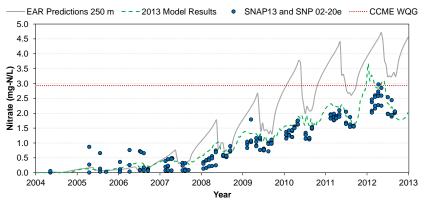
Nitrate Concentrations in Treated Effluent and Snap Lake

Nitrate concentrations measured in treated effluent from the temporary WTP (Station SNP 02-17) and the permanent WTP (Station SNP 02-17B) between 2004 and 2012 are shown in Figure 3-1. Individual measurements, and 30-day (d) moving averages for each discharge point, as well as Water Licence limits, are shown.

¹ Concentrations of nitrate as nitrogen are listed as mg-N/L, and concentrations of nitrate as the nitrate ion are listed as mg-NO3-/L. To convert between the two units of concentration, divide the nitrate ion concentration by 4.43.

Figure 3-1 Nitrate Concentrations in Treated Effluent, 2004 to 2012

Monthly Avg = monthly average; SNP 02-17 = treated effluent from the temporary water treatment plant; SNP 02-17B = treated effluent from the permanent water treatment plant; Max Grab = maximum allowable concentration in any grab sample; mg-N/L = milligrams as nitrogen per litre; d = day.


Nitrate concentrations have been increasing in Snap Lake since Mine operations began in 2005. Baseline nitrate concentrations in the main basin of Snap Lake ranged from less than 0.006 to 0.046 mg-N/L in 2004. In 2012, average nitrate concentrations in the different areas of Snap Lake ranged from 1.6 to 2.7 mg/L, and the maximum individual measurement of 3.22 mg-N/L exceeded the AEMP benchmark of 2.93 mg-N/L (Figure 3-2).

The EAR predictions estimated that nitrate concentrations in Snap Lake could reach 6.3 mg-N/L within 1% of the lake. More recent modelling (De Beers 2013c) indicated that nitrate concentrations in Snap Lake were predicted to reach 9.5 and 8.5 mg-N/L in the near-field in 2028, under the Upper and Lower Bound Scenarios, and 8 and 7 mg-N/L in the far-field under the Upper and Lower Bound Scenarios (Figure 3-3).

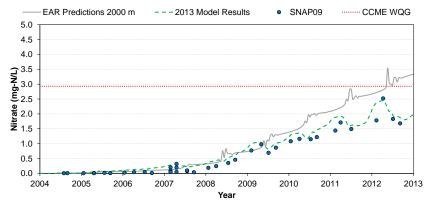
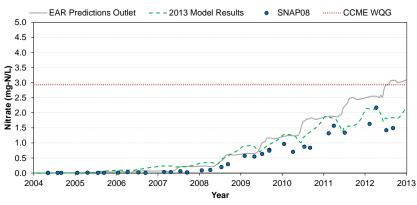
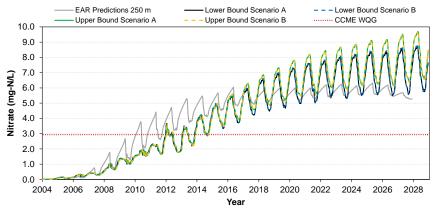

Water hardness has been shown to modify nitrate toxicity (Rescan 2012). Water hardness in Snap Lake is increasing over time, from 6 to 13 milligrams per litre as calcium carbonate (mg/L as $CaCO_3$) in 2004 to an average of 120 mg/L as $CaCO_3$ in 2011 and 2012. Whole-lake average water hardness in Snap Lake is predicted to peak at approximately 950 mg/L as $CaCO_3$ and 450 mg/L as $CaCO_3$ in 2028 under the Upper and Lower Bound Scenarios (De Beers 2013c).

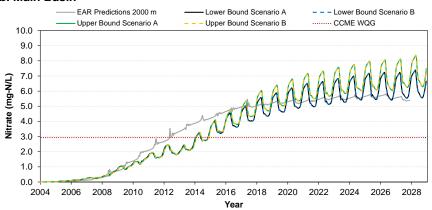
Figure 3-2 Nitrate Concentrations in Snap Lake, 2004 to 2012

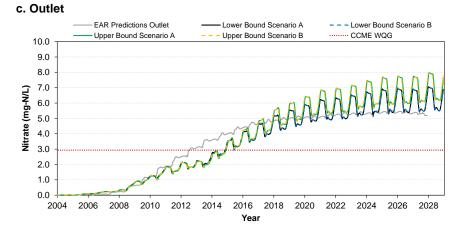

a. Diffuser Area

b. Main Basin



Note: Data shown are from representative stations within Snap Lake: Diffuser Area = SNAP13 (2004 to April 2006) and SNP 02-20e (July 2006 to 2012); Main Basin = SNAP09; Outlet = SNAP08.


mg-N/L = milligrams as nitrogen per litre; m = metre; EAR = Environmental Assessment Report; CCME = Canadian Council of Ministers of the Environment; WQG = water quality guideline.


Figure 3-3 Predicted Nitrate Concentrations in Snap Lake Compared to Existing AEMP Benchmarks, 2004 to 2029

a. Diffuser Area

b. Main Basin

Note: mg-N/L = milligrams as nitrogen per litre; m = metre; EAR = Environmental Assessment Report; CCME = Canadian Council of Ministers of the Environment; WQG = water quality guideline.

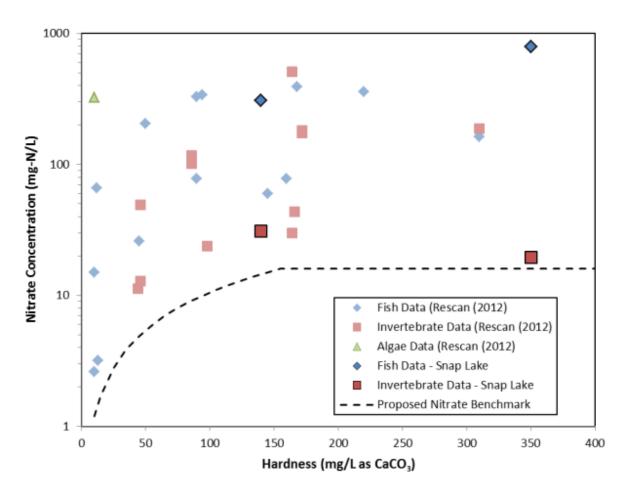
Mean concentrations of available nitrate have been measured annually in Snap Lake sediments since 2005; apart from variations in 2005 and 2012, concentrations of available nitrate in Snap Lake sediments were less than 10 milligrams per kilogram dry weight.

Derivation of the Site-Specific Water Quality Objective for Nitrate

The Rescan (2012) nitrate SSWQO that was developed and approved for the EKATI Diamond Mine was expected to be suitable for application to the Mine, based on current and predicted maximum nitrate concentrations, and water hardnesses. Testing was conducted to evaluate the suitability of the Rescan (2012) nitrate SSWQO for its applicability to Snap Lake. A brief comparison of the approaches used for derivation of the CCME (2012) WQG and the Rescan (2012) SSWQO is provided below, followed by a description of the approach used to evaluate the Rescan (2012) SSWQO for Snap Lake conditions.

CCME (2012) used data for 12 freshwater aquatic species to derive their nitrate WQG of 3.0 mg-N/L. These tests were conducted at water hardness ranging from 10 to 220 mg/L as CaCO₃; however, when a species was tested at multiple hardnesses, only results for the lowest hardness were used in the species sensitivity distribution (SSD). Data used to construct the SSD ranged from 3.2 mg-N/L for Lake Trout to 711 mg-N/L for Chinook Salmon, and represented data from one study for each of five fish, four invertebrate, and three amphibian species. Although CCME (2012) acknowledged that nitrate toxicity generally decreases with increasing water hardness concentration, the national WQG was not hardness-dependent because a generic relationship applicable to all Canadian waters could not be derived. As CCME (2012, p14) stated: "Because the guideline is not corrected for any toxicity modifying factors (e.g., hardness), it is a generic value that does not take into account any site-specific factors".

Rescan (2012) used data for nine freshwater aquatic species to derive their hardness-dependent nitrate SSWQO, excluding the three amphibian species and Chinook Salmon used by CCME (2012) and adding a phytoplankton, *Pseudokirchneriella subcapitata*. These changes to the CCME (2012) data set were based on site-specific considerations (e.g., the amphibian species are not found in the area of the diamond mines in the NWT). Data from tests conducted at multiple water hardness concentrations were included. Rescan (2012) determined a pooled slope for the relationship between water hardness and nitrate toxicity and then used that pooled slope to normalize the test endpoints to a hardness of 40 mg/L as CaCO₃. Where applicable, species mean chronic values (SMCVs) were calculated as the geometric mean of the most suitable hardness-normalized endpoints for each species. The hardness-normalized SMCVs used to construct the SSD ranged from 9.2 mg-N/L for Lake Trout to 325 mg-N/L for *P. subcapitata*. The resulting equation for the hardness-dependent nitrate SSWQO is:

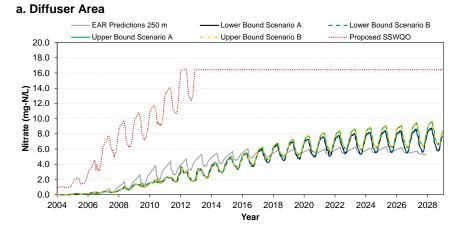

Nitrate SSWQO_(hardness) = $e^{(0.9518(In[Hardness])-2.032)}$

This hardness-nitrate toxicity relationship was only established up to a water hardness of 160 mg/L as $CaCO_3$, and Rescan (2012) cautioned against extrapolating above that hardness concentration.

The Rescan (2012) nitrate SSWQO was assessed for its applicability to Snap Lake by conducting toxicity tests with the most sensitive invertebrate species to nitrate, and with a fish species sensitive to nitrate in simulated Snap Lake water (Nautilus 2013). Tests were conducted with a water flea, *Ceriodaphnia dubia*, and larval Fathead Minnow, *Pimephales promelas*, using two types of dilution waters: one simulating current Snap Lake water hardness and TDS concentration and ionic composition (140 mg/L as CaCO₃ and 228 mg/L TDS); and one simulating the predicted maximum water hardness and corresponding TDS concentration and composition (350 mg/L as CaCO₃ and 570 mg/L TDS). Endpoints from these tests

were all above the Rescan (2012) SSWQO curve, indicating that this curve would also be protective for nitrate in Snap Lake (Figure 3-4) and suitable for adoption as a nitrate SSWQO for Snap Lake.

Figure 3-4 Comparison of Snap Lake Validation Toxicity Test Results to Rescan (2012) Toxicity Data and Proposed Hardness-Dependent Benchmark



mg-N/L = milligrams as nitrogen per litre; mg/L as $CaCO_3$ = milligrams per litre as calcium carbonate.

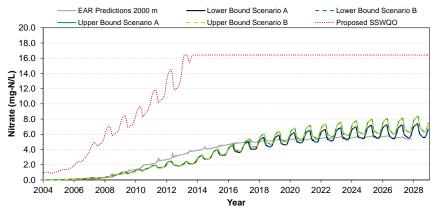
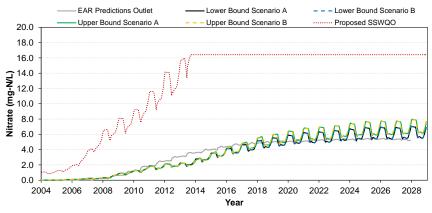

Representative values for the hardness-dependent nitrate SSWQO are: 12 mg-N/L at 120 mg/L as $CaCO_3$; and, 16.4 mg-N/L at greater than or equal to 160 mg/L as $CaCO_3$. Under Lower Bound Scenarios, nitrate concentrations are predicted to remain below the SSWQO for the life of the Mine, as the predicted maximum nitrate concentration in Snap Lake is 9.5 mg-N/L. Under Lower Bound Scenarios, average nitrate concentrations at the diffuser area and at the outlet increase to 8 mg-N/L and 7 mg-N/L in 2028, respectively (Figure 3-5).

Figure 3-5 Predicted Nitrate Concentrations in Snap Lake Compared to the Site-Specific Water Quality Objective, 2004 to 2029


18

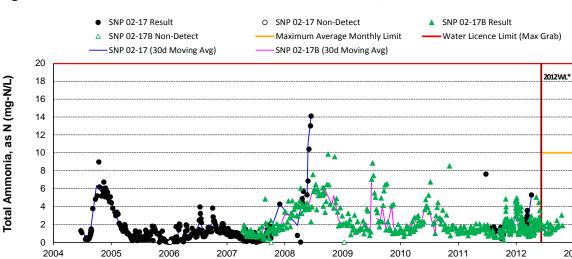
b. Main Basin

c. Outlet

Note: The proposed SSWQO for nitrate is hardness dependent.

mg-N/L = milligrams nitrogen per litre; m = metre; EAR = Environmental Assessment Report; SSWQO = site-specific water quality objective.

3.1.2 Ammonia


Ammonia is also present in Snap Lake primarily as a result of the use of an emulsion type explosive and ANFO as blasting agents. Ammonia is highly soluble in water, and its speciation is affected by a wide variety of environmental parameters including pH, temperature, and ionic strength. Ammonia is present in aqueous solutions in the form of un-ionized ammonia (NH₃) and the ionized ammonium ion (NH₄⁺), the sum of which is referred to as total ammonia or total ammonia-nitrogen. Un-ionized ammonia is more toxic to freshwater aquatic life than ionized ammonia, possibly because it is a neutral molecule, and is therefore able to diffuse across biological membranes more readily than ionized ammonia (CCME 1999). However, studies conducted since the development of initial ammonia guidelines in the 1980s suggested that ionized ammonia can contribute significantly to ammonia toxicity, particularly at lower pH values, when it is relatively more abundant (USEPA 1999). The equilibrium that exists between un-ionized (NH₃) and ionized (NH₄⁺) ammonia species is affected by pH and temperature, with increases in either parameter causing increases in the proportion of ammonia present as un-ionized ammonia (CCME 1999).

Water Quality Benchmarks for Ammonia

The CCME WQG for ammonia is the current AEMP benchmark for water quality comparisons. The applicability of the CCME WQG was re-evaluated as part of the EQC derivation process. It was determined that the formula used to calculate CCME WQG for total ammonia will continue to be used, but with caution at temperatures between 0°C and 4°C as there was a lack of toxicity data available to accurately determine toxic effects at the low extremes. Environment Canada and Health Canada (2001) state in their Synopsis section "In Canada, winter temperatures, regardless of pH, are low enough to keep the formation of un-ionized ammonia below the toxic threshold."

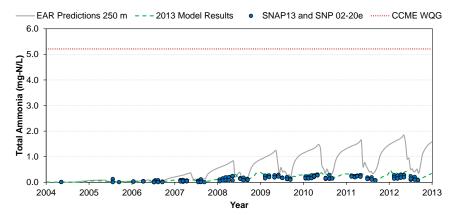
Total ammonia concentrations measured in treated effluent from the temporary WTP (Station SNP 02-17) and the permanent WTP (Station SNP 02-17B) between 2004 and 2012 are shown in Figure 3-6. Individual measurements, and 30-d moving averages for each discharge point, as well as Water Licence limits, are shown.

20

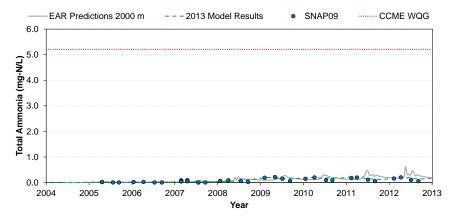
Figure 3-6 Ammonia Concentrations in Treated Effluent, 2004 to 2012

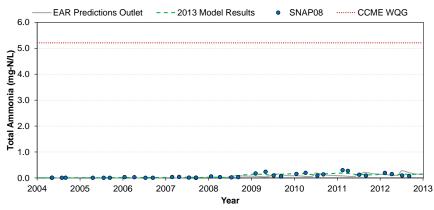
Note: * The Water Licence limit (maximum average monthly limit) for total ammonia was lowered from 20 to 10 mg-N/L, when the new Water Licence came into effect on June 14, 2012: MV2011L2-0004 (MVLWB 2013).

Date

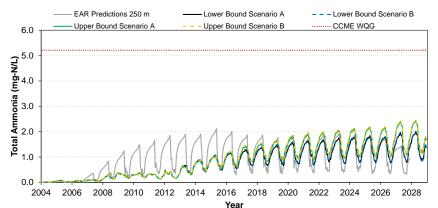

Non-Detect = values reported as less than the method detection limit; 30d Moving Avg = 30-day moving average; Max Grab = maximum allowable concentration in any grab sample; SNP 02-17 = treated effluent from the temporary water treatment plant; SNP 02-17B = treated effluent from the permanent water treatment plant; N = Nitrogen; SNP = Surveillance Network Program; mg-N/L = milligrams as nitrogen per litre; WL = Water Licence.

Total ammonia concentrations in Snap Lake have increased over time since Mine operations began in 2005 (Figure 3-7). The maximum total ammonia concentration measured in Snap Lake in 2012 was 0.32 mg-N/L, and did not exceed pH and temperature-dependent benchmarks (USEPA 2013). Individual total ammonia measurements were screened against WQGs using their corresponding pH and temperature measurements for adjustment.

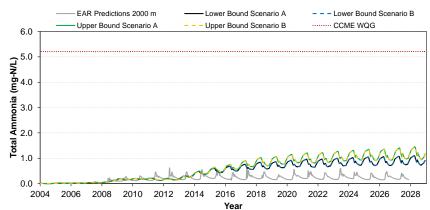

2013

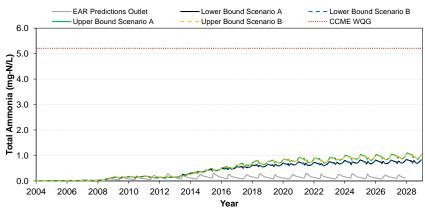

a. Diffuser Area

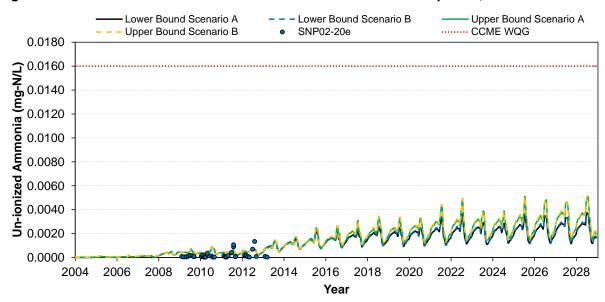
b. Main Basin


Notes: Data shown are from representative stations within Snap Lake: Diffuser Area = SNAP13 (2004 to April 2006) and SNP 02-20e (July 2006 to 2012); Main Basin = SNAP09; Outlet = SNAP08; the CCME ammonia WQG is pH and temperature dependent and was calculated based on the 85th percentile value for monitored pH of 7.14 and temperature of 13.7 degrees Celsius (°C). mg-N/L = milligrams as nitrogen per litre; m = metre; CCME = Canadian Council of Ministers of the Environment; EAR = Environmental Assessment Report; WQG = water quality guideline.

As part of the nitrogen cycle, ammonia in aquatic systems is transformed rapidly to other nitrogenous forms. In the presence of dissolved oxygen nitrifying bacteria oxidize ammonia to nitrite and then to nitrate and prevent ammonia from reaching elevated concentrations (Environment Canada and Health Canada 2001). The EAR (De Beers 2002) predicted that total ammonia concentrations in Snap Lake would increase to approximately 1.1 mg-N/L. Updated predictions of average total ammonia concentrations for the life of Mine at the diffuser area, main basin, and the outlet of Snap Lake and total ammonia guidelines from the CCME (1999) are presented in Figure 3-8. For the Upper Bound Scenarios, average total ammonia concentrations in Snap Lake are predicted to increase to 2.5 mg-N/L in the diffuser area and 2.0 mg-N/L at the outlet of Snap Lake, thus remaining below the chronic CCME WQG (Figure 3-8). For the Lower Bound Scenarios, average total ammonia concentrations in Snap Lake are predicted to increase to 2 mg-N/L in the diffuser area and 0.5 mg-N/L at the outlet of Snap Lake, thus remaining below the chronic USEPA benchmark (Figure 3-9) (De Beers 2013c).


The fraction of total ammonia present in the form of un-ionized ammonia was calculated for the life of the Mine at the diffuser area (i.e., where ammonia concentrations are highest). Un-ionized ammonia concentrations were, on average, two orders of magnitude lower than the un-ionized ammonia WQG from the CCME (1999) (Figure 3-9); and under the Upper and Lower Bound Scenarios, un-ionized ammonia concentrations were predicted to remain below the CCME (1999) un-ionized ammonia WQG for the life of the Mine (Figure 3-9).


a. Diffuser Area


b. Main Basin

Notes: Data shown are from representative stations within Snap Lake: Diffuser Area = SNAP13 (2004 to April 2006) and SNP 02-20e (July 2006 to 2012); Main Basin = SNAP09; Outlet = SNAP08; the CCME ammonia WQG is pH and temperature dependent and was calculated based on the 85th percentile value for monitored pH of 7.14 and temperature of 13.7 degrees Celsius (°C). mg-N/L = milligrams as nitrogen per litre; m = metre; CCME = Canadian Council of Ministers of the Environment; EAR = Environmental Assessment Report; WQG = water quality guideline.

Figure 3-9 Predicted Un-ionized Ammonia Concentrations in Snap Lake, 2004 to 2029

mg-N/L = milligrams as nitrogen per litre; CCME = Canadian Council of Ministers of the Environment; SNP = Surveillance Network Program; WQG = water quality guideline.

3.2 Effluent Quality Criteria

Effluent quality criteria are to be applied at the last point of discharge (i.e., they assess treated effluent quality from the WTP). The EQC represent values that, when maintained at the point of discharge, will be protective of the receiving environment (i.e., Snap Lake and downstream waterbodies) in terms of both aquatic life and human health. This is consistent with guidance provided by the Mackenzie Valley Land and Water Board (MVLWB) Effluent Quality Management Policy (the Policy) (MVLWB 2011), which also states (p 11) *"the Boards will ensure that EQC are set at levels that the proponent can reasonably and consistently achieve."*

Variability in the treated effluent is accounted for in the Water Licence through the requirement for two EQC:

- maximum daily limit (MDL), which represents the maximum concentration of a parameter measured in a single grab sample of the treated effluent; and,
- average monthly limit (AML), which represents the average concentration of a parameter that the Mine may release into Snap Lake, determined by averaging consecutive samples collected over sixday intervals over a thirty-day period.

In addition, long-term accumulation in Snap Lake is represented by an annual loading limit (ALL), which is dependent on both the concentration and volume of treated effluent discharged to Snap Lake. Under Schedule 5: Part F, 4b (ii) of the Water Licence, recommendations, and rationale for revised EQC are specifically required for nitrate and ammonia. This section includes a summary of the method(s) used to calculate EQC and presents the proposed EQC results for nitrate and ammonia.

3.2.1 Methods

The Policy (MVLWB 2011) does not outline specific methods for establishing EQC; therefore, the existing Snap Lake EQC were reviewed with reference, as appropriate, to the methods used previously for the Snap Lake Mine (Golder 2003), and those recommended by other jurisdictions (USEPA 1991; AEP 1995). Derivation of EQC for the Mine involved the following steps:

- identify parameters for which EQC should be evaluated;
- select an appropriate benchmark for each parameter;
- select a location in Snap Lake where benchmarks should be met (i.e., the mixing zone boundary);
- calculate an EQC that results in peak concentrations in Snap Lake being equal to or lower than SSWQOs or existing AEMP benchmarks; and,
- compare proposed EQC to existing EQC in the Water Licence, and predicted treated effluent discharge concentrations.

The present *Nitrogen Response Plan* only presents EQC for nitrate and ammonia. A detailed description of the methods used to calculate EQC for these parameters and others is presented in De Beers (2013e).

The second task in the EQC setting process involved selecting appropriate benchmarks for nitrate and ammonia. The hardness dependent SSWQO described in Section 3.1.1 was used to calculate EQC for nitrate (Table 3-1). For ammonia, USEPA benchmarks were used for developing EQC, as per the discussion in Section 3.1.2. The AML and MDL for ammonia were derived using the USEPA acute WQG; the ALL was based on the USEPA chronic criterion (Table 3-1). Detailed methods for calculating EQC based on the benchmarks presented in Table 3-1 are in De Beers (2013e).

Parameter	AEMP Benchmark [mg/L]	Description	Source
Nitrate as N	16.4	Hardness dependent SSWQO developed for the EKATI Diamond Mine, at a hardness of 160 mg/L $^{\rm (a)}$ as CaCO $_3$	Rescan (2012); De Beers (2013f), Section 3.1.1
	5.21 (chronic)	WQG for total ammonia for the protection of aquatic life based on the	CCME (1999);
Ammonia as N	21 (acute)	conditions present in Snap Lake (i.e., pH = 7.14 and temperature 13.7 degrees Celsius) ^(d) .	USEPA (2013); Section 3.1.2

Table 3-1	AEMP Benchmarks Used for Calculating Effluent Quality Criteria
	All Bononnanco occa for Galealading Enhabit quality officina

The SSWQO is based on a maximum hardness of 160 mg/L (Rescan 2012). Toxicity-hardness relationships were not defined for hardness concentrations beyond 160 mg/L.

The ammonia WQG is pH and temperature dependent and was calculated based on the 85th percentile values for pH and temperature of 7.14 and 13.7 °C, respectively.

mg/L = milligrams per litre;% = percent; °C = degrees Celsius; AEMP = Aquatic Effects Monitoring Program; WQG = water quality guideline; CCME = Canadian Council of Ministers of the Environment; USEPA = United States Environmental Protection Agency; CaCO₃ = calcium carbonate.

The third task in the EQC setting process involved re-visiting mixing zone considerations. The Policy allows for the consideration of allocated mixing zones. A mixing zone is the region in which initial dilution of treated effluent occurs. For Snap Lake, the mixing zone boundary also represents the location at which AEMP benchmarks should be met. For the present study, the mixing zone was assumed to be the

same as that established in the EAR (De Beers 2002). This assumption and corresponding uncertainties are discussed further in De Beers (2013e).

The fourth task (i.e., the EQC setting process) is described in detail in De Beers (2013e), and the results from that assessment are summarized below, in Section 3.2.2.

3.2.2 Results

A comparison of the proposed EQC for ammonia and nitrate to existing EQC is presented in Section 3.2.2.1. Section 3.2.2.2 presents a comparison of the proposed EQC to measured and predicted treated effluent concentrations. Finally, Section 3.2.2.3 presents a summary of recommended EQC for inclusion in the Water Licence Amendment.

3.2.2.1 Comparison of Proposed Effluent Quality Criteria to Existing Effluent Quality Criteria

A comparison of the proposed EQC for ammonia and nitrate to existing EQC is presented in Table 3-2. Key findings are:

- the AMLs and MDLs calculated for ammonia and nitrate are greater than the existing AMLs and MDLs and those that could come into effect on January 1, 2015. For nitrate, the increase was a result of moving to more realistic, site-specific, protective benchmarks from conservative, generic benchmarks when deriving EQC. As described in Table 3.1, the site-specific benchmark for nitrate was based on hardness-dependent equations developed for the EKATI diamond mine and approved by the Wek'èezhii Land and Water Board (WLWB 2013).;
- The ALL for nitrate is lower than the existing loading limit, primarily due to using a more realistic, sitespecific, protective benchmark instead of a conservative, generic benchmark when deriving EQC; and,
- The ALL for ammonia is higher than the existing limit because of the increase in treated effluent discharge rates.

Table 3-2Comparison of Existing and Proposed^(a) Effluent Quality Criteria for Snap Lake
Mine

			EQC (r		Annual Loading Limit (kg/yr)				
	A	ML	Existing MDL		DL	Existing			Existing
	- · ··		>Proposed		. .	>Proposed			>Proposed
Parameter	Existing	Proposed	(Y/N)	Existing	Proposed	(Y/N)	Existing	Proposed	(Y/N)
Ammonia	10	21 ^(b)	N	20	21 ^(b)	N	187,000	208,000 ^(c)	Ν
Nitrate (to December 31, 2014)	22	N/A	N/A	44	N/A	N/A	219,000	N/A	N/A
Nitrate (from January 1, 2015)	4	14	Ν	8	32	Ν	219,000	161,000	Y

a) The final list of recommended EQC for inclusion in the Water Licence is presented in Section 3.2.2.3; the final list was developed based on the comparisons of existing and proposed EQC presented in Tables 3-2 and 3-3.

b) The AML and MDL for ammonia were set equal to the acute benchmark, which protects against acute effects prior to discharge and against chronic effects in Snap Lake. The acute benchmark is more restrictive than calculating an MDL and AML based on the chronic benchmark.

c) The annual loading limit for ammonia was derived by setting the long-term average to the recommended AML (Section 3.2.2.3).

mg-N/L = milligrams as nitrogen per litre; kg/yr = kilograms per year; EQC = effluent quality criteria; AML = average monthly limit; MDL = maximum daily limit; USEPA = United States Environmental Protection Agency; Y = yes; N = no; N/A = not applicable; >= greater than.

3.2.2.2 Comparison of Proposed Effluent Quality Criteria to Treated Effluent Discharge Quality

Comparisons of proposed EQC to treated effluent discharge quality in 2012 and to predicted treated effluent discharge quality are presented in Table 3-3. Key findings are:

- Based on the treated effluent discharge quality in 2012, the Mine can currently meet the proposed EQC.
- Based on the predicted treated effluent discharge quality, the Mine will be able to meet the proposed EQC for ammonia.
- Based on the predicted treated effluent discharge quality, the Mine will be able to meet the proposed MDL for nitrate. Based on calculations of the predicted average monthly concentrations of nitrate in the treated effluent discharge, mitigation will be required prior to 2025 to meet the proposed AML for nitrate. The average monthly concentrations of nitrate in the treated effluent discharge are predicted to exceed the proposed AML periodically during ice-covered conditions between 2025 and 2028. The maximum average monthly concentration of nitrate in the treated effluent discharge is predicted to be 14.4 mg-N/L.

Table 3-3Comparison of Proposed^(a) Effluent Quality Criteria to Treated Effluent Discharge
Quality in 2012 and to Predicted Treated Effluent Discharge Quality for Snap Lake
Mine

	Proposed EQC (mg-N/L)		Treated Efflue 2012	nt Discharge (2(b) (mg-N/L)	Predicted Treated Effluent Discharge Quality(c) (mg-N/L)		
Parameter	AML	MDL	Flow-weighted Average	Maximum	n	Maximum	Year
Ammonia	21	21	1.97	4.71	96	5.7	2028
Nitrate (from January 1, 2015)	14	32	10	22	96	16.6	2028

Note: Shaded cells represent parameters for which, based on calculations of the predicted average monthly concentrations in the treated effluent discharge, the Mine will not be able to meet the proposed AML.

a) The final list of recommended EQC for inclusion in the Water Licence is presented in Section 3.2.2.3; the final list was developed based on the comparisons of existing and proposed EQC presented in Tables 3-2 and 3-3.

b) De Beers (2013d).

c) De Beers (2013a).

mg-N/L = milligrams as nitrogen per litre; EQC = effluent quality criteria; AML = average monthly limit; MDL = maximum daily limit; n = number of samples collected.

3.2.2.3 Recommended Effluent Quality Criteria

The EQC for ammonia and nitrate presented in Table 3-4 represent the recommended values for inclusion in the Water Licence Amendment. For ammonia and nitrate the following changes are recommended:

- increase the AML to come into effect on January 1, 2015 from 4 mg-N/L to 14 mg-N/L for nitrate;
- increase the MDL to come into effect on January 1, 2015 from 8 mg-N/L to 32 mg-N/L for nitrate;
- retain the AML and MDL for ammonia. De Beers can achieve the existing values (i.e., 10 and 20 mg-N/L) throughout operations; and,
- reduce the ALL from 219,000 kg/yr to 161,000 kg/yr for nitrate; retain the ALL of 187,000 kg/yr for ammonia.

Table 3-4 Recommended Effluent Quality Criteria for Snap Lake Mine

		nded EQC ·N/L]	Annual Loading Limit
Parameter	AML	MDL	[kg/yr]
Ammonia	10	20	187,000
Nitrate (from January 1, 2015)	14	32	161,000

mg-N/L = milligrams as nitrogen per litre; kg/yr = kilograms per year; EQC = effluent quality criteria; AML = average monthly limit; MDL = maximum daily limit.

3.3 Recommendations for Effluent Quality Criteria

In summary:

- The hardness dependent SSWQO curve developed by Rescan (2012) for nitrate was considered to be suitable for application as a nitrate SSWQO in Snap Lake, up to a hardness of 160 mg/L. In the future, it is recommended that nitrate concentrations in Snap Lake be compared to the hardness dependent nitrate SSWQO presented in Section 3.1.
- It is recommended that the formula used to calculate CCME WQG for total ammonia continue to be used, but with caution at temperatures between 0°C and 4°C. Total ammonia concentrations in Snap Lake should be compared against the CCME chronic benchmark calculated using the pH and temperature in the individual samples.
- Nitrate and ammonia concentrations were predicted to remain below the nitrate SSWQO and the chronic USEPA benchmark, respectively, throughout the life of the Mine.

The calculated EQC were compared to existing EQC in the Water Licence, treated effluent discharge quality in 2012, and predicted treated effluent discharge quality. Based on those comparisons, it is recommended that:

- The Water Licence be updated to include the EQC summarized in Table 3-4;
- Mitigation be implemented prior to 2025 to meet the proposed AML for nitrate;
- The EQC be applied to treated effluent discharge at SNP station SNP 02-17B;
- Monitoring requirements at SNP 02-17B remain the same for nitrate and ammonia; and,
- Wording used to describe EQC in Schedule 5: Part F, 9 of the Water Licence be changed from "maximum average" to "average monthly limit" and from "maximum grab" to "maximum daily limit" to improve clarity.

4 OPTIONS TO REDUCE NITROGEN LOADINGS IN THE FINAL TREATED EFFLUENT DISCHARGED TO SNAP LAKE AND ACHIEVE THE LOWEST PRACTICAL EFFLUENT QUALITY CRITERIA

The factor that has the largest effect on the EQC is the proportion of treated effluent in Snap Lake. Possible options to reduce the proportion of treated effluent in Snap Lake, and achieve the lowest possible EQC include segregating waste streams, storing and isolating high nitrogen water, and treating a portion of the waste streams or treated effluent.

4.1 Effluent Treatment

Conceptual level technology screening studies have been completed to understand nitrogen loadings and have presented options to reduce the amount of nitrogen discharged in treated effluent. The next step is to investigate the potential options to reduce the nitrogen loadings to the North Pile.

The studies (CH2M Hill 2012) resulted in the development of four different treatment alternatives:

- Densadeg + Filtration;
- Actiflo + Filtration;
- Densadeg + Microfiltration Filtration (MF)/Ultra filtration (UF) +reverse osmosis (RO); and,
- Actiflo + MF/UF +RO.

CH2M Hill (2012) recommended Densadeg plus MF/UF plus RO as the forward flow treatment. A continuous flow of RO brine would require further processing to reduce volume and remove nitrate nitrogen in salts. For this purpose, a brine evaporator and crystallizer were recommended. The study showed that, in addition to nitrogen reduction in the RO, bulk total suspended solids (TSS) treatment would need to be expanded (using the Densadeg process and high efficiency solids filtration using MF/UF membrane filtration) to protect the RO membranes from fouling and extend membrane life. By using RO for nitrogen control, TDS reduction would also be achieved on the entire mine water flow. Nitrogen control treatment also represents an option for TDS control.

An initial estimate of the capital cost ranged from \$40 to \$65 million plus an additional \$33 million for a brine concentrator/crystalliser system (to treat an additional 15,000 m^3/d for TSS and 45,000 m^3/d for nitrate). Since the time of that initial estimate, projections of the maximum total mine flow rate have increased to 60,000 to 65,000 m^3/d . A supplemental cost study in 2013 revised the flow basis for treatment to 60,000 m^3/d plus a 25% safety factor (75,000 m^3/d) and the cost basis was updated to 2013 (Golder 2013). In addition, the supplemental study provided annual operational costs, which are large for membrane treatment and brine management systems.

The summary of estimated costs for nitrogen control is shown in Table 4-1. The capital cost shown is for construction of the above-described treatment facilities at the maximum design flow rate of $75,000 \text{ m}^3/\text{d}$,

since peak mine water flow rates are projected to occur during the first several years of the remaining mine life as the mine is expanded, rather than slowly increasing to the end of mine life. A range of annual operation costs is shown for the range of flows from the original estimate of $45,000 \text{ m}^3/\text{d}$ up to the peak flow rate of $75,000 \text{ m}^3/\text{d}$. At the conceptual stage of analysis, the cost estimates have a potential range of -10% to to +50%.

Table 4-1	Summary of Nitrogen Treatment Costs
-----------	-------------------------------------

	Total Estimated Cost (\$million)	Flow Basis (m3/d)
Capital Cost	\$174	75,000
Operational Cost	\$19.0/year to \$31.8/year	45,000 to 75,000

Capital costs for nitrogen removal from the entire mine water flow are very high. The membrane treatment processes and brine processing technologies are very energy intensive, and the unit cost of power generation at Snap Lake Mine is high. In addition, chemical costs for TSS removal, scale control, and membrane cleaning are large. Power and chemical costs constitute about 86% of total operational costs and generally increase directly with increasing flow rate.

As noted above, the nitrogen removal treatment would also accomplish TDS reduction. An investigation of possible treatment technologies is included in Table 2-4 of the *TDS Response Plan* and a cost benefit analysis of the most feasible system for TDS removal is included in Section 4.2 of the same document.

4.2 Water Management Pond

A second study used a weighted matrix criterion (Table 4-2) to evaluate the best options for TSS/nitrate treatment for application to the WMP. This was based on treating a maximum of 14,200 m³/d from the WMP where the nitrate concentrations are the highest. The 14,200 m³/d figure is based on half the maximum to be expected per day during freshet. The results of the studies are summarised in Tables 4-2 to 4-5. In summary, the two TSS/Nitrate removal options that should be considered are the Multimedia filtration and Higgins Loop IX (Alternative 1A) and Microfiltration and RO with Biological Treatment (Alternative 4C).

Alternative Weight (%)	TSS Treatment	Nitrate Treatment	6 Hydraulic Variability - TSS	o Mydraulic Variability - Nitrate	o Waste Loading Variablility - TSS	o Maste Loading Variablility - Nitrate	ی Chemical Storage and Delivery - TSS % (incl. media)	on Chemical Storage and Delivery - Nitrate (incl. media)	ଦ୍ଧ Secondary Waste - TSS	ଦ୍ଧ Secondary Waste - Nitrate	Footprint - TSS	5 5 Footprint - Nitrate %	G G Energy Requirement - TSS	c G Energy Requirement - Nitrate	5 Start-up Period - TSS	5 Start-up Period - Nitrate	5 WL Limits - Nitrate	20 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Total %001
1A	Multimedia Filtration	Higgins Loop IX	5	5	5	5	5	3	5	5	3	1	5	1	5	5	3	5	5	4.15
4C	Micro- filtration	RO with Biological Treatment	5	1	5	1	5	3	1	1	3	1	5	1	5	1	5	5	5	3.75
1C	Micro- filtration	Higgins Loop IX	5	5	5	5	5	3	1	5	3	1	5	1	5	5	3	3	3	3.35
5C	Micro- filtration	RO with Electro- coagulation	5	5	5	3	5	1	1	3	3	3	5	5	5	5	1	3	3	3.15
2A	Multimedia Filtration	Biological Treatment with Higgins Loop IX	5	1	5	1	5	1	5	3	3	1	5	1	5	1	3	3	3	3.05
2C	Micro- filtration	Biological Treatment with Higgins Loop IX	5	1	5	1	5	1	1	3	3	1	5	1	5	1	3	3	3	2.85
3A	Multimedia Filtration	Electro- coagulation	5	5	5	3	5	1	5	3	3	3	5	3	5	5	1	1	1	2.60
3C	Micro- filtration	Electro- coagulation	5	5	5	3	5	1	1	3	3	3	5	3	5	5	1	1	1	2.40

Table 4-2 Weighted Matrix Criterion for Total Suspended Solids and/or Nitrate Treatment

% = percent; # = number; TSS = total suspended solids; RO = reverse osmosis; IX= ion exchange.

Table 4-3Nitrate Concentrations in Water Management Pond and Required Reduction Based
on 2012 and 2015 Water Licences

	WL Limits (2012/2015)		WL Limits (2012/2015) WMP		-	nit Requried val (%)	2015 WL Limit Requried Removal (%)	
Parameters (mg/L)	Max. Monthly Avg.	Max. Grab	Avg.	Мах	Avg.	Max.	Avg.	Max.
TSS	7	14	27	209	81.9%	97.7%	81.9%	97.7%
NO ₃ (as N)	22/4	44/8	75.6	120	79.6%	87.2%	96.3%	97.7%

% = percent; mg/L = milligrams per litre; TSS = total suspended solids; WL = Water Licence; WMP = water management pond; Max. = maximum; Avg. = average; NO₃ = nitrate; N = nitrogen.

Table 4-4 Costs Shown for the Total Suspended Solids and Nitrate Removal Options

Alternatives (#)	Capital (US\$M)	O&M (US\$M)	Life Cycle (US\$M)
TSS Removal Alternatives			- -
Multimedia Filtration for TSS Removal (A)	3.65	0.90	12.17
Electrocoagulation for TSS Removal (B)	7.86	2.95	35.82
Microfiltration (C)	5.50	1.09	15.80
Nitrate Removal Alternatives			
Higgins Loop IX (1)	26.04	2.95	53.97
Biological Treamtent with Higgins Loop IX (2)	33.89	3.23	64.53
Electrocoagulation (3)	37.17	5.73	91.44
Reverse Osmosis with Biolgoical Treatment (4)	22.44	2.63	47.39
Reverse Osmosis with Electrocoagulation (5)	26.33	3.75	61.87

TSS = total suspended solids; IX = ion exchange; US\$M = millions of dollars in United States currency.

Table 4-5 Costs Shown for the Total Suspended Solids and Nitrate Removal Options – These are Alternative Options as They are a Combination of Removal Technologies

Alternatives (#)	Capital (US\$M)	O&M (US\$M)	Life Cycle (US\$M)
Multimedia Filtration for TSS + Higgins Loop IX (1A)	29.69	3.85	66.13
Electrocoagulation for TSS + Higgins Loop IX (1B)	33.90	5.90	89.79
Microfiltration for TSS + Higgins Loop IX (1C)	31.54	4.03	69.77
Multimedia Filtration for TSS + Biological Treatment with Higgins Loop IX (2A)	37.54	4.13	76.69
Electrocoagulation for TSS + Biological Treatment with Higgins Loop IX (2B)	41.75	6.18	100.35
Microfiltration for TSS + Biological Treatment with Higgins Loop IX (2C)	39.39	4.32	80.32
Multimedia Filtration for TSS + Electrocoagulation for Nitrate (3A)	40.83	6.62	103.60
Electrocoagulation for TSS + Electrocoagulation for Nitrate (3B)	45.04	8.68	127.26
Microfiltration for TSS + Electrocoagulation for Nitrate (3C)	42.68	6.81	107.24
Microfiltration for TSS + Reverse Osmosis with Biological Treatment (4C)	27.94	3.72	63.19
Microfiltration for TSS + Reverse Osmosis with Electrocoagulation (5C)	31.83	4.84	77.67

TSS = total suspended solids; IX = ion exchange; US\$M = millions of dollars in United States currency.

5 RECOMMENDATIONS TO IMPROVE MINEWATER AND/OR EXPLOSIVES MANAGEMENT AND MONITORING

Section 2 outlines initiatives that are currently being implemented to reduce nitrate and ammonia loadings to the minewater and Section 4 presents possible options that could be implemented. Should the nitrate and ammonia levels increase and/or approach allowable Water Licence limits, further recommendations as outlined in this section would be implemented.

5.1 Blast Design Analysis

An external blasting consultant would be engaged to review blast design practices and ensure that all parameters are further optimised to minimise the wastage of explosives during blasting.

5.2 Explosives Loading and Storage

Explosives loading is an integral part of the blasting cycle and current practises would be reviewed by either a blasting expert within Anglo American or an external consultant. The methodology would be critically evaluated so that industry best practises are being adhered to and efficiency of blasting maintained by using the minimum amount of explosives. Even though spillage is reduced at the emulsion storage tanks underground, an external explosives storage review would be implemented to ensure best practise is being adhered to. This would ensure that both storage underground and surface are reviewed closely to ensure there is no unnecessary contamination. The emulsion plant would be included in the review.

5.3 Best Practise/Technology Improvements

The review of blast design and explosives loading and storage in 5.1 and 5.2 would be benchmarked against what is considered to be leading industry practices.

5.4 Dilution Management

Current dilution practice is by the addition of clear water into the pH adjustment tank. A review of dilution options would be implemented to understand the range of practical nitrate dilution. This could be done by using the clear water on the North Pile itself or in the WMP as opposed to the last stage of treatment before discharge to Snap Lake.

5.5 Advancement of Nitrate Studies

Two independent consultants have conducted conceptual level studies for nitrate treatment as presented in Section 4. Nitrate concentrations will be continuously monitored as per Water Licence requirements. Particular attention will be paid to any increasing trends. Advancement of the existing conceptual level studies to a feasibility level would then be implemented and this would result in appropriate action plans being implemented.

6 SUMMARY AND CONCLUSIONS

Nitrate and ammonia loadings in the treated effluent discharge to Snap Lake are primarily a result of explosives use in the mining cycle. Current practices at the Mine to minimize the amount of nitrate and ammonia in the minewater include:

- A re-design of the blasting round that resulted in the drill holes being reduced from 50 holes per round to 43 holes per round and a subsequent 15% reduction in the amount of emulsion used.
- An increase in the collar length from one foot to three feet, which minimized spillage and over-loading of blast holes by the loading crews, and education on proper loading and blasting techniques that resulted in a 7% reduction in the amount of emulsion used.
- Minewater from active mining areas containing high concentrations of nitrate and ammonia is diluted with minewater from older mined out areas containing low concentrations of nitrate and ammonia. Water in the North Pile surface sumps and WMP containing high concentrations of ammonia and nitrate is diluted each year during freshet whereby high volumes of melted snow and ice enter the sumps and WMP.
- Facilities onsite (i.e., ammonium nitrate storage building, emulsion plant, emulsion storage, and magazine storage area) are designed to contain potential spills of explosives and prevent nitrate and ammonia from entering the environment.

De Beers has completed studies to investigate the potential effects of elevated nitrate concentrations on aquatic life in Snap Lake for the purpose of developing a SSWQO. As a result of the studies, the proposed SSWQO for nitrate is 16.4 mg-N/L. Chronic and acute benchmarks for ammonia were also determined.

The proposed SSWQO for nitrate and benchmarks for ammonia were used to develop new EQC that would allow the Mine to discharge treated effluent into Snap Lake while maintaining nitrate and ammonia concentrations in the lake below the SSWQO and benchmarks. The proposed AMLs for nitrate and ammonia are 14 mg-N/L and 10 mg-N/L and the proposed MDLs for nitrate and ammonia are 32 mg-N/L and 20 mg-N/L.

Modelling completed in 2013 (De Beers 2013a,b) indicated that nitrate and ammonia concentrations are predicted to remain below the SSWQO and benchmarks for the life of the Mine. However, mitigation must be implemented prior to 2025 to meet the proposed AML for nitrate.

Ongoing management efforts to reduce nitrate loadings to Snap Lake are focused on a phased study initiated by De Beers in 2012 on water treatment technologies. The first phase of the study assessed the feasibility of treating the entire volume of effluent discharged to Snap Lake to remove nitrate. However, due to the large volume of water, treatment of the total volume was determined to be uneconomical. A conceptual estimate of \$174 million was determined to allow treatment of the range of total mine flows over the life of mine. Processes required for this treatment would be energy and chemical-intensive, resulting in annual operating costs for treatment alone of from \$20 to over \$30 million per year. The demand for power from treatment would be unsustainable for the Snap Lake Mine power generation system. Costs of adding generators were not included in the capital cost estimate.

The second phase of the study focused on treatment of water from the WMP. Treatment of water from the WMP was considered appropriate because of the smaller volume needing treatment, and because of the high nitrate concentrations in the WMP. De Beers is completing more detailed evaluations of two water treatment technologies for reducing nitrate concentrations in water from the WMP.

7 REFERENCES CITED

- AEP (Alberta Environmental Protection). 1995. Water Quality Based Effluent Limits Procedures Manual. Edmonton, AB, Canada.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines, 1999. Canadian Environmental Quality Guidelines Summary Table, with updates to 2013. Winnipeg, MB, Canada. Available at: http://st-ts.ccme.ca/. Accessed July 2013.
- CCME. 2003. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate Ion. Canadian Environmental Quality Guidelines. In Canadian Water Quality Guidelines, 1999. Winnipeg, MB, Canada.
- CCME. 2007. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life 2007. In Canadian Environmental Quality Guidelines, 1999. Winnipeg, MB, Canada.
- CCME. 2012. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate Ion. Canadian Environmental Quality Guidelines, Winnipeg, MB, Canada.
- CH2M Hill. 2012. Snap Lake Mine Water Treatment Plant Alternatives Evaluation. Prepared for De Beers Canada Inc. Yellowknife, NWT, Canada.
- De Beers (De Beers Canada Inc.). 2002. Snap Lake Diamond Project: Environmental Assessment Report (EAR). Submitted to the Mackenzie Valley Environmental Impact Review Board, Yellowknife, NWT, Canada.
- De Beers. 2012. Aquatic Effects Re-evaluation Report. Aquatic Effects Monitoring Program for the Snap Lake Project. Water Licence (MV22001L2-0002). Submitted to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.
- De Beers. 2013a. Snap Lake Site Model Water Quality Report. Submitted to the Mackenzie Valley Environmental Impact Review Board, Yellowknife, NWT, Canada.
- De Beers. 2013b. Snap Lake Site Model Water Balance Report. Submitted to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.
- De Beers. 2013c. Snap Lake Hydrodynamic and Water Quality Model Report. Submitted to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.
- De Beers. 2013d. 2012 Annual Report in Support of the Aquatic Effects Monitoring Program Water Licence (MV2001L2-0002), Snap Lake Project. Submitted to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.
- De Beers. 2013e. Evaluation of Effluent Quality Criteria. Submitted to the Mackenzie Valley Environmental Impact Review Board, Yellowknife, NWT, Canada.

De Beers Canada Inc.

- De Beers. 2013f. Development of Nitrate Benchmark for Aquatic Life in Snap Lake. Submitted to De Beers Canada Inc. Yellowknife, NWT, Canada.
- Environment Canada and Health Canada. 2001. Canadian Environmental Protection Act, 1999. Priority Substances List Assessment Report – Ammonia in the Aquatic Environment. Prepared by Environment Canada and Health Canada. Ottawa, ON, Canada.
- Golder (Golder Associates Ltd.). 2003. Snap Lake Diamond Project Proposed Discharge Limits. Submitted to De Beers Canada Inc. Yellowknife, NWT, Canada.
- Golder. 2013. Treatment review for footwall water as part of TDS Management Plan. Preparad for De Beers Canada Inc. Yellowknife, NWT, Canada.
- Itasca. 2013. Predicted TDS Concentration in Mine Water Discharge Based on Calculated TDS Values. Submitted to: De Beers Canada Inc., Yellowknife, NWT, Canada.
- Meays CL. 2009. Water Quality Guidelines for Nitrogen (Nitrate, Nitrite, Ammonia). Addendum to Technical Appendix. Water Stewardship Division, Ministry of Environment, Victoria, BC, Canada. Available at: http://www.env.gov.bc.ca/wat/wq/wq_guidelines.html#approved. Accessed June 2013.
- MPCA (Minnesota Pollution Control Agency). 2010. Aquatic Life Water Quality Standards Technical Support Document for Nitrate. Saint Paul, MN, USA. Draft for external review, November 12, 2010. Available at URL: http://www.pca.state.mn.us/index.php/view-document.html?gid=14949. Accessed May 2013.
- MVLWB (Mackenzie Valley Land and Board). 2011. Water and Effluent Quality Management Policy. Yellowknife, NWT, Canada.
- MVLWB. 2013 Mackenzie Valley Land and Water Board Water License # MV2011L2-0004. Yellowknife, NWT, Canada.
- Nautilus (Nautilus Environmental). 2013. Evaluation of Toxicity of Nitrate Under Site-Specific Conditions. Report prepared for Golder Associates Ltd., Burnaby, BC, Canada.
- Nordin RN, Pommen LW. 2009. Water Quality Guidelines for Nitrogen (Nitrate, Nitrite, and Ammonia): Overview Report Update. Water Stewardship Division, Ministry of Environment, Province of British Columbia. Victoria, BC, Canada. Prepared by Nordin RN and Pommen LW and updated by Meays CL. September 2009.
- Rescan (Rescan Environmental Services Ltd.). 2012. EKATI Diamond Mine: Site-Specific Water Quality Objective for Nitrate, 2012. Prepared for BHP Billiton Canada Inc. Yellowknife, NWT, Canada.
- USEPA (United States Environmental Protection Agency). 1991. Technical Support Document for Water Quality-based Toxics Control. EPA 505-2-90-001. Washington, DC, USA.

38

- USEPA. 1999. 1999 Update of Ambient Water Quality Criteria for Ammonia. EPA 822-R-99-04. Office of Water Office of Science and Technology, Washington, DC, USA and Office of Research and Development Mid-Continent Ecology Division, Duluth, MN, USA.
- USEPA. 2013. Aquatic Life Ambient Water Quality Criteria for Ammonia Freshwater 2013. EPA-822-R-13-001. Office of Water (4304T). Washington, DC, USA.
- Wek'èezhii Land and Water Board. 2013. Water Licence W2012L2-0001 for the EKATI Diamond Mine, Yellowknife, NWT, Canada.

DE BEERS CANADA INC.

SNAP LAKE MINE

DEVELOPMENT OF NITRATE CHRONIC EFFECTS BENCHMARK FOR AQUATIC LIFE IN SNAP LAKE

December 2013

13-1349-0001

EXECUTIVE SUMMARY

Nitrate concentrations have been increasing in Snap Lake Mine (Mine) since Mine operations began in 2005. Baseline nitrate concentrations measured in the main basin of Snap Lake in 2004 ranged from less than 0.006 to 0.046 milligrams as nitrogen per litre (mg-N/L). In 2012, average nitrate concentrations in the different areas of Snap Lake ranged from 1.6 to 2.7 mg-N/L, and the maximum individual measurement of 3.22 mg-N/L exceeded the existing benchmark of 2.93 mg-N/L. The 2002 Environmental Assessment Report (EAR) predicted that nitrate concentrations in Snap Lake could reach 6.3 mg-N/L within one percent of the lake. More recent predictions in 2011 indicated that nitrate concentrations in Snap Lake could reach 4.4 mg-N/L in the near-field and 4.2 mg-N/L in the far-field. These predictions will be updated with more recent modelling data when available.

The Canadian Council of Ministers of the Environment (CCME) established a national water quality guideline (WQG) for nitrate of 3.0 mg-N/L for the protection of freshwater aquatic life. British Columbia's WQG for nitrate is the same value, although the derivation procedure was different. There is no national WQG for nitrate in the United States, although Minnesota has proposed draft standards of 4.9 or 3.1 mg-N/L depending on the water usage. None of these benchmarks consider the effect of water hardness concentration on nitrate toxicity. A hardness-dependent site-specific water quality objective (SSWQO) proposed for nitrate for the EKATI Diamond Mine was adopted as an effluent quality criterion (EQC) in the recently renewed Water Licence for that mine.

As part of the *Nitrogen Response Plan* that De Beers Canada Inc. (De Beers) is required to submit to the Mackenzie Valley Land and Water Board (MVLWB) in December 2013, a benchmark for nitrate in Snap Lake is to be recommended. The nitrate SSWQO developed and approved for the EKATI Diamond Mine was evaluated for applicability to Snap Lake. This evaluation consisted of conducting toxicity tests with the most sensitive invertebrate species and a sensitive fish species to nitrate in simulated Snap Lake water. Tests were conducted with a water flea, *Ceriodaphnia dubia*, and larval Fathead Minnow, *Pimephales promelas*. Two types of dilution waters were used: one that simulated current Snap Lake water hardness concentration and total dissolved solids (TDS) concentration and ionic composition (140 mg/L as calcium carbonate [CaCO₃] and 228 mg/L TDS); and, one that simulated the predicted maximum water hardness concentration and corresponding TDS concentration and composition (350 mg/L as CaCO₃ and 570 mg/L TDS).

Results of the toxicity tests with *C. dubia* and Fathead Minnow indicated that the hardnessdependent nitrate SSWQO developed for the EKATI Diamond Mine is suitable for Snap Lake. The equation is: nitrate SSWQO = $e^{(0.9518(ln[Hardness])-2.032)}$. At the water hardness in Snap Lake, the nitrate SSWQO would be 14.5 mg-N/L.

TABLE OF CONTENTS

1	INTRODUCTION	-1			
2	WATER QUALITY BENCHMARKS FOR NITRATE 2-	-1			
3	ENVIRONMENTAL CONCENTRATIONS OF NITRATE IN SNAP LAKE 3- 3.1 Treated Effluent 3- 3.2 Lake Water 3- 3.2.1 Lake Sediment 3-	-1 -1			
4	TOXICITY OF NITRATE TO FRESHWATER AQUATIC LIFE4-4.1Fish4-4.2Invertebrates4-4.3Algae / Plants4-4.4Amphibians4-	-1 -3 -4			
5	RESULTS OF NEW TOXICITY STUDIES. 5- 5.1 Test Methods 5- 5.2 Results and Discussion 5- 5.2.1 Ceriodaphnia dubia Toxicity Tests 5- 5.2.2 Fathead Minnow Toxicity Tests 5-	-1 -4 -5			
6	PROPOSED CHRONIC EFFECTS BENCHMARK FOR NITRATE FOR SNAP LAKE 6-1				
7	REFERENCES	-1			

LIST OF TABLES

Table 1	Concentrations of Salts Used to Prepare Synthetic Lake Waters for	
	Nitrate Toxicity Testing	5-2
Table 2	Test Conditions for the 3-brood Ceriodaphnia dubia Survival and	
	Reproduction Tests	5-3
Table 3	Test Conditions for the 7-day Fathead Minnow Survival and Growth Tests	5-3
Table 4	Results of 3-Brood Ceriodaphnia dubia Survival and Reproduction Tests	5-4
Table 5	Results of 7-day Fathead Minnow Survival and Reproduction Tests	5-5

LIST OF FIGURES

Figure 1	Nitrate Concentrations in Treated Effluent, 2004 to 2012	3-1
Figure 2	Nitrate Concentrations in Three Areas of Snap Lake, 2004 to 2012	3-3
Figure 3	Predicted Nitrate Concentrations in Snap Lake	
Figure 4	Concentrations of Available Nitrate in Sediments in Snap Lake and Two	
	Reference Lakes, 2005 to 2012	3-5
Figure 5	Comparison of Snap Lake Validation Toxicity Test Results to Rescan	
-	(2012) Toxicity Data and Proposed Hardness-Dependent Benchmark	6-2

LIST OF APPENDICES

Appendix A Nautilus (2013) Laboratory Report: Evaluation of Toxicity of Nitrate Under Site-Specific Conditions

LIST OF ACRONYMS

AEMP	Aquatic Effects Monitoring Program
BC	British Columbia
CaCl ₂	calcium chloride
CaCO₃	calcium carbonate
CCME	Canadian Council of Ministers of the Environment
CL	Confidence Limit
De Beers	De Beers Canada Inc.
dYCT	yeast, cerophyl, digested trout chow
EAR	Environmental Assessment Report
EC	effective concentration
ECx	concentration of sample estimated to cause a specified effect to $x\%$ of the test organisms
EQC	effluent quality criterion
HC5	hazardous concentration to 5% of species
IC	inhibition concentration
ICx	the inhibiting concentration for an x% effect; the concentration of sample estimated to cause x% reduction in growth or fecundity of the test organisms
KCI	potassium chloride
LC	lethal concentration
LCx	concentration of sample estimated to be lethal to x% of the test organisms
LOEC	lowest observed effect concentration
MATC	maximum acceptable toxicant concentration; the geometric mean of the NOEC and LOEC
MB	Manitoba
MgSO ₄ ·7H ₂ O	magnesium sulphate heptahydrate
Mine	Snap Lake Mine
MPCA	Minnesota Pollution Control Agency
MVLWB	Mackenzie Valley Land and Water Board
Ν	Nitrogen
NaCl	sodium chloride
NaHCO ₃	sodium bicarbonate
Nautilus	Nautilus Environmental
NO ₃	nitrate ion

NOEC	no observed effect concentration
NWT	Northwest Territories
ON	Ontario
SD	standard deviation
SMCV	species mean acute value
SNP	Surveillance Network Program
SSD	species sensitivity distribution
SSWQO	site-specific water quality objective
TDS	total dissolved solids
USEPA	United States Environmental Protection Agency
WLWB	Wek'èezhìi Land and Water Board
WQG	water quality guideline

UNITS OF MEASURE

%	percent
<	lower than
>	greater than
±	plus or minus
°C	degrees Celsius
d	days
h	hours
km	kilometre
mg/fish	milligrams per fish
mg/kg dw	milligrams per kilogram dry weight
mg/L	milligrams per litre
mg-NO ₃ -/L	milligrams as nitrate ion per litre
mg-N/L	milligrams as nitrogen per litre
mL	millilitre

1 INTRODUCTION

1.1 Background

De Beers Canada Inc. (De Beers) owns and operates the Snap Lake Mine (Mine) in the Northwest Territories (NWT). The Mine is located approximately 220 kilometres (km) northeast of Yellowknife, 30 km south of MacKay Lake, and 100 km south of Lac de Gras where the Diavik Diamond Mine and the EKATI Diamond Mine are located. Final regulatory approvals for construction and operation of the Mine were granted in May 2004, and construction began in April 2005. The Mine officially opened on July 25, 2008.

To comply with the Mine's Water Licence (Water Licence MV2001L2-0002, renewed as MV2011L2-0004 in 2012; MVLWB 2012), De Beers is required to undertake a water quality monitoring component as part of a larger Aquatic Effects Monitoring Program (AEMP) that also includes monitoring of sediment quality, plankton, benthic invertebrates, and fish in Snap Lake. The AEMP water quality component includes monitoring of nitrate concentrations in Snap Lake and these results are submitted in annual AEMP reports (e.g., De Beers 2013a). In addition, De Beers is required to monitor the quality of its treated minewater discharge as part of its Surveillance Network Program (SNP), results of which are also submitted to the Mackenzie Valley Land and Water Board (MVLWB).

Nitrate is present in Snap Lake primarily as a result of the use of ammonium nitrate fuel oil as a blasting agent. The Environmental Assessment Report (EAR; De Beers 2002) predicted that nitrate concentrations would increase in Snap Lake over the operational life of the Mine, to concentrations higher than the Canadian water quality guideline (WQG) for nitrate for protection of freshwater aquatic life that is currently used as the AEMP benchmark for Snap Lake. Nitrate concentrations in Snap Lake were measured at concentrations above the AEMP benchmark in 2012; therefore a site-specific nitrate benchmark needs to be developed for Snap Lake to determine whether there is a risk of adverse effects above the AEMP benchmark.

1.2 Study Objectives

The current Water Licence requires that a *Nitrogen Response Plan* be submitted to the MVLWB by December 31, 2013. One component of that *Nitrogen Response Plan* is to provide recommendations and supporting rationale for a water quality objective for nitrate in Snap Lake, derived from toxicity tests conducted by De Beers and/or published toxicology studies. A second component is to provide recommendations and supporting rationale for a effluent quality criterion (EQC) for nitrate.

Rescan (2012) developed a site-specific water quality objective (SSWQO) for nitrate for the BHP Billiton Canada Inc. EKATI Diamond Mine. That SSWQO was based on a literature review and

the findings from short-term chronic toxicity tests conducted over a range of water hardness concentrations, resulting in development of a hardness-dependent equation for a nitrate SSWQO. This hardness-dependent SSWQO has now been adopted as the maximum average nitrate EQC for the EKATI Diamond Mine in their renewed Water Licence W2012L2-0001 approved May 27, 2013 (WLWB 2013).

The nitrate SSWQO developed and approved for the EKATI Diamond Mine is expected to be suitable for application to Snap Lake, based on current and predicted maximum nitrate and water hardness concentrations. Therefore, the Rescan (2012) SSWQO was assessed for Snap Lake conditions by repeating two sensitive short-term chronic toxicity tests using simulated Snap Lake water at two different water hardness concentrations.

This report reviews existing nitrate benchmarks, provides an overview of environmental concentrations of nitrate associated with Snap Lake, summarizes available information on the toxicity of nitrate to freshwater aquatic life, provides the results of the chronic toxicity tests performed to assess the Rescan (2012) SSWQO relative to Snap Lake conditions, and proposes a chronic effects benchmark for nitrate in Snap Lake.

2 WATER QUALITY BENCHMARKS FOR NITRATE

2-1

The Canadian Council of Ministers of the Environment (CCME) recently updated the national WQG for nitrate for protection of freshwater aquatic life. Although new aquatic toxicity data were added to the guideline database, and an updated WQG derivation procedure was applied, there was no net change to the nitrate WQG.

The CCME (2003) WQG was 13 milligrams per litre nitrate ion (mg-N/LO₃⁻), which was equivalent to 2.93 mg-N/L¹. This was an interim WQG due to a data gap (one chronic invertebrate study on a non-planktonic organism was missing) required for derivation of a final WQG, and was updated in 2012. The CCME (2003) interim WQG was derived by multiplying the 10-day (d) lowest observed effect concentration (LOEC) of 30.1 mg-N/L for the Pacific treefrog (*Pseudacris regilla*; Schuytema and Nebeker 1999a) by a safety factor of 0.1 (CCME 1991). The most sensitive endpoint from that study was a significant decrease in larval weight. CCME (2003) reported that amphibians were the most sensitive receptors to chronic nitrate exposure. For non-amphibians, CCME (2003) reported that invertebrate taxa were most sensitive to chronic nitrate exposure, with 7-d LOECs for reduced reproduction by two water flea species ranging from 42.8 mg-N/L for *Ceriodaphnia dubia* to 718 mg-N/L for *Daphnia magna* (Scott and Crunkilton 2000). The CCME (2003) WQG is currently used as the AEMP benchmark for nitrate concentrations in Snap Lake.

The updated chronic CCME (2012) WQG for nitrate is 13 mg-N/LO₃ (3.0 mg-N/L). This WQG was derived using a species sensitivity distribution (SSD) approach as described in CCME (2007), which involves plotting no-effect and low-effect test endpoints and using non-linear regression to fit a curve to the data to determine the intercept of the fifth (5th) percentile of the SSD. This hazardous concentration to 5 percent (%) of species (HC5) is adopted as the WQG. and is intended to provide protection to 95% of the aquatic species. Data from studies conducted with four invertebrate species, five fish species, and three amphibian species were used for the SSD. A number of studies investigating the chronic toxicity of nitrate had been conducted since the CCME (2003) interim WQG for nitrate was published. Whereas derivation of the CCME (2003) interim WQG was driven by toxicity data for sensitive amphibian species, which are not relevant to Snap Lake conditions based on their geographic distribution, the most sensitive chronic toxicity data used for the CCME (2012) derivation were for fish and invertebrate species. Although CCME (2012) acknowledged that nitrate toxicity generally decreases with increasing water hardness concentration, a national hardness-dependent WQG was not derived. The data used to derive the WQG were conducted at a range of water hardness concentrations; however, where data were available from studies that conducted testing at multiple hardness concentrations, only the data from testing at the lowest water hardness concentration were used.

¹ Concentrations of nitrate as nitrogen are listed as mg/L N, and concentrations of nitrate as the nitrate ion are listed as mg-NO₃/L. To convert between the two units of concentration, divide the nitrate ion concentration by 4.43.

British Columbia (BC) approved a chronic (30-day average²) nitrate WQG of 40 mg-N/L in 2006 (Nagpal et al. 2006) for the protection of freshwater aquatic life. That WQG was subsequently reviewed and revised downward from 40 mg-N/L to 3.0 mg-N/L (Meays 2009; Nordin and Pommen 2009). The revised BC chronic WQG for nitrate was derived using the same process adopted by CCME (2003) when developing the national nitrate WQG for the protection of aquatic life (2.93 mg-N/L). Red-legged frogs (*Rana aurora*; 16-d LOEC of 29.1 mg-N/L for embryo length) and northern leopard frogs (*Rana pipiens*; 56-d LOEC of 30 mg-N/L for larval growth reduction) were the most two sensitive species for chronic effects (Schuytema and Nebeker 1999b; Allran and Karasov 2000) but growth of embryo and larval frogs was only reduced 3% to 6% and the ecological relevance of those endpoints was therefore considered questionable. Consequently, the next most sensitive species, the Pacific treefrog, was used and a safety factor of 0.1 was applied to the 10-d LOEC of 3.0 mg-N/L for larval weight reduction (Schuytema and Nebeker 1999b) to derive the BC WQG of 3.0 mg-N/L.

The United States Environmental Protection Agency (USEPA) has not developed national water quality criteria for nitrate in surface waters for the protection of aquatic life.

Minnesota (MPCA 2010) has proposed draft acute and chronic water quality standards for nitrate. The draft acute standard is 41 mg-N/L. The draft chronic standard is 4.9 mg-N/L except that for Class 2A surface waters, which apply to cold-water fisheries with critical recreational and economic value, it is 3.1 mg-N/L. This lower value corresponds to the maximum acceptable toxicant concentration (MATC), which is the geometric mean of the no observed effect concentration (NOEC) and the LOEC, of 3.16 mg-N/L for effects on Lake Trout fry weight (McGurk et al. 2006).

Rescan (2012) developed a nitrate SSWQO for the EKATI Diamond Mine. This SSWQO is hardness-dependent over a range of water hardness concentrations from 10 to 160 mg/L as calcium carbonate (CaCO₃); representative values are: 6.5 mg-N/L at 60 mg/L as CaCO₃, and 16.4 mg-N/L at greater than or equal to 160 mg/L as CaCO₃. This SSWQO was adopted as the nitrate EQC in May 2013. The new Water Licence for the EKATI Diamond Mine (W2012L2-0001, renewal of W2009L2-0001; WLWB 2013) provides for hardness-adjusted nitrate EQC in mg-N/L according to the following formulae:

Nitrate EQC for maximum average concentration = $e^{(0.9518(ln[Hardness])-2.032)}$; and

Nitrate EQC for maximum concentration of any grab sample = $2(e^{(0.9518(ln[Hardness])-2.032)})$.

² The average value is calculated from at least 5 weekly samples taken in a period of 30 days.

3 ENVIRONMENTAL CONCENTRATIONS OF NITRATE IN SNAP LAKE

Information on nitrate concentrations measured in treated effluent, and in water and sediment samples collected from Snap Lake, is briefly summarized below. These data have previously been provided to the MVLWB as part of the EAR, and/or in AEMP and SNP monitoring reports. Data from October 2012 were the most recent data available for inclusion herein.

3.1 Treated Effluent

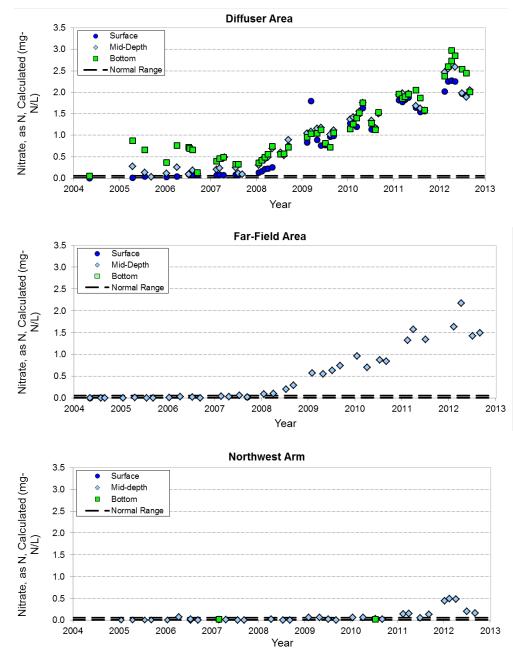
Concentrations of nitrate measured in treated minewater from the temporary water treatment plant (Station SNP 02-17) and the permanent water treatment plant (Station SNP 02-17B) between 2004 and 2012 are shown in Figure 1. Individual measurements as well as 30-d moving averages for each discharge point are shown. Nitrate concentrations in treated minewater show seasonal fluctuations, with higher concentrations in the spring and summer. The Water Licence limits for the maximum concentration of any grab sample and maximum average monthly limit for nitrate were lowered from 56 mg-N/L and 28 mg-N/L to 44 mg-N/L and 22 mg-N/L, respectively, when the new Water Licence came into effect on June 14, 2012.

Figure 1 Nitrate Concentrations in Treated Effluent, 2004 to 2012

Monthly Avg = monthly average; SNP 02-17 = treated effluent from the temporary water treatment plant; SNP 02-17B = treated effluent from the permanent water treatment plant; Max Grab = maximum allowable concentration in any grab sample; mg-N/L = milligrams as nitrogen per litre.

3.2 Lake Water

Concentrations of nitrate measured in Snap Lake water between 2004 and 2012 are shown in Figure 2, for the diffuser area, the far-field area, and the northwest arm. Figure 2 also shows the


De Beers Canada Inc.

normal range for nitrate concentrations in Snap Lake, based on baseline data collected prior to 2004, with the upper and lower range calculated as the mean ± 2 standard deviations (SD).

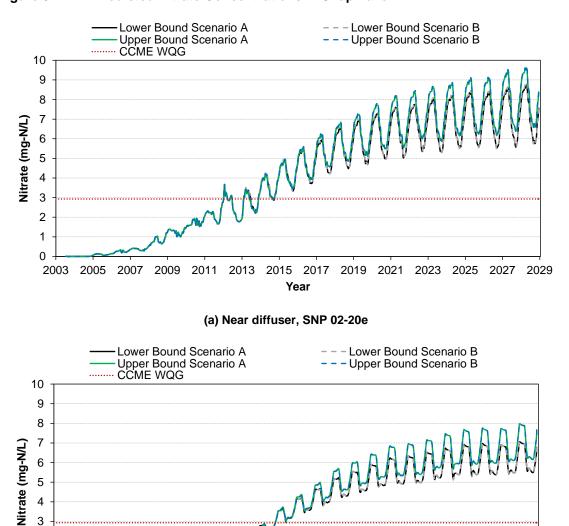
Nitrate concentrations measured in the main basin of Snap Lake in 2004 ranged from less than 0.006 to 0.046 mg-N/L (De Beers 2005). Nitrate concentrations have increased in the diffuser and far-field areas since 2008, whereas increases in the northwest arm have only been observed since 2012. The maximum nitrate concentration measured in Snap Lake in 2012 was 3.22 mg-N/L at Station SNAP03, above the AEMP benchmark of 2.93 mg-N/L. Average nitrate concentrations among the different areas of Snap Lake ranged from 1.6 to 2.7 mg-N/L in 2012. The nitrate concentration in the reference lake, Northeast Lake, was 0.03 mg-N/L in 2012.

The EAR predictions for nitrate estimated that the maximum concentration in Snap Lake during ice-covered conditions after initial mixing would be 6.0 mg-N/L and the maximum concentration during ice-free conditions in 1% of the lake would be 6.3 mg-N/L. These predictions were subsequently revised upward in 2013 (De Beers 2013b), such that it was predicted that nitrate concentrations could reach approximately 10 mg-N/L near the diffuser stations and 8 mg-N/L at the outlet of Snap Lake. As shown in Figure 3, these maximum concentrations were predicted to occur in 2028. The 2013 predictions also showed that nitrate concentrations. Although average nitrate concentrations in Snap Lake are still below that benchmark, five individual measurements did exceed it in 2012; these exceedances occurred in 3% of the samples collected in 2012 and the maximum concentration was within 10% of the WQG so this was not likely to have affected water quality.

Water hardness has been shown to modify nitrate toxicity (Rescan 2012). Water hardness in Snap Lake is increasing over time. Hardness concentrations measured in the main basin of Snap Lake in 2004 ranged from 6 to 13 mg/L as $CaCO_3$ (De Beers 2005). In 2011 and 2012, the average water hardness concentration in Snap Lake was approximately 120 mg/L as $CaCO_3$. Water hardness concentrations in Snap Lake are predicted to peak at approximately 350 mg/L as $CaCO_3$ in 2022 and then begin to decrease (De Beers 2011). Therefore, it was considered appropriate to assess the potential for nitrate toxicity in Snap Lake water under both the current and predicted maximum water hardness concentrations.

Figure 2 Nitrate Concentrations in Three Areas of Snap Lake, 2004 to 2012

mg-N/L = milligrams as nitrogen per litre.


De Beers Canada Inc.

Note: Normal range is based on data collected prior to 2004, with the upper and lower range calculated as the mean ± 2 standard deviations; data shown are from representative stations within Snap Lake: Diffuser Area = SNAP13 (2004 to April 2006) and SNP 02-20e (July 2006 to 2012); Far-field Area = SNAP08; Northwest Arm = SNAP02 (2004 to April 2006) and SNAP02A (July 2006 to 2012).

2029

2 1 0

2003 2005 2007

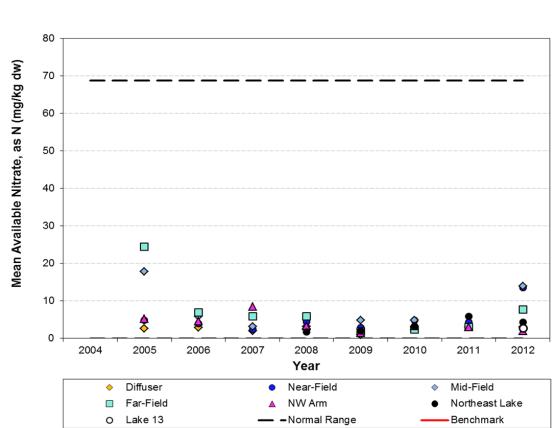
Figure 3 Predicted Nitrate Concentrations in Snap Lake

mg-N/L = milligrams as nitrogen per litre; CCME = Canadian Council of Ministers of the Environment; WQG = water quality guideline; SNP = surveillance network program.

Year

2013

2009 2011


(b) Outlet, SNAP07

2015 2017 2019 2021 2023 2025 2027

3.3 Lake Sediment

Mean concentrations of available nitrate measured annually in sediments from five areas of Snap Lake between 2005 and 2012 are shown in Figure 4. The normal range for available nitrate concentrations in Snap Lake sediments is also shown; this range is calculated as the mean \pm 2SD from data collected in 2005, the first year this parameter was monitored.

For comparison purposes, mean concentrations measured in sediments from two reference lakes (Northeast Lake from 2008 to 2012, Lake 13 in 2012) are also included. Apart from variations in 2005 and 2012, concentrations of available nitrate in Snap Lake sediments were less than 10 milligrams per kilogram dry weight (mg/kg dw). Available nitrate concentrations in Northeast Lake and Lake 13 sediments were similar.

Figure 4 Concentrations of Available Nitrate in Sediments in Snap Lake and Two Reference Lakes, 2005 to 2012

mg/kg dw = milligrams per kilogram dry weight; N = nitrogen.

4 TOXICITY OF NITRATE TO FRESHWATER AQUATIC LIFE

Both CCME (2012) and Rescan (2012) conducted comprehensive literature reviews to identify studies on the effects of nitrate exposure on freshwater aquatic life. An independent literature review was not necessary. Instead, brief summaries of the relevant chronic toxicity studies used by CCME (2012) and Rescan (2012) in their respective benchmark derivations are provided below.

Definitions for test endpoints are provided. The LCx is the concentration of test material estimated to be lethal to "x" percent of the test organisms, (e.g., LC50), and the ECx is the concentration of test material estimated to cause a specified non-lethal effect to "x" percent of the test organisms (e.g., EC50). The ICx is the concentration of test material estimate to cause "x" percent inhibition in a sublethal endpoint such as growth or reproduction. The NOEC is the highest concentration tested where there was no statistically significant response compared to the negative control. The LOEC is the lowest concentration tested where there was a statistically significant response relative to the negative control. The MATC is the geometric mean of the NOEC and LOEC.

4.1 Fish

McGurk et al. (2006) conducted a 146-d egg-alevin-fry test with Lake Trout (*Salvelinus namaycush*), at a water hardness concentration of approximately 13 mg/L as $CaCO_3$. The most sensitive endpoints were delayed development to the fry stage and average fry weight. For both endpoints, the NOECs were 1.6 mg-N/L, the LOECs were 6.25 mg-N/L, and the geometric mean or MATC was 3.1 mg-N/L. Both CCME (2012) and Rescan (2012) used the MATC of 3.1 mg-N/L for their derivations.

Nautilus Environmental (Nautilus; 2012) conducted testing with Lake Trout to determine whether nitrate toxicity would be reduced at increased water hardness concentrations. Two 132-d egg-alevin tests were conducted, with the duration extended until the majority of control fish had absorbed their yolk sac and reached the swim-up stage. Tests were conducted in very soft water (10 mg/L as CaCO₃) and moderately hard water (80 to 100 mg/L as CaCO₃). There were no adverse effects on survival across the range of nitrate concentrations used for each test. For sublethal effects, there was a developmental delay in terms of the percentage of fish reaching the swim-up stage at test termination in very soft water but not in moderately hard water. Therefore, the IC20s for developmental delay were 2.6 mg-N/L in very soft water and greater than 330 mg-N/L in moderately hard water. This study was conducted after CCME (2012) and Rescan (2012) were published; both results were above the Rescan (2012) hardness-dependent SSWQO, which was therefore expected to be protective of early life stages of Lake Trout.

Nautilus (2011a) conducted testing with Rainbow Trout (Oncorhynchus mykiss) to determine the effects of water hardness concentration on nitrate toxicity. Four 41-d egg-alevin tests were conducted, with the duration extended³ until the majority of control fish had absorbed their yolk sac and reached the swim-up stage. Tests were conducted at four water hardness concentrations: 10, 50, 92, and 176 mg/L as CaCO₃. Adverse effects on survival were only observed at the lowest hardness tested; the LC10 was 147 mg-N/L as compared to greater than 405 mg-N/L at the three higher hardness concentrations. Adverse effects on fish weight or developmental delay occurred at all four hardness concentrations. The concentrations estimated to cause a 10% reduction of fish weight (IC10) ranged from 95 mg-N/L at the lowest hardness to 335 mg-N/L at the highest hardness concentration. The concentrations estimated to delay development in 10% of the test organisms (EC10) ranged from 13 mg-N/L at the lowest hardness to greater than 405 mg-N/L at the highest hardness concentration. Although these results demonstrated that nitrate toxicity decreased with increasing water hardness concentration, the relationship between these two variables was inconsistent as some endpoints from the test at 92 mg/L as CaCO₃ hardness showed greater sensitivity than in the test at 50 mg/L as CaCO₃ hardness. CCME (2012) used the results from the test performed at the lowest water hardness concentration for WQG derivation, whereas Rescan (2012) used the results of testing at all four water hardness concentrations.

4-2

Stantec (2006) conducted a 64-d egg-alevin-fry test with Rainbow Trout at a water hardness concentration of 310 mg/L as $CaCO_3$. The IC25 for fry growth was 162 mg-N/L. This study was used by Rescan (2012) for the SSWQO derivation; however, although it was reviewed by CCME (2012) it does not appear to have been used in the WQG derivation.

Westin (1974) reported a 10-d LC10 of 711 mg-N/L for survival of Chinook Salmon (*Oncorhynchus tshawytscha*) fingerlings. CCME (2012) used this result in their WQG derivation; Rescan (2012) did not use this result because the water hardness concentration was not reported.

USEPA (2010) conducted a 32-d embryo-larval test with Fathead Minnow (*Pimephales promelas*), at an average water hardness concentration of 145 mg/L as CaCO₃. The LC10 and LC20 were 55.5 and 64.6 mg-N/L, respectively. The EC10 and EC20 for growth were 46.7 and 59.8 mg-N/L, respectively. CCME (2012) used the EC10 for WQG derivation, whereas Rescan (2012) used the EC20 for the SSWQO derivation.

³ The egg-alevin test typically ends seven days after 50% of the control fish have hatched. When Nautilus Environment conducted Rainbow Trout ELS tests to support development of the EKATI Diamond Mine's nitrate SSWQO, they extended the duration of the egg-alevin tests to 41 days until the majority of control fish had absorbed their yolk sac and reached the swim-up stage. This was done to allow comparison to endpoints measured by McGurk et al. (2006) where Lake Trout showed delayed yolk sac absorption.

Nautilus (2011b) conducted 7-d survival and growth tests with larval Fathead Minnow to determine the effects of water hardness concentration on nitrate toxicity. Testing was conducted at four water hardness concentrations: 12, 50, 94, and 168 mg/L as CaCO₃. The 7-d LC50s for survival ranged from 113 mg-N/L at the lowest hardness to 454 mg-N/L at the highest hardness concentration. The 7-d IC25s for reduced growth ranged from 66 mg-N/L at the lowest hardness to 393 mg-N/L at the highest hardness concentration. Data from these tests were not used by CCME (2012) and Rescan (2012) only used them to define the relationship between water hardness concentration and nitrate toxicity.

Adelman et al. (2009) conducted a 30-d test with juvenile Topeka Shiner *Notropis topeka* at a water hardness concentration of 220 mg/L as CaCO₃. The 30-d MATC for growth was 360 mg-N/L. This result was used by both CCME (2012) and Rescan (2012) for their derivations. Although this species is not native to Canada, it is a member of the same family (Cyprinidae) as Lake Chub (*Couesius plubeus*), which occur at the EKATI Diamond Mine and also in Snap Lake, and was therefore considered relevant.

4.2 Invertebrates

Nautilus (2011b) conducted testing with the water flea *C. dubia* to determine the effects of water hardness on nitrate toxicity. The 3-brood survival and reproduction tests were conducted at three water hardness concentrations: 44, 98, and 166 mg/L as $CaCO_3$. The LC50s for survival ranged from 44.2 mg-N/L at the lowest hardness to 121 mg-N/L at the highest hardness concentration. The IC25s for reduced reproduction ranged from 11.3 mg-N/L at the lowest hardness to 43.4 mg-N/L at the highest hardness concentration. These results demonstrated that toxicity of nitrate to *C. dubia* decreased as water hardness increased. CCME (2012) used the IC25 result from the test performed at the lowest water hardness concentration for WQG derivation, whereas Rescan (2012) used the IC25 results from testing at all three water hardness concentrations.

Scott and Crunkilton (2000) conducted a 3-brood *C. dubia* survival and reproduction test at a water hardness concentration of 164 mg/L as CaCO₃. There were no significant effects on survival, but reproduction was reduced as nitrate concentrations increased. An MATC for reproduction of 30.1 mg-N/L was reported. CCME (2012) reviewed this study but it appears that it was not used in the WQG derivation; Rescan (2012) included this result in their derivation.

Scott and Crunkilton (2000) conducted a 7-d survival and reproduction test with the water flea *D. magna*, at a water hardness concentration of 164 mg/L as $CaCO_3$. An MATC for reproduction of 507 mg-N/L was reported. Both CCME (2012) and Rescan (2012) included this result in their derivations.

Nautilus (2011b) conducted 14-d survival and growth tests with the amphipod *Hyalella azteca* to determine the effects of water hardness concentration on nitrate toxicity. The tests were

conducted at three water hardness concentrations: 46, 86, and 172 mg/L as $CaCO_3$. The LC50s for survival ranged from 126 mg-N/L at the lowest hardness to greater than 640 mg-N/L at the highest hardness concentration. The IC25s for reduced growth ranged from 12.9 mg-N/L at the lowest hardness to 182 mg-N/L at the highest hardness concentration. These results demonstrated that toxicity of nitrate to *H. azteca* decreased as water hardness increased. CCME (2012) used the IC25 result from the test performed at the lowest water hardness concentration for WQG derivation, whereas Rescan (2012) used the IC25 results from testing at all three water hardness concentrations.

Stantec (2006) conducted a 10-d survival and growth test with *H. azteca* at a water hardness concentration of 310 mg/L as $CaCO_3$. The IC25 for growth was 188 mg-N/L. This study was used by Rescan (2012) for the SSWQO derivation; however, although it was reviewed by CCME (2012) it does not appear to have been used in the WQG derivation.

Nautilus (2011b) conducted 10-d survival and growth tests with the midge *Chironomus dilutus* (formerly known as *C. tentans*) to determine the effects of water hardness concentration on nitrate toxicity. The tests were conducted at three water hardness concentrations: 46, 86, and 172 mg/L as CaCO₃. The LC50s for survival ranged from 114 mg-N/L at the lowest hardness to greater than 337 mg-N/L at the highest hardness concentration. The IC25s for reduced growth ranged from 49 mg-N/L at the lowest hardness to 174 mg-N/L at the highest hardness concentration. These results demonstrated that toxicity of nitrate to *C. dilutus* decreased as water hardness concentration increased. CCME (2012) used the IC25 result from the test performed at the lowest water hardness concentration for WQG derivation, whereas Rescan (2012) used the IC25 results from testing at all three water hardness concentrations.

4.3 Algae / Plants

Nautilus (2011b) conducted a 72-hour (h) toxicity test with the green alga *Pseudokirchneriella subcapitata* (formerly known as *Selenastrum capricornutum*) to assess the effects of nitrate on algal growth. Testing was conducted at a water hardness concentration of 10 mg/L as CaCO₃. The IC25 for inhibition of algal growth was 325 mg-N/L. CCME (2012) did not use algae or plant toxicity data in their WQG derivation because nitrate is a plant nutrient, whereas Rescan (2012) included the Nautilus (2011b) result in their SSWQO derivation.

4.4 Amphibians

Schuytema and Nebeker (1999a,b) conducted toxicity tests with three frog species: Pacific treefrog (*P. regilla*); African treefrog (*Xenopus laevis*); and, red-legged frog (*R. aurora*). Data for two of these species were used for derivation of the CCME (2003) and BC (Nordin and Pommen 2009) WQGs for nitrate, although not necessarily the same test endpoints. A 10-d LC10 for survival of 74.2 mg-N/L was reported for the Pacific treefrog, tested at a water hardness

concentration of 70 to 80 mg/L as CaCO₃. A 10-d MATC of 91.4 mg-N/L for reduced weight was reported for the African treefrog, tested at a water hardness of 21 mg/L as CaCO₃. A 16 d MATC of 175 mg-N/L for reduced weight was reported for the red-legged frog, tested at a water hardness of 26 mg/L as CaCO₃. These results were used for the CCME (2012) WQG derivation. Rescan (2012) excluded amphibian data from the SSWQO derivation because the geographic distribution of amphibians is generally below the tree line and they had not been reported in the vicinity of the EKATI Diamond Mine. There is limited evidence for the presence of amphibians at the Snap Lake Mine, and the species most likely to be present are wood frogs.

5 **RESULTS OF NEW TOXICITY STUDIES**

Of the nine freshwater aquatic species used by Rescan (2012) to develop their nitrate SSWQO for the EKATI Diamond Mine, Lake Trout were most sensitive to nitrate in early life stage tests performed in very soft water (hardness of 10 mg/L as CaCO₃). The second and third most sensitive species were *C. dubia* and Fathead Minnow, both of which are routinely used in laboratory toxicity testing and have well-established test protocols for short-term chronic testing. Toxicity tests were performed with *C. dubia* and Fathead Minnow to evaluate their sensitivity to nitrate under water quality conditions specific to Snap Lake, specifically the total dissolved solids (TDS) concentration and water hardness-dependent nitrate SSWQO developed by Rescan (2012) was suitable for application to Snap Lake.

5.1 Test Methods

Toxicity testing was performed by Nautilus Environmental (Nautilus; Burnaby, BC, Canada). Associated chemistry analyses of TDS and nitrate concentrations were performed by ALS Environmental (Burnaby, BC, Canada).

Because nitrate toxicity is affected by water hardness, the objective of this testing program was to evaluate nitrate toxicity to *C. dubia* and Fathead Minnow at the current TDS concentration and water hardness concentration associated with Snap Lake water, and also at the maximum predicted water hardness concentration for Snap Lake. Two synthetic lake waters were prepared for use as the dilution waters in the toxicity tests. These synthetic lake waters were prepared by dissolving reagent-grade sodium, potassium, calcium, and magnesium salts (NaCl, KCl, MgSO₄•7H₂O, CaCl₂•2H₂O, and NaHCO₃) in deionized water, in the amounts shown in Table 1. The target characteristics of these two waters were:

- Water 1: Reagent-grade salts were added to achieve a blend of ions consistent with the current TDS concentration and ionic composition in Snap Lake, and the current water hardness. The calculated TDS and water hardness concentrations of Water 1 were 228 mg/L and 140 mg/L as CaCO₃, respectively.
- Water 2: Reagent-grade salts were added to achieve a blend of ions consistent with the current ionic composition of TDS in Snap Lake and the predicted maximum water hardness. The calculated TDS and water hardness concentrations of Water 2 were 570 mg/L and 350 mg/L as CaCO₃, respectively.

Constituent Salt	Quantity of Salt Added [mg/L] to Prepare Water 1	Quantity of Salt Added [mg/L] to Prepare Water 2			
NaCl	44.2	110.7			
KCI	3.9	9.8			
MgSO ₄ ·7H ₂ O	50.5	126.2			
CaCl ₂ ·2H ₂ O	174.5	436.3			
NaHCO ₃	28.2	70.3			
Total (excluding hydration water)	232.7	581.9			
Target hardness (mg/L as CaCO ₃)	140	350			
Calculated TDS (mg/L)	228	570			

Table 1 Concentrations of Salts Used to Prepare Synthetic Lake Waters for Nitrate Toxicity Testing Toxicity Testing

mg/L = milligrams per litre; NaCl = sodium chloride; KCl = potassium chloride; MgSO₄·7H₂O = magnesium sulfate heptahydrate; CaCl₂·2H₂O = calcium chloride dihydrate; NaHCO₃ = sodium bicarbonate; CaCO₃ = calcium carbonate; TDS = total dissolved solids.

The TDS ionic composition of the four major constituents for both Water 1 and Water 2 was 50% chloride, 21% calcium, 12% sodium, and 9% sulphate. This was consistent with the actual ionic composition reported for Snap Lake since 2007, and with the ionic composition used for toxicity tests conducted to support development of a site-specific TDS benchmark for Snap Lake (Golder 2013).

Nitrate was added to the two water types to prepare the highest test concentration for use in dilutions, with nominal concentrations of 400 mg-N/L for the *C. dubia* tests and 1,600 mg-N/L for the Fathead Minnow tests. For each water type and test species, seven nitrate concentrations were prepared using a 0.5 times dilution factor. A negative (clean) control was included for each test, consisting of the dilution water used for that test.

Test conditions for the 3-brood *C. dubia* survival and reproduction tests are summarized in Table 2, and test conditions for the 7-d Fathead Minnow survival and growth tests are summarized in Table 3.

Statistical calculations were based on measured nitrate concentrations that were determined as the average of measurements conducted at the start and end of the tests. Statistical analyses using either non-linear regression or linear interpolation were performed to calculate point estimates for each test endpoint. For survival, the LC20 and LC50 point estimates were calculated as estimates of the nitrate concentration that was expected to be lethal to 20% and 50% of test organisms, respectively. For the growth or reproduction endpoints the IC20, IC25, and IC50 point estimates were calculated as estimates of the nitrate concentrations that were expected to cause 20, 25, and 50% inhibition, respectively, relative to the laboratory control.

Table 2	Test Conditions for the 3-brood Ceriodaphnia dubia Survival and
	Reproduction Tests

Test Condition	Description
Test organism	Water flea (Ceriodaphnia dubia)
Organism source	In-house culture
Organism age	<24-h old neonates produced within 12 h of each other
Test type	Static renewal (daily)
Test duration	6 to 8 days
Test chamber	20-mL test tube
Test volume	15 mL
Number of replicates	10
Number of organisms/replicate	1
Dilution water	Synthetic lake waters (Water 1 and 2, per Table 1)
Test temperature	25 ± 1°C
Photoperiod	16 hours light/8 hours dark
Feeding	Daily with Pseudokirchneriella subcapitata and dYCT
Aeration	None
Test protocol	Environment Canada (2007)
Test acceptability criterion for controls	≥80% survival; ≥15 young per surviving control female that produced three broods; 60% of controls producing three or more broods
Reference toxicant	Sodium chloride (NaCl)

dYCT = yeast, cerophyl, and digested trout chow; h = hours; d = days; $^{\circ}C = degrees Celsius$; % = percent; mL = millilitre; <= less than; ≥ = greater than or equal to; ± = plus or minus.

Table 3	Test Conditions for the 7-day Fathead Minnow Survival and Growth Tests
---------	--

Test Condition	Description
Test organism	Fathead Minnow (Pimephales promelas)
Organism source	Aquatic BioSystems, CO
Test organism age	<24 h old
Test type	Static renewal (daily)
Test duration	7 days
Test chamber	375-mL glass containers
Test solution volume	250 mL
Number of replicates	3
Number of organisms/replicate	10
Control water	Synthetic lake waters (Water 1 and 2, per Table 1)
Test temperature	25 ± 1°C
Photoperiod	16 hours light/8 hours dark
Aeration	None
Feeding	Twice daily with newly-hatched brine shrimp nauplii
Test protocol	Environment Canada (2011)
Test acceptability criterion for controls	Survival ≥80%; mean dry weight ≥0.250 mg/fish
Reference toxicant	Sodium chloride (NaCl)

h = hours; d = days; °C = degrees Celsius;% = percent; mL = millilitre; <= less than; \geq = greater than or equal to; \pm = plus or minus; mg/fish = milligrams per fish.

5.2 Results and Discussion

Results of the toxicity tests are presented in Table 4 for *C. dubia*, and in Table 5 for Fathead Minnow. All point estimates for these tests are presented as measured nitrate concentrations, and reported as mg-N/L. Additional details, including bench sheets and statistical calculations, are provided in the laboratory report (Appendix A). Control performance met test acceptability criteria for both test methods, and test results were corrected for mean control responses. Results for reference toxicant tests were also within acceptable limits, based on comparison to historical laboratory performance.

Water 1 (228 mg/L TDS; 140 mg/L as CaCO₃ hardness)			Water 2 (570 mg/L TDS; 350 mg/L as CaCO₃ hardness)		
Nitrate Concentration (mg-N/L)	Survival (%)	Reproduction (Young/Female) (Mean ± SD)	Nitrate Concentration (mg-N/L)	Survival (%)	Reproduction (Young/Female) (Mean ± SD)
Control	100	26.3 ± 3.6	Control	100	22.5 ± 5.1
6.2	100	22.9 ± 4.6	6.1	100	21.0 ± 6.6
12.6	100	21.0 ± 4.6	12.4	100	20.2 ± 6.1
25.0	100	21.7 ± 4.6	25.0	100	15.0 ± 6.8
48.0	100	16.2 ± 6.9	50.4	100	10.5 ± 5.9
98.2	90	11.2 ± 8.4	104	90	5.5 ± 4.6
206	50	2.5 ± 3.9	205	30	0.7 ± 1.2
407	0	0 ± 0	399	0	0 ± 0
Test Endpoints (mg-	·N/L)				
LC20 (95% CL)	140 (65 to 180)		124 (73 to 156)		
LC50 (95% CL)	201 (146 to 277)		166 (126 to 219)		
IC20 (95% CL)	26.0 (4.9 to 37.4)		16.7 (5.0 to 30.3)		
IC25 (95% CL)	30.8 (11.5 to 48.2)		19.5 (9.6 to 33.8)		
IC50 (95% CL)	74.3 (44.9 to 113)		44.9 (24.2 to 64.0)		

Table 4	Results of 3-Brood Ceriodaphnia dubia Survival and Reproduction Tests
---------	---

 $CaCO_3$ = Calcium carbonate; CL = Confidence Limit; IC = Inhibition Concentration; LC = Lethal Concentration; N = Nitrogen; SD = Standard Deviation; TDS = Total Dissolved Solids; mg/L = milligrams per litre;% = percent; ± = plus or minus; mg-N/L = milligrams as nitrogen per litre.

5-4

Water 1 (228 mg/L TDS; 140 mg/L as CaCO₃ hardness)			Water 2 (570 mg/L TDS; 350 mg/L as CaCO₃ hardness)		
Nitrate Concentration (mg-N/L)	Survival (%) (Mean ± SD)	Biomass (mg/fish) (Mean ± SD)	Nitrate Concentration (mg-N/L)	Survival (%) (Mean ± SD)	Biomass (mg/fish) (Mean ± SD)
Control	96.7 ± 5.8	0.62 ± 0.04	Control	93.3 ± 11.6	0.59 ± 0.06
28.6	100.0 ± 0.0	0.62 ± 0.04	27.2	100	0.64 ± 0.05
55.8	96.7 ± 5.8	0.58 ± 0.02	51.6	100	0.61 ± 0.05
110	100	0.60 ± 0.05	105	100	0.61 ± 0.02
212	96.7 ± 5.8	0.62 ± 0.04	198	100	0.64 ± 0.02
428	50.0 ± 17.3	0.34 ± 0.14	406	96.7 ± 5.8	0.65 ± 0.10
846	3.3 ± 5.8	0.004 ± 0.007	806	76.7 ± 15.3	0.43 ± 0.08
1,570	0	0	1,550	0	0
Test Endpoints (mg	-N/L)		·		
LC20 (95% CL)	NC		NC		
LC50 (95% CL)	433 (378 to 497)		949 (852 to 1,057)		
IC20 (95% CL)	282 (215 to 435)		778 (NC)		
IC25 (95% CL)	307 (220 to 550)		793 (NC - 911)		
IC50 (95% CL)	458 (233 to 623)		863 (NC)		

Table 5 Results of 7-day Fathead Minnow Survival and Reproduction Tests

 $CaCO_3 = Calcium$ carbonate; CL = Confidence Limit; IC = Inhibition Concentration; LC = Lethal Concentration; N = Nitrogen; NC = Not Calculable; SD = Standard Deviation; TDS = Total Dissolved Solids; mg/L = milligrams per litre; % = percent; $\pm = plus$ or minus; mg/fish = milligrams per fish; mg-N/L = milligrams as nitrogen per litre.

5.2.1 Ceriodaphnia dubia Toxicity Tests

For Water 1, which simulated the current water hardness and TDS concentrations in Snap Lake (140 mg/L as CaCO₃ and 228 mg/L TDS), the LC20 and LC50 for survival were 140 and 201 mg-N/L, respectively. The IC20 and IC25 for reproduction were 26.0 and 30.8 mg-N/L, respectively. These results indicated a slightly greater sensitivity to nitrate than was reported by Nautilus (2011b) for *C. dubia* testing at a similar water hardness concentration of 166 mg/L as CaCO₃: LC50 for survival of 121 mg-N/L and IC25 for reproduction of 43.4 mg-N/L. Based on the results of TDS toxicity tests conducted as part of a separate study (Golder 2013), the TDS concentration of Water 1 was low enough not to be associated with adverse effects on *C. dubia* survival or reproduction. It is not possible to determine whether the difference in results between the current study and those reported by Nautilus (2011b) was due to natural variability in test organism sensitivity, or an interaction between TDS and nitrate. However, determining the reason(s) for this difference is not necessary for the development of a nitrate benchmark.

For Water 2, which simulated the predicted maximum water hardness concentration and corresponding TDS composition in Snap Lake (350 mg/L as CaCO₃ and 570 mg/L TDS), the LC20 and LC50 for survival were 124 and 166 mg-N/L, respectively. The IC20 and IC25 for reproduction were 16.7 and 19.5 mg-N/L, respectively. Nautilus (2011b) did not test *C. dubia* at water hardness concentrations above 166 mg/L as CaCO₃. It was expected that nitrate toxicity

would decrease at this higher water hardness concentration. However, the TDS concentration of Water 2 was within the range where effects on *C. dubia* reproduction may start to occur (IC10 and IC20 of 560 and 778 mg/L TDS, respectively; Golder 2013). Although reproduction does not appear to have been affected at the lower nitrate test concentrations, the fact that *C. dubia* appeared to show increased sensitivity to nitrate at this higher water hardness concentration may be due to an interaction between TDS and nitrate at the higher nitrate test concentrations.

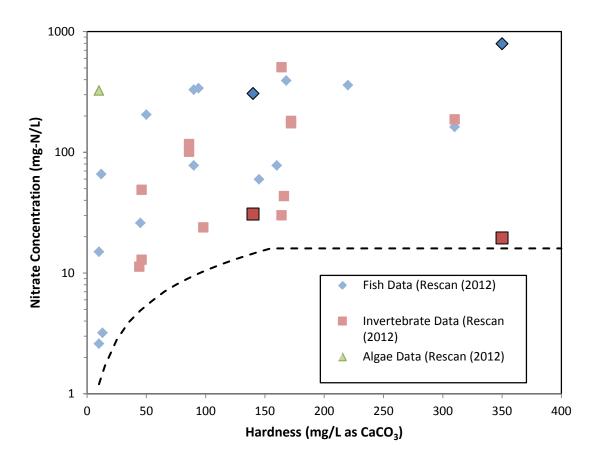
5.2.2 Fathead Minnow Toxicity Tests

For Water 1, which simulated the current water hardness and TDS concentrations in Snap Lake (140 mg/L as CaCO₃ and 228 mg/L TDS), the LC50 for survival was 433 mg-N/L, and the IC20 and IC25 for growth (dry weight) were 282 and 307 mg-N/L, respectively. As was observed for the *C. dubia* test, these results indicated a slightly greater sensitivity to nitrate than reported by Nautilus (2011b) for Fathead Minnow testing at a water hardness concentration of 166 mg/L as CaCO₃: LC50 for survival of 454 mg-N/L and IC25 for growth of 393 mg-N/L. It is not possible to determine whether the difference in results between the current study and those reported by Nautilus (2011b) was due to natural variability in test organism sensitivity, or an interaction between TDS and nitrate. However, again, determining the reason(s) for this difference is not necessary for the development of a nitrate benchmark.

For Water 2, which simulated the predicted maximum water hardness concentration and corresponding TDS composition in Snap Lake (350 mg/L as CaCO₃ and 570 mg/L TDS), the LC50 for survival was 949 mg-N/L, and the IC20 and IC25 for growth (dry weight) were 778 and 793 mg-N/L, respectively. Nautilus (2011b) did not test Fathead Minnow at a water hardness concentration above 166 mg/L as CaCO₃. However, results from the current study indicate that nitrate toxicity to Fathead Minnow was reduced at the predicted maximum water hardness for Snap Lake and that the elevated TDS concentration of Water 2 had no adverse effect on Fathead Minnow growth.

6 PROPOSED CHRONIC EFFECTS BENCHMARK FOR NITRATE FOR SNAP LAKE

CCME (2012) used data for 12 freshwater aquatic species to derive their nitrate WQG of 3.0 mg-N/L. These tests were conducted over a range of water hardness concentrations from 10 to 220 mg/L as CaCO₃; however, when a species was tested at multiple hardness concentrations, only the results for the lowest hardness were included for that species. The test concentrations used to construct the SSD ranged from 3.2 mg-N/L for Lake Trout to 711 mg-N/L for Chinook Salmon. It appears that when there were data from multiple studies on a given species, CCME (2012) only used data from one study for that species rather than using the geometric mean for the multiple studies. Whereas amphibian toxicity data were the most sensitive data used to derive the previous CCME (2003) interim WQG for nitrate, CCME (2012) ranked data for three amphibian species as seventh, eighth, and ninth out of the 12 species used for WQG derivation.


Rescan (2012) used data for nine freshwater aquatic species to derive their hardness-dependent nitrate SSWQO, excluding the three amphibian species and Chinook Salmon used by CCME (2012) and adding the alga P. subcapitata (Nautilus 2011b). "Data from tests conducted with four species at multiple water hardness concentrations were used. The slope of the relationship between water hardness and chronic nitrate toxicity was determined for each species, and data were normalized using the geometric mean of the toxicity endpoints and water hardness concentrations. Rescan (2012) used regression to determine the pooled slope of the relationship for the combined data set. Rescan (2012) determined a pooled slope for the relationship between water hardness and nitrate toxicity, and then used that pooled slope to normalize the test endpoints to a hardness of 40 mg/L as CaCO₃. The *P. subcapitata* endpoint was not normalized because it has not been determined that water hardness affects nitrate toxicity in algae and because nitrate is an essential nutrient. For tests conducted at a hardness less than 40 mg/L as CaCO₃, this normalization resulted in an increase to the test endpoint, whereas the opposite was true for tests conducted at higher hardness concentrations. Where applicable, species mean chronic values were calculated as the geometric mean of the most suitable hardness-normalized endpoints for each species. Geometric means were used, rather than arithmetic means, to minimize bias toward high test results. The hardness-normalized species mean chronic values used to construct the SSD ranged from 9.2 mg-N/L for Lake Trout to 325 mg-N/L for P. subcapitata. An HC5 was estimated from this SSD using a logistic model and then combined with the slope for the hardness-nitrate toxicity relationship to produce the following equation for the hardness-dependent nitrate SSWQO:

Nitrate SSWQO_(hardness) =
$$e^{(0.9518(ln[Hardness])-2.032)}$$

Rescan (2012) did not establish a hardness-nitrate toxicity relationship for water hardness concentrations above 160 mg/L as $CaCO_3$, and cautioned against extrapolating above that limit. Therefore, the SSWQO for 160 mg/L as $CaCO_3$ was intended to apply for waters with a hardness great than 160 mg/L as $CaCO_3$.

To assess the validity of the Rescan (2012) nitrate SSWQO for potential adoption as a chronic effects benchmark for nitrate in Snap Lake, results from the *C. dubia* and Fathead Minnow toxicity tests conducted at 140 and 350 mg/L as $CaCO_3$ hardness were compared to the Rescan (2012) SSWQO across the range of water hardness concentrations tested. The test endpoints for effects on reproduction or growth were all above the SSWQO curve, indicating that this curve would also be protective for nitrate in Snap Lake (Figure 5).

mg-N/L = milligrams as nitrogen per litre; mg/L = milligrams per litre; $CaCO_3 = calcium$ carbonate.

In addition, the Snap Lake test results were evaluated to determine whether their addition to the SSD used by Rescan (2012) would have altered that SSD and consequently the SSWQO equation. For consistency with the endpoints used by CCME (2012) and Rescan (2012), the IC25s for reproduction and growth from the Snap Lake toxicity tests were used. For *C. dubia*, only the IC25 of 30.8 mg-N/L from the test performed at 140 mg/L as CaCO₃ was used because the result for the higher hardness test may have been influenced by TDS-related toxicity. After

De Beers Canada Inc.

hardness normalization, the *C. dubia* SMCV changed slightly from 9.8 to 9.7 mg-N/L. For Fathead Minnow, the IC25s of 307 and 793 mg-N/L were used; after hardness normalization the SMCV increased from 17.6 to 54.7 mg-N/L and the ranking for this species changed from third most sensitive to sixth most sensitive. Neither of these SMCV changes would result in a decrease to the SSWQO.

The results of the *C. dubia* and Fathead Minnow toxicity tests performed to assess the Rescan (2012) nitrate SSWQO support its adoption as a hardness-dependent chronic effects benchmark for nitrate in Snap Lake. At the current Snap Lake water hardness, the nitrate SSWQO would be 14.5 mg-N/L. The predicted⁴ maximum nitrate concentration in Snap Lake was 4.4 mg-N/L in 2011.

⁴ These predictions will be updated with more recent modelling data when available.

7 REFERENCES

- Adelman IR, Kusilek LI, Koehle J, Hess J. 2009. Acute and chronic toxicity of ammonia, nitrite and nitrate to the endangered topeka shiner (*Notropis topeka*) and fathead minnows (*Pimephales promelas*). Environ Toxicol Chem. 28:2216-2223.
- Allran JW, Karasov WH. 2000. Effects of atrazine and nitrate on northern leopard frogs (*Rana pipiens*) larvae exposed in the laboratory from posthatch through metamorphosis. Environ Toxicol Chem 19:2850-2855.
- CCME (Canadian Council of Ministers of the Environment). 1991. Appendix IX A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life (April 1991). In Canadian Water Quality Guidelines, 1999. Winnipeg, MB, Canada.
- CCME. 2003. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate Ion. Canadian Environmental Quality Guidelines, Canadian Council of Ministers of the Environment. In Canadian Water Quality Guidelines, 1999. Winnipeg, MB, Canada.
- CCME. 2007. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life 2007. In Canadian Environmental Quality Guidelines, 1999. Winnipeg, MB, Canada.
- CCME. 2012. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Nitrate Ion. Canadian Environmental Quality Guidelines, Winnipeg, MB, Canada.
- De Beers (De Beers Canada Inc.). 2002. Snap Lake Diamond Project: Environmental Assessment Report (EAR). Submitted to the Mackenzie Valley Environmental Impact Review Board, Yellowknife, NWT, Canada.
- De Beers. 2005. 2004 Annual Report in Support of the Aquatic Effects Monitoring Program Water License (MV2001L2-0002). Snap Lake Project. Submitted to the Mackenzie Valley Land and Water Board (MVLWB), Yellowknife, NWT, Canada.
- De Beers. 2013a. Snap Lake Mine 2012 Aquatic Effects Monitoring Report. 2012 Annual Report. Submitted to the Mackenzie Valley Land and Water Board (MVLWB), Yellowknife, NWT, Canada.
- De Beers. 2013b. Snap Lake Hydrodynamic and Water Quality Model Report. Submitted to the Mackenzie Valley Land and Water Board. Yellowknife, NWT, Canada.

- Environment Canada. 2007. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. Environmental Protection Series. Report EPS 1/RM/21, Second Edition. Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON, Canada.
- Environment Canada. 2011. Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows. Environmental Protection Series. EPS 1/RM/22, Second Edition. Method Development and Application Section, Environmental Science and Technology Centre, Science and Technology Branch, Ottawa, ON, Canada.
- Golder (Golder Associates Ltd.) 2013. Progress Report: Development of Total Dissolved Solids (TDS) Chronic Effects Benchmark for Aquatic Life for Snap Lake. Draft report prepared for De Beers Canada Inc., Yellowknife, NWT, Canada.
- McGurk MD, Landry F, Tang A, Hanks CC. 2006. Acute and chronic toxicity of nitrate to early life stages of lake trout (*Salvelinus namaycush*) and lake whitefish (*Coregonus clupeaformis*). Environ Toxicol Chem 25:2187-2196.
- Meays CL. 2009. Water Quality Guidelines for Nitrogen (Nitrate, Nitrite, Ammonia). Addendum to technical appendix. Water Stewardship Division, Ministry of Environment, Victoria, BC, Canada. Available at: http://www.env.gov.bc.ca/wat/wq/wq_guidelines.html#approved
- MPCA (Minnesota Pollution Control Agency). 2010. Aquatic Life Water Quality Standards Technical Support Document for Nitrate. Saint Paul, MN, USA. Draft for external review, November 12, 2010. Available at URL: http://www.pca.state.mn.us/index.php/viewdocument.html?gid=14949. Accessed May 2013.
- MVLWB (Mackenzie Valley Land and Water Board). 2012. Mackenzie Valley Land and Water Board Water License # MV2011L2-0004. Yellowknife, NWT, Canada.
- Nagpal NK, Pommen LW, Swain LG. 2006. British Columbia Approved Water Quality Guidelines (Criteria). Science and Information Branch, Ministry of Environment, Victoria, BC, Canada.
- Nautilus (Nautilus Environmental). 2011a. Evaluation of the Role of Hardness in Modifying the Toxicity of Nitrate to Rainbow Trout. Report prepared for Mining Association of British Columbia, Vancouver, BC, Canada.
- Nautilus. 2011b. Evaluation of the Role of Hardness in Modifying the Toxicity of Nitrate to Freshwater Organisms. Report prepared for Mining Association of British Columbia, Vancouver, BC, Canada.

De Beers Canada Inc.

- Nautilus. 2012. Toxicity of Nitrate to Early Life Stages of Lake Trout in Two Water Types: Very Soft Water and Moderately Hard Water. Report prepared for Rescan Environmental Services Ltd., Vancouver, BC, Canada.
- Nordin RN, Pommen LW. 2009. Water Quality Guidelines for Nitrogen (Nitrate, Nitrite, and Ammonia): Overview Report Update. Water Stewardship Division, Ministry of Environment, Province of British Columbia. Victoria, BC, Canada. Prepared by Nordin RN and Pommen LW and updated by Meays CL. September 2009.
- Rescan (Rescan Environmental Services Ltd.). 2012. EKATI Diamond Mine: Site-Specific Water Quality Objective for Nitrate, 2012. Prepared for BHP Billiton Canada Inc., Yellowknife, NWT, Canada.
- Schuytema GS, Nebeker AV. 1999a. Effects of ammonium nitrate, sodium nitrate, and urea on red-legged frogs, Pacific treefrogs and African clawed frogs. Bull Environ Contam Toxicol 63:357-364.
- Schuytema GS, Nebeker AV. 1999b. Comparative toxicity of ammonium nitrate compounds to Pacific tree frog and African clawed frog tadpoles. Environ Toxicol Chem 18:2251-2257.
- Scott G, Crunkilton RL. 2000. Acute and chronic toxicity of nitrate to fathead minnows (*Pimephales promelas*), *Ceriodaphnia dubia*, and *Daphnia magna*. Environ Toxicol Chem 19:2918–2922.
- Stantec (Stantec Consulting Ltd.). 2006. Report on the Toxicity of Nitrate to Canadian Fish and Aquatic Invertebrate Species. Report prepared for Environment Canada, National Guidelines Standards Office, Ottawa, ON, Canada.
- USEPA (United States Environmental Protection Agency). 2010. Final Report on Acute and Chronic Toxicity of Nitrate, Nitrite, Boron, Manganese, Fluoride, Chloride and Sulphate to Several Aquatic Animal Species. Region 5, Chicago, IL, USA. EPA 905-R-10-002.
- Westin DT. 1974. Nitrate and nitrite toxicity to salmonid fishes. Prog Fish Cult 36:86-89.
- WLWB (Wek'èezhìi Land and Water Board). 2013. Water Licence W2012L2-0001 for the EKATI Diamond Mine, Yellowknife, NWT, Canada.

APPENDIX A

NAUTILUS (2013) LABORATORY REPORT: EVALUATION OF TOXICITY OF NITRATE UNDER SITE-SPECIFIC CONDITIONS

Evaluation of toxicity of nitrate under site-specific conditions

Final Report

Report date: June 23, 2013

Submitted to:

Golder Associates Burnaby, BC

8664 Commerce Court Burnaby, BC V5A 4N7

TABLE OF CONTENTS

TAB	LE OI	F CONTENTS	I
1.0	INTI	RODUCTION	.1
2.0	MET	HODS	.1
	2.1	Synthetic lake water and test solution preparation	.1
	2.2	Toxicity tests	. 2
	2.3	QA/QC	.4
3.0	RES	ULTS AND DISCUSSION	.5
	3.1	QA/QC	.9
4.0	REF	ERENCES	10

LIST OF TABLES

Table 1.	Concentrations (mg/L) of salts used to prepare synthetic lake waters	.2
Table 2.	Summary of test conditions: Ceriodaphnia dubia survival and reproduction test	.3
Table 3.	Summary of test conditions: Pimephales promelas survival and growth test	.3
Table 4.	Measured concentrations (mg/L) of major ions in synthetic lake waters	.6
Table 5.	Toxicity test results: Ceriodaphnia dubia survival and reproduction test	.7
Table 6.	Toxicity test results: Pimephales promelas survival and reproduction test	.8
Table 7.	Reference toxicant test results.	.9

LIST OF APPENDICES

APPENDIX A – <i>Ceriodaphnia dubia</i> toxicity test data
APPENDIX B – <i>Pimephales promelas</i> toxicity test data

1.0 INTRODUCTION

Nautilus Environmental conducted toxicity tests for Golder Associates to evaluate the sensitivity of aquatic organisms to nitrate under site-specific conditions associated with the Snap Lake mine operations. Reduced toxicity of nitrate has been shown to occur with increasing water hardness conditions (Nautilus Environmental, 2011) and, consequently, the purpose of these tests was to establish the effect of the current and future predicted Snap Lake water chemistry on sensitivity of aquatic organisms to nitrate.

Two laboratory-prepared reconstituted water blends were used for testing; the first used a blend of ions and water hardness consistent with that currently occurring at the site and a second was prepared consistent with the predicted maximum water hardness at the site. The two water types had a hardness of approximately 140 and 350 mg/L as CaCO₃. Toxicity of nitrate was evaluated in these waters with a 3-brood *Ceriodaphnia dubia* (water flea) survival and reproduction test and a 7-d *Pimephales promelas* (fathead minnow) survival and growth test. This report describes the results of the toxicity tests. The results presented herein relate only to the samples tested.

2.0 METHODS

2.1 Synthetic lake water and test solution preparation

The composition of the synthetic lake waters used for the study was based on concentrations of major ions present in Snap Lake. The synthetic lake water was prepared by dissolving reagent-grade sodium, potassium, calcium, and magnesium salts (i.e., NaCl, KCl, MgSO₄.7H₂O, CaCl₂.2H₂O, and NaHCO₃) in deionized water; concentrations of salts added to prepare the two water types are summarized in Table 1. Two types of synthetic lake water were prepared; the first (Water 1) used a blend of ions consistent with the total dissolved solids (TDS) and hardness currently occurring in Snap Lake, with a hardness of approximately 140 mg/L. The second (Water 2) used a blend of ions that was consistent with the predicted maximum hardness and corresponding TDS of the site water, with a hardness of approximately 350 mg/L.

Nitrate was added to the two water types to make the highest test concentration for use in dilutions with a nominal nitrate concentration of 400 mg/L N for the *C. dubia* test and 1,600 mg/N for the fathead minnow test. Dilutions of the synthetic lake waters were then prepared using a 0.5 times dilution factor to achieve a nominal concentration series of 400, 200, 100, 50, 25,

12.5, 6.25 mg/L N for *Ceriodaphnia* and 1600, 800, 400, 200, 100, 50 and 25 mg/L N for fathead minnows, using the corresponding water types for dilution. Control exposures in the tests were the synthetic lake waters with no added nitrate.

The test solutions were analyzed for nitrate at test initiation and termination by ALS Laboratory Group (Burnaby, BC) to provide measured concentrations for comparison with the nominal concentrations. The composition of major ions (Ca, Mg, K, Na, SO₄, Cl, and HCO₃) were also analyzed for each water type at the beginning of the tests.

Constituent added	Water 1	Water 2
NaCl	44.2	110.7
KCl	3.9	9.8
MgSO ₄ .7H ₂ O	50.5	126.2
CaCl ₂ .2H ₂ O	174.5	436.3
NaHCO ₃	28.2	70.3
Total (excluding hydration water)	232.7	581.9
Target hardness (as CaCO ₃)	140	350
Target TDS	223	557

Table 1.Concentrations (mg/L) of salts used to prepare synthetic lake waters.

2.2 Toxicity tests

Toxicity tests were conducted using *C. dubia* and *P. promelas* according to test conditions summarized in Tables 2 and 3, which are based on Environment Canada (2007, 2011) procedures.

Statistical calculations were based on measured nitrate concentrations determined as the average of measurements conducted at the start and end of the tests. Statistical analyses for the test results were performed using CETIS (Tidepool Scientific Software 2012).

Test type	Static renewal (daily)
Organism source	In-house culture
Organism age	<24 hr old neonates produced within 12 hr
Test duration	6 to 8 days
Test chamber	20 mL test tube
Test volume	15 mL
Number of replicates	10
Number of organisms/replicate	1
Dilution water	Synthetic lake waters (Water 1 and Water 2, as per Table 1)
Test temperature	25 ± 1°C
Photoperiod	16 hours light/8 hours dark
Feeding	<i>Pseudokirchneriella subcapitata</i> and digested yeast, cerophyll, and trout chow (dYCT)
Aeration	None
Test protocol	Environment Canada (2007)
Test acceptability criterion for controls	≥80% survival; ≥15 young per surviving control female that produced 3 broods; 60% of controls producing three or more broods
Reference Toxicant	Sodium chloride

Table 2. Summary of test conditions: *Ceriodaphnia dubia* survival and reproduction test.

Test type	Static-renewal (daily)
Organism source	Aquatic BioSystems, CO
Test organism age	< 24 hours
Test duration	7 days
Test chamber	375-mL glass containers
Test solution volume	250 mL
Number of replicates	3
Number of organisms/replicate	10
Control water	Synthetic lake waters (Water 1 and Water 2, as per Table 1)
Test temperature	25 ± 1°C
Photoperiod	16 hours light/8 hours dark
Aeration	None
Feeding	2 times a day with newly-hatched brine shrimp nauplii
Test protocol	Environment Canada (2011)
Test acceptability criterion for controls	Survival ≥80%, mean dry weight ≥250 μg/fish
Reference Toxicant	Sodium chloride

Table 3.Summary of test conditions: *Pimephales promelas* survival and growth test.

2.3 QA/QC

Nautilus follows a comprehensive QA/QC program so that all data generated are of high quality and are scientifically defensible. To meet these objectives, Nautilus has implemented a number of quality control procedures:

- Negative controls so that appropriate testing performance criteria are met;
- Positive controls to assess the health and sensitivity of the test organisms;
- Use of appropriate species, life stage, and test methods to meet the study objectives;
- Appropriate number of replicates to allow the proper statistical analyses;
- Calibration and proper maintenance of instruments to provide accurate measurements;
- Proper documentation and recordkeeping to allow traceability of performance;
- Adequate supervision and training of staff so that methods are followed;
- Proper handling and storage of samples to provide sample integrity;
- Procedures in place to address issues that may arise during testing and provide for the implementation of appropriate corrective actions; and,
- Rigorous review of data by a Registered Professional Biologist so that they are of good quality and are scientifically defensible prior to release to the client.

3.0 RESULTS AND DISCUSSION

Measured concentrations of major ions in the exposure waters are shown in Table 4. The measured values were in good agreement with the targeted concentrations. The measured concentrations of nitrate in the test solutions are shown in Tables 5 and 6, and were also in good agreement with the targeted values.

Results of the toxicity tests using *C. dubia* are shown in Table 5. The LC50 was 201.2 and 166.4 mg/L NO₃-N for the 140 and 350 mg/L hardness waters, respectively. The IC20 for reproduction in these two water types was 26.0 and 16.7 mg/L NO₃-N, and the IC25 values were 30.8 and 19.5 mg/L NO₃-N, respectively. Interestingly, the test organisms were more sensitive to nitrate in the higher hardness of the two waters. However, both of these results indicate a lower sensitivity than previous tests conducted at low hardness. For example, Nautilus Environmental (2011) reported LC50 and IC25 estimates of 44.2 and 11.3 mg/L NO₃-N in soft water (hardness of 44 mg/L as CaCO₃). The results presented here are similar to those from Nautilus Environmental (2011) for tests in a water with hardness of 98 mg/L, which produced an IC25 estimate of 23.9 mg/L NO₃-N, and are lower than the results from a test in water with 166 mg/L hardness, which produced an IC25 of 43.4 mg/L NO₃-N.

Results for the tests using *P. promelas* are shown in Table 6. These tests produced LC50 values of 433.1 and 949.2 mg/L NO₃-N for waters with hardness of 140 and 350 mg/L, respectively. LC20 values could not be reported for these tests, since the data failed the assumptions required for statistical analysis using probit, and so the data were analyzed using Trimmed Spearman Karber, which only produces LC50 estimates. The IC20 estimates for growth were 282 and 778 mg/L NO₃-N, and the IC25 estimates were 307 and 793 mg/L NO₃-N in the 140 and 350 mg/L hardness waters, respectively. These values are consistent with the pattern of results presented by Nautilus Environmental (2011) who reported IC25 results of 66, 205, 340, and 393 mg/L NO₃-N for waters with hardnesses of 12, 50, 94 and 168 mg/L. Furthermore, the results presented here for a hardness of 350 mg/L suggest that the decrease in sensitivity to nitrate with increasing ionic strength continues with higher hardness than tested by Nautilus Environmental (2011).

Constituent	Targeted	Measured		Targeted	Measured	
	Water 1	C. dubia	P. promelas	Water 2	C. dubia	P. promelas
Na	25.1	25.8	27.2	62.8	67.0	71.0
К	2.0	2.2	2.2	5.1	5.5	5.4
Ca	47.6	49.4	48.2	119	121	118
Mg	5.0	5.1	5.1	12.4	12.6	12.4
Cl	113	114	114	283	289	287
SO_4	19.7	20.8	20.3	49.2	50.4	49.3
HCO ₃	20.5	22.2	21.5	51.1	52.8	52.6
Hardness (CaCO ₃)	140	144	141	350	354	346
TDS	223	228	228	557	572	569

Table 4.Measured concentrations (mg/L) of major ions in synthetic lake waters.

Water	Water 2 (~350 mg/L hardness)					
Nitrate (mg/L NO ₃ -N)	Survival (%)	Reproduction (mean ± SD)	Nitrate (mg/L NO ₃ -N)	Survival (%)	Reproduction (mean ± SD)	
Control	100	26.3 ± 3.6	Control	100	22.5 ± 5.1	
6.2	100	22.9 ± 4.6	6.1	100	21.0 ± 6.6	
12.6	100	21.0 ± 4.6	12.4	100	20.2 ± 6.1	
25.0	100	21.7 ± 4.6	25.0	100	15.0 ± 6.8	
48.0	100	16.2 ± 6.9	50.4	100	10.5 ± 5.9	
98.2	90	11.2 ± 8.4	103.5	90	5.5 ± 4.6	
205.5	50	2.5 ± 3.9	205.0	30	0.7 ± 1.2	
407.0	0	0 ± 0	399.0	0	0 ± 0	
Test endpoint						
LC20	140.0 (65.5	- 180.5)		123.6 (2	72.6 – 155.5)	
LC50 201.2 (146.4 – 277.4)				166.4 (125.8 – 218.9)		
IC20 (95% CL) 26.0 (4.9 – 37.4)			16.7 (5.0 - 30.3)			
IC25 (95% CL) 30.8 (11.5 – 48.2)			19.5 (9.6 - 33.8)			
IC50 (95% CL)		44.9 (2	24.2 - 64.0)			

Table 5. Toxicity test results: *Ceriodaphnia dubia* survival and reproduction test.

IC = Inhibition Concentration.

LC = Lethal Concentration.

SD = Standard Deviation.

CL = Confidence Limits.

Water	<u>Water 2 (~350 mg/L hardness)</u>					
Nitrate (mg/L NO3-N)	Survival (%)	Biomass (mg) (mean ± SD)	Nitrate (mg/L NO ₃ -N)	Survival (%)	Biomass (mg) (mean ± SD)	
Control	96.7 ± 5.8	0.62 ± 0.04	Control	93.3 ± 11.6	0.59 ± 0.06	
28.6	100.0 ± 0.0	0.62 ± 0.04	27.2	100.0 ± 0.0	0.64 ± 0.05	
55.8	96.7 ± 5.8	0.58 ± 0.02	51.6	100.0 ± 0.0	0.61 ± 0.05	
110.5	100.0 ± 0.0	0.60 ± 0.05	105.0	100.0 ± 0.0	0.61 ± 0.02	
212.5	96.7 ± 5.8	0.62 ± 0.04	198.0	100.0 ± 0.0	0.64 ± 0.02	
428.0	50.0 ± 17.3	0.34 ± 0.14	406.5	96.7 ± 5.8	0.65 ± 0.10	
846.5	3.3 ± 5.8	0.004 ± 0.007	806.0	76.7 ± 15.3	0.43 ± 0.08	
1570.0	0.0 ± 0.0	0.0 ± 0.0	1550.0	0.0 ± 0.0	0.0 ± 0.0	
Test endpoint						
LC20	LC20 Not calculable					
LC50 433 (378 – 497)				949 (852 - 1057)		
IC20 (95% CL) 282 (215 – 435)				778 (NC)		
IC25 (95% CL) 307 (220 – 550)				793 (NC - 911)		
IC50 (95% CL)		86	3 (NC)			

est.
1

IC = Inhibition Concentration.

LC = Lethal Concentration.

SD = Standard Deviation.

CL = Confidence Limits

NC – Not calculable.

3.1 QA/QC

Measured concentrations of nitrate were in good agreement with the target concentrations in all of the tests. The tests met the control acceptability criteria and water quality parameters remained within acceptable ranges specified in the protocol throughout the tests. Uncertainty associated with the tests is best described by the confidence intervals surrounding the point estimates.

Results of the reference toxicant tests conducted during the testing program are summarized in Table 7. Results for these tests fell within the acceptable range for organism performance of mean and range, based on historical results obtained by the laboratory with this test. Thus, the sensitivity of the organisms evaluated in the reference toxicant tests was appropriate.

Table 7. Reference toxicant test result
--

Test Endpoint	Result	Acceptable Range	CV (%)	Test Date
Ceriodaphnia dubia 7d IC50	1.1 g/L NaCl	0.9 – 1.9 g/L NaCl	21	November 13, 2012
Pimephales promelas 7d IC50	5.0 g/L NaCl	2.9 – 6.0 g/L NaCl	20	January 16, 2013

4.0 **REFERENCES**

- Environment Canada. 2007. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. EPS 1/RM/21, Second Edition. Ottawa, ON, Canada.
- Environment Canada. 2011. Biological Test Method: Test of Larval Growth and Survival Using Fathead Minnows. EPS 1/RM/22, Second Edition. Ottawa, ON, Canada.
- Nautilus Environmental. 2011. Evaluation of the role of hardness in modifying the toxicity of nitrate to freshwater organisms. Prepared for the Mining Association of BC.
- Tidepool Scientific Software. 2012. CETIS comprehensive environmental toxicity information system, version 1.8.4.29 Tidepool Scientific Software, McKinleyville, CA, USA. 222 pp.

APPENDIX A – *Ceriodaphnia dubia* toxicity test data

Ceriodaphnia dubia Summary Sheet

Client:	Golder	Start Date/Time: November 6/12 @10 00h
Work Order No.:	12553	Set up by: KLB
	12000	
Sample Information	on:	Test Validity Criteria:
-		1) Mean survival of first generation controls is \ge 80 %
Sample ID:	Sodium Nitrate in Water Type#1	2) At least 60% of controls have produced three broods within 8 days
Sample Date:	Made in House	3) An average of ≥ 15 live young produced per surviving female in the
Date Received:	N/A	control solutions during the first three broods.
Sample Volume:	N/A	4) Invalid if ephippia observed in any control solution at any time.
		WQ Ranges:
		T (°C) = 25 ± 1; DO (mg/L) = 3.3 to 8.4 ; pH = 6.0 to 8.5
Test Organism Inf	ormation:	
Broodstock No.:		102612 Golder Acclimation BB#1
Age of young (Day	0):	<24-h (within 12-h)
Avg No. young in fi	rst 3 broods of previous 7 d:	26
Mortality (%) in pre		0
Individual female #	used ≥8 young on test day	17, 21, 22, 25, 39
NaCl Reference T	oxicant Results:	
Reference Toxican	t ID: <u>Cd88</u>	
Stock Solution ID:	12Na02	
Date Initiated:	November 13/12	
7-d LC50 (95% CL): <u>2.0 (1.7-2.3)</u>	g/L NaCL
7-d IC50 (95% CL)	: 1.1 (0.9-1.6)	g/L NaCL

7-d LC50 Reference Toxicant Mean and Historical Range: 7-d IC50 Reference Toxicant Mean and Historical Range:

1.8 (1.3-2.4) g/L NaCL	CV (%):	16
1.3 (0.9-1.9) g/L NaCL	CV (%):	21

Test Results:	mg/L N	Survival	Reproduction
	LC50 (95% CL)	201.2 (146.4-277.4)	
	IC25 (95% CL)		30.8 (11.5-48.2)
	IC50 (95% CL)		74.3 (44.9-113.3)

Reviewed by:

Jou

Date reviewed:

Feb .6/13

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	Golder	Start Date & Time: November 6/12 @ 10 000
Sample ID: Work Order #:	Sodium Nitrate in Water Type #1	Stop Date & Time: NOV 14/12 20 1000 h Test Species: Ceriodaphnia dubia

mg/L N							Da	ays]	
Concentration	0		1		2		3		4		5		6	.7.,		8
Control (water #1)	init.	old	new	old	new	old	new	old	new	old	new	old	new	Linal	new	Final
Temperature (°C)	94.0	25.0	25.0	25.0	24.0	25.0	24.0	2573	MAD	24.0	24.5	24.0	24.0	24.5	24.0	25.0
DO (mg/L)	8,2	7.4	8.2	1.8	81	#7374	18.1	74	F12	6.8	75	68	ネチ	73	8.0	1.7.0
pH	73	7.5	7.4	7.4	7.4	7.4	7.4	73	えく	7.0	7.4	7.1	7,5	2.0	10	4 7.0
Cond. (µS/cm)	464	4	69	48	<u>зч</u>	43	83	48	ζ	49		44	36		189	498
Initials	YUB	Ĵ	mm	EMI	m	Em			ŝ	J	57		र्या			Emm

							Da	ays								
Concentration	0		1		2		3		4		5		6	7.		8
6.25	init.	old	new	old	new	old	new	old	new	old	new	old	new	fine	new	Final
Temperature (°C)	24.0	25.0	25.0	25.0	24.0	25.0	24.0	250	NAD	24.0	25.D	24.0	24.0		24.0	25.0
DO (mg/L)	3.0	7.5	8.1	77	8.1	7/27	58.1	73	22	6.9	4.4	6.9	7.8		8.(6.9
pН	7.2	7.5	73	7.4	7.3	73	74	74	75	7.0	7.4	7.1	73	7.0	7.2	7.0
Cond. (µS/cm)	518	52	3	53	52	534		5	2.5	53	38	54			529	530
Initials 🛛	518	Em	m	EM		EM	m		2		107	J	51		KUB	Emn
	Emm															

							Da	ays]	
Concentration	0		1		2		3		4		5		6	7		8
50	init.	old	new	old	new	old	new	old	new	old	new	old	new	Linet	new	Fine
Temperature (°C)	24.0	25.0	25.0	25.0	24.0	25.0	24.0	250	VID	24:0	25.0	24.0	24.0	24,5	24.0	Projection of the local division of the loca
DO (mg/L)	8.0	7.5	8.1	7.8	8.1	7.4	8.1	73	えょ	6.8	7.4	70	7.8	7.2		7.0
рН	7,2	7,5	7.2	7.4	7.2	73	7.1	74.	74	7.0	7.4	71	7.2	7.0	71	7.0
Cond. (µS/cm)	872	87	3	79	D	eng	892	905	-	90)2	9	D		893	860
Initials	Emm	Em		Emin	1	Em	m		~	19	JI	J	J1		UB	EMI

							Da	ays						
Concentration	0		1		2		3		4		5		6	7
400	init.	old	new	blo	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	25.0	25.0	24.0	25.0	24.0	2017	242					
DO (mg/L)	3.)	7.6	8.1	7.7	8.17	1.07	18.2	72	ar					\mathbf{r}
рН	7.2	7.4	7.2	7.4	7.0	72	7.17	173	72					
Cond. (µS/cm)	3510	35		3690	>	36-	10	35	9 S				/	
Initials	Emm	Emi	m	Emm		Emm		~				/		

	Control				Analysts:	EMM, JJT, AWP
Hardness*	146					
Alkalinity*	18				Reviewed I	oy: jou
* mg/L as CaCO3					Date reviewe	
WQ Ranges: T (°C)	= 25 ± 1; DO (mg	J/L) = 3.3 to 8.4	(mg/L) ; pH	l = 6 to 8.5		1-3
Sample Descriptio	n: <u>Used 10</u>	000 mg/L N st	ock solutic	n		
Comments:	Broodboard Us	sed: 102612	Golder	Accli mation	#1	

Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Client: Sample ID:	Golder Sodium Nitrate in	n Water T	vpe #1														tart Da top Da											
Work Order:	12553		<u> </u>									^ ,				-			p by:			<u>~~</u> @\		2.40.4	<u> </u>			
										mg/L	. N				1													
Days Concentra	ation: Control (W	ater Type	#1)			C	once	ntrati		6.25					0			Conc	entrat	ion:	12.5							
A B	C D E	FG	н	1	J	Init	Α	в	С	D	E	F	G	н	1	J	Init	Α	В	С	D	Е	F	G	н	1	J	Init
1 2 4	V	v . v		5	1 7	Emm	~	-	-	_	~	/	K	V		-	Enn	~	4	~	r	r	~		~	-	-	Emm
2 / 1	V V V	× 1		-	1 4	imm .		/	V	1	1	1	4	~	1	1	EMA	-	~	-	~	~	/	~	~	1	1	Emp
3 / /	111	~ /		-	VE	mm.		/	/	1	~	1	1	/	/		smm		/	~	1	/	-	1	-	K		Etron
4		$\langle \chi \rangle$		//		2	1	3	_	1	$\langle \langle$	-			1	1	-	/	1	/	¥.	/			\langle		/	_
5 5 5	362	\$ 2	1	5	3 3	177	3	V	2	\checkmark	ų	5	4	ų	4	3	337	3	4	V	5	3	3	Ч	4	Y	3	ST
5 9 10	10 11 1	98	9	9	10 3	537	10	9	~	2	8	9	4	8	10	9	111	ų	7	ų	/	7	9	10	9	6		337
7 - 5	1/10	V 1ª		1	/ *		1	2	4	3	-		12	-		-	Emm	1	\checkmark	9	9	\checkmark	12	769	12	\checkmark		Ju
8 15 1	12 13 11	15 1	-	13	14 1	ann	3	-	11	૧	15	13	1	13	13	10	Emm	6	14	14		13	~	V	5			Emm
Total 29 30	25 25 19	29 2	123	27	27 3	ann 2	162	41	17	14	27	27	20	25	27	22	Emm	B	25	3	18	23	24		25	23	23	Emm
	30								•		•		Th							13				23	Ema			
Days Concentra	ation: 25						once	ntrati		50						T	·····	Conc	entrat		100				17			
AB	C D E	F G	н		J	Init	A	в	<u> </u>	D	E	F	G	н	<u> </u>	J	Init	A	В	С	D	E	F	G	н		J	Init
		~ r	- <u>-</u>	~	× 3	mm	~	-	~	~	~	~	1	1	1	1	Emm	1	~	1	~	-	1	r	r	-	r.	Emon
2 / /		11		~	1 2	mm		<u> </u>	-	1	r	K	~	K	~	1	etnm	1		/	/	-	-	/	~	1	/	Emm
3 1 1	1 1 1	<u> </u>	<u> </u>	-		mm -				1	~	4	~	1	-	~	Emr	~	~	-	-	-		_	X	-	~	Emm
4 / (6 6	/ /	$\perp \nu$			m	<u> </u>	4	4	\langle				\checkmark	4	/	~	6		_			$\left[\right]$		[]	6	~	~
5 3 3	545	33	6	L'A		12			5	4 10	370	V	3	3	V	1	337	1	V	3	2	6	4	V		4	2	337
6 8 10		VY	V	8				9	9	10	8D	2	8	6	2	~	m	4	V	Ч	1	V	7	<u> </u>		7	V	351
7 12	V 8 11	7 🛩	10	<u>`</u>	8 1	emma	8.		L	~	/	7	12	-	/	~	Enn	1	~	/	4	4	10	*		10		EMYN
8 13 /	13 8 10	12 10	10	10		innte		11	10	4	7	V	~	7	H	6	Ehm	10	V	10	6	9	1	1		V	8	Emm
Total 24 25	27 20 26	22 22	18	22	11 0	mm 1	92	3	24 ⁶	218	18	9	23	16	6	6	Emin	16	0	17	12	15	21	0	8	21	10	Emm
				-			·					`																
Days Concentra				T . 1				ntrati		400		_				· ·			entrat		-		_		····			
AB	C D E	F G	н			Init	A	В	С	D	E	F	G	н		J	Init	A	В	С	D	E	F	G	н		J	Init
1 /	11111	/ /	~ ~	1	<u>/</u> =	sonn .	<u> </u>		-	~	~	~	~	<u> </u>	<u>×</u>	~	Emm											
2 1 1	K K K	1 1		1	<u></u> E	mm	<u>_</u> .		-	-	X		~		<u>/</u>	-	emn											
3 X /	-X -	- X	×	1	<u>/</u> #	mm	X	×		X		×	_X	~	<u>×</u> ~	x	Emp	-										
4		-41		4		~	1	+	+	1		-	1	\mathbf{x}	1	 	~											
5	VIV	V		1		III			(
6		\vee		\checkmark		51				-																		
7 4	V 3	4.		3		3W				·																		
8 1 6		5	1	1	1 3	mm	1		1	1	1	1	1															
Total 🕅 10	0 0 3	90	GX	3	Ø I	em (5 (3	24	Ŝ	5	6	Cr.	JX.	Ġ*	02	Ehum											
-																												

Notes: X = mortality.

Sample Description: Used 10 000 mg/L N stock solution

10h

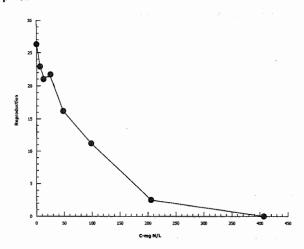
Comments: Total # Young only based on the first 3 Broods. Fourth and subsequent broods not included in total count.

Reviewed by:

Version 2.1 Issued July 29, 2009

Date reviewed: Fclo. 5/13

CETIS Ar	alytical Repo	ort						eport Date: est Code:			9 (p 1 of 2) -6892-8451
Ceriodaphn	ia 7-d Survival and	d Reproduction	n Test				•			· · · · · · · · · · · ·	ronmental
Analysis ID:	00-5797-8360	Endpoir	nt: R	eproduction			c	ETIS Version	CETISv1	.8.4	
Analyzed:	06 Feb-13 10:3	9 Analysi	s: Li	near Interpol	ation (ICPIN	1)	C	fficial Results	: Yes		
Batch ID:	13-2109-0378	Test Ty	pe: R	eproduction-	Survival (7d)	A	nalyst: Kry	sta Banack		
Start Date:	06 Nov-12 10:0	0 Protoco	si: E	C/EPS 1/RM	/21		D	iluent: Lat	oratory Wat	er	
Ending Date	e: 14 Nov-12 10:0	0 Species	s: C	eriodaphnia (dubia		B	rine:			
Duration:	8d Oh	Source	: In	-House Culto	ure		A	.ge: <24	ŧh		
Sample ID:	05-4880-6377	Code:	20	B61EE9			C	lient: Go	lder		
	e: 06 Nov-12	Materia	I: N	03			P	roject:			
Receive Da	te: 06 Nov-12	Source	: G	older							
Sample Age	e: 10h	Station	: S	odium Nitrate	e in Water T	ype #1					
Linear Inter	polation Options										
K Transforr	n Y Transform	Seed	R	esamples	Exp 95%	6 CL Me	thod				
_og(X+1)	Linear	571104	20	00	Yes	Tw	o-Point In	erpolation			
Point Estim	ates		,		· · · ·						,
Level mg	N/L 95% LCL	95% UCL									
C5 1.1	46 0.5606	9.57									,
C10 3.6	604 1.435	25.59									
C15 8.0	04 2.801	29.57									
C20 26	.01 4.931	37.36									
C25 30	.76 11.52	48.25									
C40 50	.99 35.75	88.07									
iC50 74	.34 44.87	113.3									
Reproducti	on Summary				Ca	alculated	Variate			-	
C-mg N/L	Control Type	.,	ean	Min	Max	Std Err	Std D		%Effect		
D	Negative Control		5.3	19	30	1.126	3.561	13.54%	0.0%		
6.2			2.9	14	27	1.449	4.581	20.01%	12.93%		
12.6		10 2'		13	25	1.468	4.643	22.11%	20.15%		
25			1.7	11	27	1.469	4.644	21.4%	17.49%		
48			5.2	6	24	2.18	6.893	42.55%	38.4%		
98.2			1.2	0	21	2.67	8.443	75.39%	57.41%		
205.5		10 2.		0	10	1.232	3.894	155.8%	90.49%		
407		10 0	,	0	0	0	0		100.0%		
Reproducti	on Detail										
C-mg N/L	Control Type		ep 2	Rep 3	Rep 4	Rep 5	Rep 6		Rep 8	Rep 9	Rep 10
0	Negative Control	29 30	0	25	30	19	29	24	23	27	27


C-mg N/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	29	30	25	30	19	29	24	23	27	27
6.2		26	24	17	14	27	27	20	25	27	22
12.6		13	25	13	18	23	24	23	25	23	23
25		24	25	27	20	26	22	22	18	22	. 11
48		19	23	24	18	18	9	23	16	6	6
98.2		16	0	17	12	15	21	0	0	21	10
205.5		0	10	0	0	3	9	0	0	3	0
407		0	0	0	0	0	0	0	0	0	0

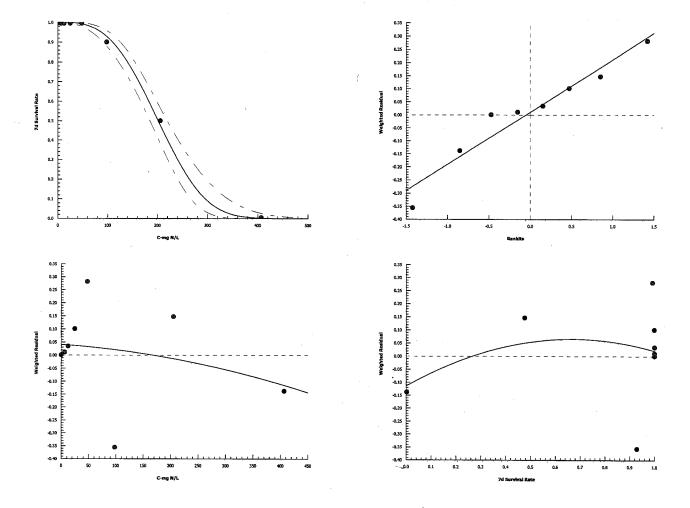
000-089-184-1

Analyst: KUB QA: JOU Feb-6/13

CETIS Ana	lytical Report		Test Code:	12553a 18-6892-8451		
Ceriodaphnia	7-d Survival and Re	production T	est		Nautilus Environmental	
Analysis ID: Analyzed:	00-5797-8360 06 Feb-13 10:39	Endpoint: Analysis:	Reproduction Linear Interpolation (ICPIN)	CETIS Version: Official Results:	CETISv1.8.4 Yes	

Graphics

Analyst: KUP QA: JOU Feb 6/13


ETIS An	alytical R	eport						•	rt Date: Code:	06 Feb-13 10:39 (p 1 of 2 12553a 18-6892-845		
Ceriodaphn	ia 7-d Surviva	I and Rep	oduction	Test				*		Na	utilus Env	/ironmenta
Analysis ID:	10-9785-78	379	Endpoin	it: 2	Survival Rate	e		CETI	S Version:	CETISv1	.8.4	
nalyzed:	06 Feb-13		Analysis	: Line	ear Regressi	ion (MLE)		Offic	ial Results	: Yes		
atch ID:	13-2109-03	378	Test Typ	e: Rep	production-S	urvival (7d)		Analy	/st: Krys	sta Banack		
start Date:	06 Nov-12	10:00	Protoco		EPS 1/RM/2			Dilue	nt: Lab	oratory Wate	er	
Ending Date	e: 14 Nov-12	10:00	Species	: Cer	iodaphnia di	ubia		Brine):			
Ouration:	8d Oh		Source:	In-H	louse Cultur	e		Age:	<24	h		
Sample ID:	05-4880-63	377	Code:	206	361EE9			Clien	it: Gol	der		, , , , , , , , , , , , , , , , , , , ,
-	e: 06 Nov-12		Material					Proje	ect:			
	te: 06 Nov-12		Source:	Gol	der							
Sample Age	e: 10h		Station:	Soc	lium Nitrate	in Water Typ	oe #1					
inear Reg	ression Option	ns		,		,, <u>,</u> ,					· · · ·	
Nodel Fund	tion		Th	reshold	d Option	Threshold	Optimized	Pooled	Het Corr	Weighted		
og-Gompe	rtz [log(-log(1-F	P)=A+B*log	(X)] Co	ontrol Th	reshold	1E-07	No	Yes	Ņo	Yes		
Regression	Summary		· · · ·									
ters LL	AICc	BIC	М	u	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	(α:5%)	
3 -10	0.36 27.12	24.8	8 2.3	355		0.9949				Lack of Fi	t Not Test	ed
Point Estim	nates		· · · · · · · · · · · · · · · · · · ·			······ · · · · · ·						
Level mg	gN/L 95%∣	LCL 95%	UCL									
	.43 18.67			,								
EC10 11	0.1 34.85	5 149.	9									
	6.5 50.37											
EC20 14												
	1.8 80.27											
	2.5 121.9 1.2 146.4											
		- 211.	-						···· / · · c···			
-	Parameters											
Parameter	Estin		Error 95				P-Value	Decision				,
Slope	7.194 -16.9			577 7.6	11.81 -6.28	3.054 -3.115	0.0224 0.0207	0	t Paramete t Paramete			
Intercept		4 5.45	0 <u>-</u> 2	7.0	-0.20	-3.115	0.0207	Significan	raiamete	·		, .
ANOVA Tai												
Source		Squares	Mean S		DF	F Stat	P-Value	Decision			· · · - · · · · · · · · · · · · · · · ·	,,
Model	58.49		58.4919 0.04301		1 6	1360	<0.0001	Significan	τ			
Residual	0.258		0.04301	0	0						<u>.</u>	
Residual A		ad			Tast Stat	Critical	D Velue	Decision	(~. 59/)			
Attribute Goodness-o	Meth	son Chi-Sq	GOF		Test Stat 0.2581	Critical 12.59	P-Value 0.9997	Decision	(d:5%) ificant Hete	rogenity		
500uness-0		ihood Ratio			0.3539	12.59	0.9992	-	ificant Hete	• •		
Distribution		iro-Wilk W		1	0.951	0.6805	0.7216	Normal D		. • gering		
		erson-Darlin	-		0.3133	2.492	0.5734	Normal D	istribution			
7d Surviva	I Rate Summa	ıry			····	Calcu	lated Variat	e(A/B)			-144	
C-mg N/L	Control Typ	e Cou	int M	ean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	в
0	Negative Co	ntrol 10	1		1	1	0	0	0.0%	0.0%	10	10
6.2 🗸		10	1		1	1	0	0	0.0%	0.0%	10	10
12.6 🗸		10	1		1	1	0	0	0.0%	0.0%	10	10
25 🗸		10	1		1	1	0	0	0.0%	0.0%	10	10
48 🖌		10	1		1	1	0	0	0.0%	0.0%	10	10
		10	0.		0	1	0.1	0.3162	35.14%	10.0%	9	10
98.2 🗸				~	•	4	0.1667	0 5 2 7	105.4%	50.0%	E .	10
98.2 ✓ 205.5 ✓ 407 ✓		10 10	0. 0	5	0 · 0	1 0	0.1007	0.527 0	105.4%	100.0%	5 0	10

Analyst: KUB QA: JGW Feb. 6/13

CETIS Ar	nalytical Repo	ort			oort Date: st Code:	06	06 Feb-13 10:39 (p 2 of 2) 12553a 18-6892-8451				
Ceriodaphn	ia 7-d Survival an	production Test			N	Nautilus Environmental					
Analysis ID: Analyzed:	: 10-9785-7879 06 Feb-13 10:3	34	Endpoint: A Analysis: Lir	CETIS Version: CETISv1.8.4 Official Results: Yes							
7d Survival	Rate Detail								· · ·		
C-mg N/L	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	Negative Control	1	1	1	1	1	1	1	1	1	1
6.2		1	1	1	1	1	1	1	1	1	1
12.6		1	1 [.]	1	1	1	1	1	1	1	1
25		1	1	1	1	1	1	1	1	1	1
48		1	1	1	1	1	1	1	1	1	1
98.2		1	1	1	1	1	1	1	0	1	1
205.5		0	1	1	0	1	1	0	0	1	0
407		0	0	0	0	0	0	0	0	0	0

Graphics

Log-Gompertz [log(-log(1-P)=A+B*log(X)]

Analyst: <u>KUB</u> QA: JOW Feb. 6/12

Ceriodaphnia dubia Summary Sheet

		Olart Data Timas Navarahas 0/40 @40.45h
Client:	Golder	Start Date/Time: November 6/12 @10 15h
Work Order No.:	12553	Set up by: <u>KLB</u>
Sample Information	on:	Test Validity Criteria:
		1) Mean survival of first generation controls is ≥80 %
Sample ID:	Sodium Nitrate in Water Type#2	2) At least 60% of controls have produced three broods within 8 days
Sample Date:	Made in House	3) An average of ≥ 15 live young produced per surviving female in the
Date Received:	N/A	control solutions during the first three broods.
Sample Volume:	N/A	4) Invalid if ephippia observed in any control solution at any time.
•	· · ·	WQ Ranges:
		T (°C) = 25 ± 1; DO (mg/L) = 3.3 to 8.4 ; pH = 6.0 to 8.5
Test Organism Inf	ormation:	•
•		· · ·
Broodstock No.:		102612 Golder Acclimation BB#2
Age of young (Day	0):	<24-h (within 12-h)
Avg No. young in fi	rst 3 broods of previous 7 d:	23
Mortality (%) in pre-	vious 7 d:	0
Individual female #	used ≥8 young on test day	5, 14, 21, 26, 27, 30
		· ·
NaCl Reference T	oxicant Results:	
Reference Toxican	t ID: Cd88	
Stock Solution ID:	12Na02	
Date Initiated:	November 13/12	

7-d LC50 (95% CL): 7-d IC50 (95% CL):
 November 13/12

 2.0 (1.7-2.3)
 g/L NaCL

 1.1 (0.9-1.6)
 g/L NaCL

7-d LC50 Reference Toxicant Mean and Historical Range: 7-d IC50 Reference Toxicant Mean and Historical Range:

_	1.8 (1.3-2.4)	g/L NaCL	CV (%):	16
_	1.3 (0.9-1.9)	g/L NaCL	CV (%):	21

Test Results:	mg/L N	Survival	Reproduction
	LC50 (95% CL)	166.4 (125.8-218.9)	
	IC25 (95% CL)		19.5 (9.6-33.8)
	IC50 (95% CL)		44.9 (24.2-64.0)

Reviewed by:

Ich

Date reviewed:

Feb-6/13

Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	Golder	Start Date & Time: November 6/12 @ 1015h
Sample ID:	Sodium Nitrate in Water Type #2	Stop Date & Time: Nov. 13/12 @ 1510h
Work Order #:	12553	Test Species: Ceriodaphnia dubia

mg/L N	Days													
Concentration	0		1		2		3		4		5	(6	7
Control (water #2)	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	250	25.0	15.0	24.0	25.0	24,0	2510	240	24.5	24,0	24.0	24.D	24.5
DO (mg/L)	8,1	1.8	8.0	7.6	8.1	73	8.1	73	82	6.6	75	6.9	78	6.6
pH	7.6	7.6	7.6	7.6	7.5	73	7.6	うい	7,6	7.2	7.7	7.4	78	7.3
Cond. (µS/cm)	1104	112		114	7	115	2	ils	2	11	,ų	.116	3	1111
Initials	rus	Emr		EW	1m	EM			~	T	Π	t	n	EMM

		Days												
Concentration	0 1		2		3		4		5		6		7	
6.25	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	25.0	25.0	24.0	25.0	24.0	25.0	mo	24.5	24.5	24.0	24.0	24.5
DO (mg/L)	8.1	7.7	8.0	7.6	8.0	7.2	8.1	73	8.2	6.5	7.4	69	77	67
pH	7.4	7.7	7.6	1.5	7,5	7.4	7.6	76	2.6	7.3	77	7,4	7,7	7.3
Cond. (µS/cm)	1159	11=	12	119	12	120	4	112	6	(2	05	12	13	1185
Initials	Emm	EM	m	Eľ	nm	Emn	\wedge	~	-	Ĩ	П	T	51	EMM

	Days													
Concentration	0		1		2		3		4		5	6		7
50	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	250	25.0	24.0	25.0	24.0	2000	VID	25.0	24.5	24.O	24.0	24.5
DO (mg/L)	8.2	7.7	8.1	7.6	8.1	7.4	8.2	73	52	6.5	74	6,8	17	67
pH	7,5	7.7	7.5	7.4	7,5	7.5	7,5	71	76	73	7.7	7.4	7.6	7.3
Cond. (µS/cm)	1479	151	5	15	48	155	9	15	49	154	ł8	155	55	1516
Initials	Emm	EW	m	EW	m	ŦW			^	4	M	J	7	Emm

	Days													
Concentration	0 1		1	2		3		4		5		6		7
400	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	25.0	25.O	25.0	24.0	25.0	24.0	200	24.0					
DO (mg/L)	8.1	7.7	8.1	76	8.1	72	8.2	72	22					
pН	7.4	7.7	7.5	7.3	7.4	7.4	7.5	71	74					
Cond. (µS/cm)	4050	40	60	423	80	428	0	42	20					
Initials	Emm			EM		Emy	<u>~</u>	~	-					

	Control			Analysts:	KUBERMM, AWAJJT
Hardness*	344				
Alkalinity*	42			Reviewed by:	Jon.
* mg/L as CaCO3				Date reviewed:	Feb 5/12
WQ Ranges: T (°C)	= 25 ± 1; DO (mg/	_) = 3.3 to 8.4 (mg//	L) ; pH = 6 to 8.5		
Sample Description	n: Used 10	000 mg/L N stock s	solution		

Comments:

Broodboard Used: 102012 Edder Acclimation #2

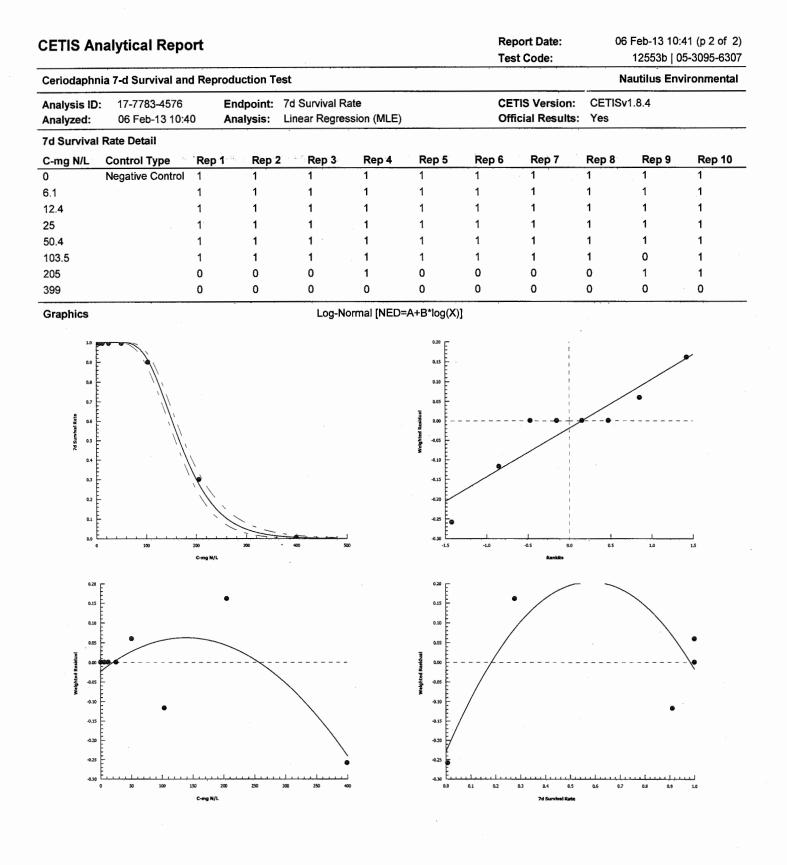
Chronic Freshwater Toxicity Test C. dubia Reproduction Data

Client:	Golder						Start Date	& Time: Novem	ber 6/12 @ 10	56		
Sample ID:	Sodium Nitrate in V	Vater Type #2					Stop Date	& Time:0	V 13/12 00	1510h		
Work Order:	12553						Se	et up by: KLB				
			·····		g/L N							
Days	ation: Control (Wate			centration: 6.2					12.5			
A B	CDEI	FGHI	J Init A	B C D	EF	GHI	J Init A	A B C	DEF	G H	I J	Init
1 1 1	1111	· · · · ·	- Emm -	~ ~ ~		~ ~ ~ ,	- Emm -		× × ×	~ ~	r 1-	Emm
2 / /	V V V V		- Emm ~	V V V	~ ~	~ ~ ~ ~ ·	Emm	V	~ ~ ~	V V	~1	Emm
3 1 1	1111	· · · /	- Em -	1			- Emr -			11	~ ~	Emm
4	1.11	1111	1~1~	611		44	~~ ~ /		111	1/	11	a
5 3 3	4 3 V	21.1 1 1 1	1 371 3	4 3 4	43	9 4 4	3 311 3	332	355	52	32	337
67B	9961	00511	11 331 10		10 9		0 JN 8	332	355 745	5 2 8 7	74	01
7 14 10	13 12 9 12		- Ehm 14	11 4 4			Bi Emm -	13 16 1	1 14 13	10	13 10	Emm
8												1
Total 24 21	26 24 15 21	624 19 311	5 Emm27	151214	27242	724271	3 emm 11	27 26 2	2123 23	23 9	23 16	Emm
I otal	630 - 1 2 6		JUNIZT		MT KT K	Fland	5	A	al faces and a	~2 1		Civin
Days Concentr	ation: 25		Cond	centration: 5	50		Co	oncentration:	100			
A B		FGHI	J Init A	B C D	EF	GHI	J Init A	A B C	DEF	G H	I J	Init
1 1 1		· · · · · ·	- Emm				- Enn -		~ ~ ~	11	<u>س</u> ا س	enn
2			emm /	111			Emm				~ ~	Emm
3 4 4	11 11 1		- Emm -				- Etym -		··	11		Emm
4	660	////	1-1/				1 ~	////	17	//	+ /	2
5 4 4	432	3544	3 351 4	23 V	23	222	VJTV	$(\sqrt{2})$	V 3 2	VV	1 1	331
6 7 7	8485	0 0 1	1 511 5	474			VIIII	31	5VV	V 3		717
	1311	1212 -	8 cmm il				3 Emm =		96	28	3	
8			erver ci		NOV					<u> </u>	1 -	emin
81	12 20 21 8	25 24 7 1	1 - 24	6 10 4	17 10 1	898	3 Ann 3	5381	4 9 2	2 11	0 3	
Total V	12 20 -1 8	25 29 7 1	i Emm 20	6 10 4	17 10 11	0 1 0	S UNIT S	2281	492	- 11	013	ann
Dave Concentra	ation: 200		Conc	centration: 40				oncentration:				
Days A B	C D E F	FGHI	J Init A	B C D		GHI	J Init A		DEF	GH	IJ	Init
1 - 4			1 Emm 2				/ Emm					
2 4 -			/ FIM X		XX		/ Emm					
3 X X	1 1 8 1			XXX			V. Emr					
4 1 1			Emit				XAR					
			1 TH	A X I	*****	KEM2	J AST					+
5	XV				+++++++++++++++++++++++++++++++++++++++	╏╶╎╺<i>┧</i>╎┨┈┼	$\gamma + \gamma$					
6				╎╎╷╎	╺┼╏╎┦╍┼	╊╍┟╴┠╶┠╺┾╸						
7			3 Emm			+ + + + + + + + + + + + + + + + + + +	1					
8				Charles 1								
Total Or O	0×2 C2 C2 C2	× 6× 6× 2	3 Jm (Y	6940	× C× C×	G G G (Siem					

Notes: X = mortality.

Reviewed by:

Sample Description: Used 10 000 mg/L N stock solution

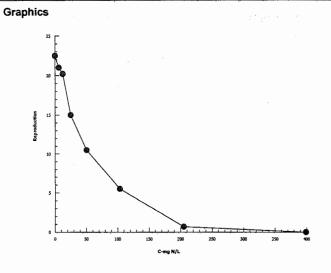

Comments: Total # Young only based on the first 3 Broods. Fourth and subsequent broods not included in total count.

Joh

Date reviewed: Feb. 5713

CETIS Analytical Report									ort Date: Code:	06 Feb-13 10:41 (p 1 of 2) 12553b 05-3095-6307		
Cerioda	phnia 7	-d Survival and	Reprodu	ction T	est					Na	utilus Env	vironmental
Analysis	s ID:	17-7783-4576	En	dpoint:	7d Survival Rat	7d Survival Rate			S Version:	CETISv1	.8.4	
Analyze	d:	06 Feb-13 10:40) An	alysis:	Linear Regress	sion (MLE)		Offic	ial Results:	Yes		
Batch ID	D:	18-3407-7110	Tes	st Type:	Reproduction-S	Survival (7d)		Anal	yst:			
Start Da		06 Nov-12 10:1:		tocol:	EC/EPS 1/RM/			Dilue		oratory Sea	water	
Ending	Date:	13 Nov-12 15:10	•	ecies:	Ceriodaphnia d			Brine				
Duratio	Duration: 7d 5h Source:				In-House Cultu	re		Age:	<24	h		
Sample		00-6932-1982	Co	de:	421C4FE			Clier	nt: Gold	der		
-		06 Nov-12	Ma	terial:	NO3			Proje	ect:			
		06 Nov-12		urce:	Golder							
Sample	Age:	10h	Sta	tion:	Sodium Nitrate	in Water Ty	pe #2					
Linear F	Regress	sion Options										
Model F	unctio	n			shold Option	Threshold	Optimized	Pooled	Het Corr	Weighted	l	
Log-Nor	mal [NE	D=A+B*log(X)]		Contr	ol Threshold	1E-07	No	Yes	No	Yes		
Regress	sion Su	mmary										
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	(α:5%)	
5	-9.449	25.3	23.06	2.221	0.1534	0.998				Lack of Fi	t Not Teste	be
Point E	stimate	s										
Level	mg N/	L 95% LCL	95% UCI	-								
EC5	93.07	38.97	123.8	, ,								
EC10	105.8	51.92	136.5									
EC15	115.4	62.73	146.5									
EC20 EC25	123.6 131.1	72.61 82	155.5 164.4									
EC40	152.1	108.7	193.7									
EC50	166.4	125.8	218.9									
Regress	sion Pa	rameters	:									
Parame	eter	Estimate	Std Erro	r 9 5%	LCL 95% UCL	t Stat	P-Value	Decision	(α:5%)			
Slope		6.521	1.921	2.756	10.29	3.395	0.0146	Significan	t Parameter	· · · · · · · · · · · · · · · · · · ·		
Intercep	ot	-14.48	4.282	-22.8	8 -6.089	-3.382	0.0148	Significan	t Parameter	:		
ANOVA	Table				1					······,	· · · · · · · · · ·	
Source		Sum Squa	res Me	an Squa	are DF	F Stat	P-Value	Decision	(a:5%)			
Model		62.68573		68573	1	3420	<0.0001	Significan	t			
Residua	al 	0.109968	0.0	18328	6							
Residua	al Analy	sis										
Attribut		Method			Test Stat		P-Value	Decision				
Goodne	ss-of-Fi		•		0.11	12.59	1.0000	-	ficant Heter			
Distribut	tion	Likelihood Shapiro-W			0.1789 0.8958	12.59 0.6805	0.9999 0.2644	Non-Signi Normal D	ficant Heter	ogenity		
DIStribut	uon	Anderson-		-		0.6805 2.492	0.2644	Normal D				
7d Sur	vival Pa	te Summary										
		-	Court	Meer			Std Err		C) /0/	0/ = = = = = = = = = = = = = = = = = = =		
C-mg N 0		ontrol Type egative Control	Count 10	Mear 1	1 Min	<u>Max</u> 1	Std Err 0	Std Dev 0	CV%	%Effect 0.0%	A 10	B 10
6.1 🗸	140	gauto control	10	1	1	1	0	0	0.0%	0.0%	10	10
12.4 🗸			10	1	1	1	õ	0	0.0%	0.0%	10	10
25 🖌			10	1	1	1	0	0	0.0%	0.0%	10	10
50.4 🗸			10	1	1	1	0	0	0.0%	0.0%	10	10
103.5 🗸			10	0.9	0	1	0.1	0.3162	35.14%	10.0%	9	10
205 🗸			10	0.3	0	1	0.1528	0.483	161.0%	70.0%	3	10
399 🗸			10	0	0	0	0	0		100.0%	0	10

Analyst: <u>YUB</u> QA: JOU Folo 6/13



Analyst: KLB QA: JOU Feb 6/13

ETIS	S Anal	ytical Repo	ort					-	ort Date: Code:			11 (p 1 of 2) 5-3095-6307
Cerioda	aphnia 7	7-d Survival and	d Reproc	luction Te	est				-	Na	utilus Env	ironmental
Analysis ID:11-8057-5412Endpoint:Analyzed:06 Feb-13 10:40Analysis:				•	Reproduction Linear Interpol	ation (ICPIN	Ú)		IS Version: cial Results		.8.4	
Batch I	D:	18-3407-7110	T	est Type:	Reproduction-	Survival (7d)	Ana	lyst:			
Start D	ate:	06 Nov-12 10:1	5 P	rotocol:	EC/EPS 1/RM	/21		Dilu	ent: Lab	oratory Sea	water	
Ending	Date:	13 Nov-12 15:1	0 s	pecies:	Ceriodaphnia	dubia		Brin	e:			
Juratio		7d 5h		ource:	In-House Cult	ure		Age	: <24	h		
Sample	e ID:	00-6932-1982	С	ode:	421C4FE	· · · · ·	,	Clie	nt: Gol	der		,
Sample	e Date:	06 Nov-12	M	laterial:	NO3			Proj	ect:			
Receiv	e Date:	06 Nov-12	S	ource:	Golder							
Sample	e Age:	10h	S	tation:	Sodium Nitrate	e in Water T	ype #2					
Linear	Interpol	ation Options										
X Tran	sform	Y Transform	S	eed	Resamples	Exp 95%	6 CL Me	thod				
_og(X +	1)	Linear	20	085606	200	Yes	Two	o-Point Interp	olation	•		
Point E	Estimate	s	•									
_evel	mg N/	L 95% LCL	95% UC									
C5	3.35	0.5628	15.45					•				,,,
C10	11.88	1.442	25.62									
C15	14.37	2.817	27.61									
C20	16.74	4.965	30.28									
C25	19.47	9.632	33.82									
C40 C50	31.63 44.88	19.97 24.25	52.48 64.01									
	•		04.01		······					<u></u>		
C-mg N		Summary ontrol Type	Count	Mean	Min	Max	alculated V Std Err	Std Dev	CV%	%Effect		
)		egative Control	10	22.5	15	31	1.6	5.061	22.49%	0.0%		
5 5.1		ogaaro oonao.	10	21	12	27	2.087	6.6	31.43%	6.67%		
12.4			10	20.2	9	27	1.943	6.143	30.41%	10.22%		
25			10	15	7	25	2.14	6.766	45.11%	33.33%		
50.4			10	10.5	3	20	1.875	5.93	56.48%	53.33%		
103.5			10	5.5	0	14	1.47	4.649	84.52%	75.56%		
205			10	0.7	0	3	0.3667	1.16	165.6%	96.89%		
399			10	0	0	0	0	0		100.0%		
Reproc	duction	Detail									,	
C-mg N	N/L C	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	N	egative Control	24	21	26	24	15	26	24	19	31	15
5.1			27	15	12	14	27	24	27	24	27	13
12.4			11	27	26	21	23	23	23	9	23	16
25			11	11	12	20	21	8	25	24	7	. 11
50.4			20	6	10	4	.17	10	18	9	8	3
103.5			3	3	8	14	9	2	2	. 11	0	3
205			0	0	0	2	0	0	0	0	2	3
399			0	0	0	0	0	0	0	0	0	0

Analyst: UB QA: JGU Felo 6/13

CETIS Ana	lytical Report		Report Date: Test Code:	06 Feb-13 10:41 (p 2 of 2) 12553b 05-3095-6307		
Ceriodaphnia	7-d Survival and Re	production T	est		Nautilus Environmental	
Analysis ID:	11-8057-5412		Reproduction	CETIS Version: Official Results:	CETISv1.8.4	
Analyzed:	06 Feb-13 10:40	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes	

Analyst: KUB QA: J.G. Feb. 6/13

CETIS™ v1.8.4.29

Client: <u>Golder</u> W.O.#: 12553

Hardness and Alkalinity Datasheet

Butter Type #1 Nove 1/2 SO 1.0 1.1 18 Watter Type #2 Nove 1/2 SO 2.2 2.3 42 Image: So 2.3 42 Image: So 2.3 42 Image: So 1.1 18 Image: So 1.1 18 Image: So 1.1 18 Image: So 1.3 Image: So 1.3 Image: So Image: So Image: So <th></th> <th></th> <th></th> <th>Alkalinity</th> <th></th> <th></th> <th></th> <th colspan="4">Hardness</th>				Alkalinity				Hardness			
Water Type#2 Novlett 2 SO 2.2 2.3 42 SO 17.3 346 Ku3 SO 17.3 17.4 17.5	Sample ID	Sample Date	Volume	HCL/H₂SO₄	HCL/H₂SO₄	Total Alkalinity (mg/LCaCO ₃)	Volume	0.01M EDTA	Hardness	Technician	
Water Type#2 Novlett 2 SO 2.2 2.3 Y2 SO 17.3 346 Ku3 SO 17.3 17.3 17.3 SO 17.3 17.4 17.4	Water Tupe #1	Nov6/12	50	1,0).[18	50				
Reviewed by: JGh Date Reviewed: Feb-5/13	Water Type#2						50			KeB	
Reviewed by: JGh Date Reviewed: Feb-5/13	,.					-					
Reviewed by: JGL Date Reviewed: Feb-5/13											
Reviewed by: JGh Date Reviewed: Feb-5/13	·										
Reviewed by: JGh Date Reviewed: Feb-5/13	· · · · · · · · · · · · · · · · · · ·										
Reviewed by: JGL Date Reviewed: Feb-5/13											
Reviewed by: JGL Date Reviewed: Feb-5/13	·····					· · · · · · · · · · · · · · · · · · ·			-		
Reviewed by: JGh Date Reviewed: Feb-5/13											
Reviewed by: JGh Date Reviewed: Feb-5/13						· · · · · · · · · · · · · · · · · · ·					
Reviewed by: JGh Date Reviewed: Feb-5/13							-		·		
Reviewed by: JGL Date Reviewed: Feb-5/13											
Reviewed by: JGh Date Reviewed: Feb-5/13											
Reviewed by: JGL Date Reviewed: Feb-5/13				t							
Reviewed by: JGh Date Reviewed: Feb-5/13											
Reviewed by: JGh Date Reviewed: Feb-5/13											
Reviewed by: JGh Date Reviewed: Feb-5/13											
\mathbf{I}			Notes:								
\mathbf{I}											
\mathbf{I}	Reviewed by:	· .	JGh			Date Review	ed:	Febru	-/13		
									1		

`

Version 1.0 Issued June 26, 2006

1

Nautilus Environmental

NAUTILUS ENVIRONMENTAL ATTN: Krysta Banack 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received:06-NOV-12Report Date:15-NOV-12 15:12 (MT)Version:FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #:

: L1234232 NOT SUBMITTED

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1234232 CONTD.... PAGE 2 of 4 15-NOV-12 15:12 (MT) Version: FINAL

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time	L1234232-1 water 06-NOV-12	L1234232-2 water 06-NOV-12	L1234232-3 water 06-NOV-12	L1234232-4 water 06-NOV-12	L1234232-5 water 06-NOV-12
	Client ID	CTRL#1	6.25 MG/L N	12.5 MG/L N	25 MG/L N	50 MG/L N
Grouping	Analyte					
WATER						
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	18.2				
	Chloride (Cl) (mg/L)	114				
	Nitrate (as N) (mg/L)	0.0156	6.39	12.7	24.3	49.5
	Sulfate (SO4) (mg/L)	20.8				
Total Metals	Calcium (Ca)-Total (mg/L)	49.4				
	Magnesium (Mg)-Total (mg/L)	5.11				
	Potassium (K)-Total (mg/L)	2.2				
	Sodium (Na)-Total (mg/L)	25.8				

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1234232 CONTD.... PAGE 3 of 4 15-NOV-12 15:12 (MT)

	ALS ENVIRONME				Version: FINA
	Sample ID Description Sampled Date	L1234232-6 water 06-NOV-12	L1234232-7 water 06-NOV-12	L1234232-8 water 06-NOV-12	
	Sampled Time Client ID	100 MG/L N	200 MG/L N	400 MG/L N	
Grouping	Analyte				
WATER					
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)				
	Chloride (Cl) (mg/L)				
	Nitrate (as N) (mg/L)	96.8	199	407	
	Sulfate (SO4) (mg/L)				
Total Metals	Calcium (Ca)-Total (mg/L)				
	Magnesium (Mg)-Total (mg/L)				
	Potassium (K)-Total (mg/L)				
	Sodium (Na)-Total (mg/L)				

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Desc	ription		Parameter	Qualifier	Applies to Sample Number(s)
Duplicate			Chloride (CI)	DLM	L1234232-1, -2, -3, -4, -5, -6, -7, -8
Duplicate			Nitrate (as N)	DLM	L1234232-1, -2, -3, -4, -5, -6, -7, -8
Matrix Spike			Chloride (Cl)	MS-B	L1234232-1
Matrix Spike			Calcium (Ca)-Total	MS-B	L1234232-1
Matrix Spike			Sodium (Na)-Total	MS-B	L1234232-1
Qualifiers for	Individual Para	meters	Listed:		
Qualifier	Description				
DLM	Detection Lim	it Adjus	ted For Sample Matrix Effects		
MS-B	Matrix Spike r	ecovery	could not be accurately calculated due	e to high analyte	background in sample.
est Method F	References:				
ALS Test Code	• • •	latrix	Test Description		Method Reference**
ALK-COL-VA	W	ater	Alkalinity by Colourimetric (Automat	ed)	EPA 310.2
This analysis i colourimetric r		ng proce	edures adapted from EPA Method 310.	2 "Alkalinity". Tot	al Alkalinity is determined using the methyl orange
ANIONS-CL-IC	-VA W	ater	Chloride by Ion Chromatography		APHA 4110 B.
			edures adapted from APHA Method 41 Determination of Inorganic Anions by I		atography with Chemical Suppression of Eluent oby".
ANIONS-NO3-I	C-VA W	ater	Nitrate in Water by Ion Chromatogra	aphy	EPA 300.0
This analysis i detected by U	s carried out usi V absorbance.	ng proce	edures adapted from EPA Method 300.	0 "Determination	of Inorganic Anions by Ion Chromatography". Nitrate is
ANIONS-SO4-I	C-VA W	ater	Sulfate by Ion Chromatography		APHA 4110 B.
			edures adapted from APHA Method 41 Determination of Inorganic Anions by I		atography with Chemical Suppression of Eluent ohy".
MET-TOT-ICP-	VA W	ater	Total Metals in Water by ICPOES		EPA SW-846 3005A/6010B
American Pub States Enviror	lic Health Associonmental Protection	iation, a on Agen	nd with procedures adapted from "Test cy (EPA). The procedures may involve	Methods for Eva	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United uple treatment by acid digestion, using either hotblock or a - optical emission spectrophotometry (EPA Method
* ALS test meth	ods may incorpo	rate mo	difications from specified reference me	thods to improve	performance.
The last two let	ters of the above	e test co	de(s) indicate the laboratory that perfor	med analytical a	nalysis for that test. Refer to the list below:
Laboratory Def	inition Code	Labor	atory Location		
VA			NVIRONMENTAL - VANCOUVER, BR	ITISH COLUMBI	IA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Chain of Custody (electronic)

Date : Nov 6 /12 Page 1 of 1

Sa	mple Collection By:			•							AN/	ALY	SES	RE	QUI	RED				
		Report to	:			Invoice to:														í
C	ompany	Nautilus E	nvironment	al		Nautilus Envir	onmental	-												Poceint Temperature (°C)
Ad	ddress	8664 Com	merce Cou	t	<u> </u>	8664 Commer	ce Court	- 		 ,	÷		а I		·		-		1	
Ci	ity/Prov/Postal Code	Burnaby, B	3C, V5A 4N	7		Burnaby, BC,	V5A 4N7													
Ca	ontact	Krysta Bar	nack			Krysta Banack	< <u> </u>	1												
Pł	none	604- 420-	8773			604- 420- 877	3	1				E						1		
Er	nail	krysta@na	utilusenviro	nmental.co	<u>m</u>	krysta@nautil	usenvironmental.com		6	ing	F	siur	e	യ	£					
	SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Nitrate	Sodium	Potassium	Calcium	Magnesium	Sulphate	Chloride	Alkalinity	-				ſ
	Ctrl #1	Nov 6/12	-		125 mL	1	Day 0 Cerio	x	x	X	х	Х	х	Х	х					
	6.25 mg/L N	Nov 6/12		-	125 mL	1	Day 0 Cerio	x												
	12.5 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x												
	25 mg/L N	Nov 6/12		_	125 mL	1	Day 0 Cerio	x												
	50 mg/L N	Nov 6/12		- <u>-</u>	125 mL	1	Day 0 Cerio	- x												
	100 mg/L N	Nov 6/12			125 mL	1	Day 0 Cerio	x												
	200 mg/L N	Nov 6/12		-	125 mL	1	Day 0 Cerio	x												
	400 mg/L N	Nov 6/12		-	125 mL	1	Day 0 Cerio	×												_
										 										
	PROJECT INFORM	ATION	SA	MPLE REC		RELIQUINSH	ED BY (CLIENT)	_		REL	_IQU	INS	HED	BY	' (CC	DURI	ER)			
CI	ient:		Total # Co	ntainers:		Signature:	Mall			Sig	natu	re:								
Ρ.(O. No.:	<u> </u>	Good Con	dition?		Print: Krysta	Banack			Prin	nt:									
Sh	nipped Via:		Matches S	chedule?		Company: Na	autilus Environment	al		Con	npar	iy:								
<u></u>							ov 6 /12 @ 1630h			Tim	e/Da	te:								
SF	PECIAL INSTRUCTION	IS/COMME	INTS:			RECEIVED B	Y (COURIER)			REC	CEIV	ED E	BY (I	LAE	BOR	ATO	RY)			
						Signature:			ļ	Sigi	natu	re:		U	H	4				
						Print:			Print: (f, f)						50	/				
						Company:				Con	npan	iy:		M	Jt)	7	:3-	PN	λ
						Time/Date:				Tim	e/Da	te:								

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

NAUTILUS ENVIRONMENTAL ATTN: Krysta Banack 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received:06-NOV-12Report Date:08-FEB-13 12:48 (MT)Version:FINAL REV. 2

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #:

Project P.O. #:

Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED

L1234233

Comments:

08-FEB-13: Revision 2: This revision replaces and supersedes previous revision. The Client sample identification have been modified for the ALS samples identify as L1234233-1 and L1234233-4. The modification was requested by Nautilus Environmental.

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1234233 CONTD.... PAGE 2 of 4 08-FEB-13 12:48 (MT) Version: FINAL REV. 2

					vers	ion: FINAL REV
	Sample ID Description Sampled Date Sampled Time	L1234233-1 water 06-NOV-12	L1234233-2 water 06-NOV-12	L1234233-3 water 06-NOV-12	L1234233-4 water 06-NOV-12 CTRL #2	L1234233-5 water 06-NOV-12
	Client ID	25 MG/L N	6.25 MG/L N	12.5 MG/L N	CIRL #2	50 MG/L N
Grouping	Analyte					
WATER						
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	43.3				
	Chloride (Cl) (mg/L)	289			DLM	
	Nitrate (as N) (mg/L)	25.4	6.03	12.4	<0.050	51.8
	Sulfate (SO4) (mg/L)	50.4				
Total Metals	Calcium (Ca)-Total (mg/L)	121				
	Magnesium (Mg)-Total (mg/L)	12.6				
	Potassium (K)-Total (mg/L)	5.5				
	Sodium (Na)-Total (mg/L)	67.0				

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1234233 CONTD.... PAGE 3 of 4 08-FEB-13 12:48 (MT) Version: FINAL REV. 2

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample ID Description Sampled Date Sampled Time Client ID	L1234233-6 water 06-NOV-12 100 MG/L N	L1234233-7 water 06-NOV-12 200 MG/L N	L1234233-8 water 06-NOV-12 400 MG/L N		
Analyte					
Alkalinity, Total (as CaCO3) (mg/L)					
Chloride (Cl) (mg/L)					
Nitrate (as N) (mg/L)	103	203	399		
Sulfate (SO4) (mg/L)		200			
Calcium (Ca)-Total (mg/L)					
Magnesium (Mg)-Total (mg/L)					
Potassium (K)-Total (mg/L)					
	Description Sampled Date Sampled Time Client ID Analyte Alkalinity, Total (as CaCO3) (mg/L) Chloride (Cl) (mg/L) Nitrate (as N) (mg/L) Sulfate (SO4) (mg/L) Calcium (Ca)-Total (mg/L) Magnesium (Mg)-Total (mg/L)	Description Sampled Date Sampled Time Client IDwater 06-NOV-12 100 MG/L NAnalyte100 MG/L NAlkalinity, Total (as CaCO3) (mg/L)103Chloride (Cl) (mg/L) Nitrate (as N) (mg/L)103Sulfate (SO4) (mg/L)103Calcium (Ca)-Total (mg/L) Magnesium (Mg)-Total (mg/L)103	Description Sampled Date Sampled Time Client IDwater 06-NOV-12 100 MG/L Nwater 06-NOV-12 200 MG/L NAnalyteAnalyte200 MG/L NAlkalinity, Total (as CaCO3) (mg/L)Alkalinity, Total (as CaCO3) (mg/L)AnalyteChloride (Cl) (mg/L) Nitrate (as N) (mg/L)103203Sulfate (SO4) (mg/L)103203Calcium (Ca)-Total (mg/L) Magnesium (Mg)-Total (mg/L)103203	Description Sampled Date Sampled Time Client IDwater 06-NOV-12water 06-NOV-12water 06-NOV-12100 MG/L N100 MG/L N200 MG/L N400 MG/L NAnalyte100 MG/L N100 MG/L N100 MG/L NAlkalinity, Total (as CaCO3) (mg/L)103203399Chloride (Cl) (mg/L)103203399Sulfate (SO4) (mg/L)103203399Calcium (Ca)-Total (mg/L)103103103Potassium (K)-Total (mg/L)103103103	Description Sampled Date Sampled Time Client IDwater

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Descr	iption		Parameter	Qualifier	Applies to Sample Number(s)
Duplicate			Chloride (CI)	DLM	L1234233-1, -2, -3, -4, -5, -6, -7, -8
Duplicate			Nitrate (as N)	DLM	L1234233-1, -2, -3, -4, -5, -6, -7, -8
Matrix Spike			Chloride (Cl)	MS-B	L1234233-1
Matrix Spike			Calcium (Ca)-Total	MS-B	L1234233-1
Matrix Spike			Sodium (Na)-Total	MS-B	L1234233-1
Qualifiers for	Individual Parar	neters	Listed:		
Qualifier	Description				
DLM	Detection Limi	t Adjust	ed For Sample Matrix Effects		
MS-B	Matrix Spike re	ecovery	could not be accurately calculated due	to high analyte	background in sample.
est Method R	eferences:				
ALS Test Code	Ma	atrix	Test Description		Method Reference**
ALK-COL-VA	Wa	ater	Alkalinity by Colourimetric (Automate	ed)	EPA 310.2
This analysis is colourimetric m		g proce	dures adapted from EPA Method 310.2	2 "Alkalinity". Tot	al Alkalinity is determined using the methyl orange
ANIONS-CL-IC-	VA Wa	ater	Chloride by Ion Chromatography		APHA 4110 B.
			dures adapted from APHA Method 411 Determination of Inorganic Anions by Io		atography with Chemical Suppression of Eluent oby".
ANIONS-NO3-IC	C-VA Wa	ater	Nitrate in Water by Ion Chromatogra	iphy	EPA 300.0
This analysis is detected by UV		g proce	dures adapted from EPA Method 300.0) "Determination	of Inorganic Anions by Ion Chromatography". Nitrate is
ANIONS-SO4-IC	C-VA Wa	ater	Sulfate by Ion Chromatography		APHA 4110 B.
			dures adapted from APHA Method 411 Determination of Inorganic Anions by Io		atography with Chemical Suppression of Eluent ohy".
MET-TOT-ICP-V	Y A Wa	ater	Total Metals in Water by ICPOES		EPA SW-846 3005A/6010B
American Public States Environ	ic Health Associa mental Protection	ation, ai n Ageno	nd with procedures adapted from "Test cy (EPA). The procedures may involve	Methods for Eva preliminary sam	ation of Water and Wastewater" published by the aluating Solid Waste" SW-846 published by the United uple treatment by acid digestion, using either hotblock or a - optical emission spectrophotometry (EPA Method
* ALS test metho	ods may incorpor	ate mo	difications from specified reference me	thods to improve	performance.
The last two lette	ers of the above	test coo	de(s) indicate the laboratory that perform	med analytical ar	nalysis for that test. Refer to the list below:
Laboratory Defi	nition Code	Labor	atory Location		
VA			NVIRONMENTAL - VANCOUVER, BR		

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Chain of Custody (electronic)

Date : Nov 6 /12 Page 1 of 1

Sample Collection By:	-									ANA	LYS	SES	REQ	QUIF	RED			
	Report to	:			Invoice to:													ြ ၃
Company	Nautilus E	nvironment	al		Nautilus Envir	onmental	1											ire ('
Address	8664_Com	merce Cou	rt		8664 Comme	rce Court]											atr
City/Prov/Postal Code	Burnaby, I	BC, V5A 4N	7		Burnaby, BC, V5A 4N7			ľ										Del
Contact	Krysta Ba	nack			Krysta Banac	k]											e E
Phone	604- 420-	8773			604- 420- 877	'3					ع							Ta
Email	krysta@na	autilusenviro	onmental.com	<u>m</u>	krysta@nautil	usenvironmental.com		_ ج	sium	ε	siu	ge	e	λ				Receipt Temperature
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	Nitrate	Sodium	Potassium	Calcium	Magnesium	Sulphate	Chloride	Alkalinity				ľ
Ctrl #2	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x	X	х	х		1		x				
6.25 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x											
12.5 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x											
25 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x											
50 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	×											
100 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	×		$\ \ \ $	i De hi							H	
200 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x		∦∥.	ľ								
400 mg/L N	Nov 6/12	-	-	125 mL	1	Day 0 Cerio	x	1			L1:	234)	233	-CO	FC			
									l	J		I .						
PROJECT INFORM	ATION	SA SA	MPLE REC	EIPT	RELIQUINSH	ED BY (CLIENT)			REL	IQUI	NSF	IED	BY	(CO	URIE	R)		
Client:		Total # Co	ntainers:		Signature: 🥤	Van.			Sigr	natur	e:							
P.O. No.:		Good Con	dition?		Print: Krysta		_		Prin	it:	<u> </u>							
					Company: N	autilus Environmenta	 al		Con	npan	y:				<u> </u>			·
Shipped Via:		Matches S	chequie?		Time/Date: N	ov 6 /12 @ 1630h			Tim	e/Dat	te:							
SPECIAL INSTRUCTION	NS/COMME	ENTS:			RECEIVED B	Y (COURIER)			REC	EIVE	D E	BY (L	AB	ORA	TOR	r)		
					Signature:				Sigr	natur	e:		Cu	ilt				
					Print:				Prin	t:		··		<i>.</i>			18	hyr
					Company:				Con	ipan	y:							<u> </u>
					Time/Date:				Time	e/Dat	:e:		M	lovk	- -	1- 3	> (лИ

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

NAUTILUS ENVIRONMENTAL ATTN: Krysta Banack 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7

Date Received: 14-NOV-12 Report Date: 21-NOV-12 13:28 (MT) Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

NOT SUBMITTED

L1237941 Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers:

Legal Site Desc:

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1237941 CONTD.... PAGE 2 of 4 21-NOV-12 13:28 (MT) Version: FINAL

						Version: FINA						
		Sample ID Description Sampled Date	L1237941-1 Water 14-NOV-12	L1237941-2 Water 14-NOV-12	L1237941-3 Water 14-NOV-12	L1237941-4 Water 14-NOV-12	L1237941-5 Water 14-NOV-12					
		Sampled Time Client ID	CTRL #1	6.25 MG/L N	12.5 MG/L N	25 MG/L N	50 MG/L N					
Grouping	Analyte											
WATER												
Anions and Nutrients	Nitrate (as N) (mg/L)		0.0063	6.08	12.5	25.7	46.5					

ALS ENVIRONMENTAL ANALYTICAL REPORT

				vers		FINAL
	Sample ID	L1237941-6	L1237941-7			
	Description	Water	Water			
	Sampled Date		14-NOV-12			
	Sampled Time					
	Client ID	100 MG/L N	200 MG/L N			
Grouping	Analyte					
WATER		_				
Anions and	Nitrate (as N) (mg/L)	99.7	212			
Nutrients						
			1			

L1237941 CONTD.... PAGE 3 of 4 21-NOV-12 13:28 (MT) Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ANIONS-NO3-IC-VA	Water	Nitrate in Water by Ion Chromatography	EPA 300.0
This analysis is carried of detected by UV absorbation		dures adapted from EPA Method 300.0 "Determir	nation of Inorganic Anions by Ion Chromatography". Nitrate is
* ALS test methods may i	ncorporate moc	lifications from specified reference methods to imp	prove performance.
The last two letters of the	e above test co	de(s) indicate the laboratory that performed analy	ytical analysis for that test. Refer to the list below:
Laboratory Definition C	ode Labor	atory Location	
VA	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH COI	LUMBIA, CANADA
Chain of Custody Numb	ers:		
GLOSSARY OF REPOR	-		
		n behaviour to target analyte(s), but that does no o samples prior to analysis as a check on recove	
mg/kg - milligrams per kil			
		sed on wet weight of sample. ed on lipid-adjusted weight of sample.	
mg/L - milligrams per litre	•	eu on lipiu-aujusteu weignt of sample.	
< - Less than.			
•		known as the Limit of Reporting (LOR).	
N/A - Result not available	e. Refer to qua	lifier code and definition for explanation.	
Test results reported rela	te only to the s	amples as received by the laboratory.	
IN ESS OTHERWISE	STATED ALL	SAMDIES WERE RECEIVED IN ACCEPTARIE	CONDITION

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

Chain of Custody (electronic)

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Date : Nov13/12 Page 1 of 1

Sample Collection By:								ļ	NALYS	ES RE				
	Report to	,			Invoice to:	<u> </u>	+	<u> </u>						\dashv
														Û
Company		nvironmenta		·	Nautilus Envi									<u>e</u>
Address		merce Cour			8664 Comme									l të
City/Prov/Postal Code			7		Burnaby, BC	, V5A 4N7				Ē		11	· ·	9
Contact	Krysta Bar				Krysta Banad								eu	
Phone	604-420-	8773			604- 420- 87	7								
Email	krysta@na	autilusenvirc	onmental.com	m	krysta@nauti								Receipt Temperature	
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS	N							Re
(412#1	Nevi3fit,	14112	-	125mL	١	Day7 (erio								
6.25 mg/LN		-	-	<u> </u>	1		X				\uparrow	+ †		┝ <u></u>
12.5 mg/LN		_				1	ÎX			··	+	-++		
as my KN	<u>├- </u>			├ ──┤	<u>├ </u>	<u>+−−−</u>	1:7十	╾╁╴╀╌			┨─┨─	╺╋╴╋		├
SO MIL N	<u>├─<u></u>╎</u>	<u>├</u> '			<u>├</u>	<u>├</u>	+				╋╼╌┠──			┟──╌╂────
···· A)	╉╾╂╼╌╂			<u>├</u>	<u>├</u>	<u> </u>	++++		╶┼╌┿		╞╌┠╴			┝╼┼──
100 mg/L N			-	<u> </u>	<u>├ }</u>	<u>+</u>	+				┨{	_		
200 mg16 N	<u> </u>	<u> </u>	<u>⊢'</u> '		<u> </u>	↓V	$+\times+$		-+-+-		┠─┼─			
	 '	ļ!	└─── ′	!		ļ	-				.			
		└─── ′	L'	<u> </u>	<u> </u>									I
		<u> '</u>	t'	!			T							
PROJECT INFORM	ATION	SA	MPLE REC	EIPT	RELIQUINSI	HED BY (CLIENT)	- -	RELIC	QUINSH	ED B		JRIER)		
Client:		Total # Co	ntainers:		Signature: 🦳	Barre.		Signa	ture:					
P.O. No.:		Good Con	dition?		Print: Krysta		,	Print:						
Shipped Via:		Matches S	abadula?		Company: N	Nautilus Environment	al	Comp	any:					
Jilippou via.		Matches C	chequie :		Time/Date: N	Novi} /12 @ 1630h		Time/i	Date:					
SPECIAL INSTRUCTION	NS/COMME	ENTS:						RECE	IVED B	Y (LAI	BORA	TORY)		
-					Signature:	<u> </u>		Signa	ture	N	No	2/14	1 17	<u>12</u> 1
Athn Can	Dan	$\langle \langle \rangle$			Print:		Print:		<u> </u>		- 0 1	<u> </u>	<u>} </u>	
	C)		1	Company:		Comp	any:		·	<u> </u>			
	۰.			Г	Time/Date:		Time/l	-		~~~~~	·			

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

NAUTILUS ENVIRONMENTAL ATTN: Krysta Banack 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received:15-NOV-12Report Date:21-NOV-12 14:57 (MT)Version:FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #:

#: L1237946 NOT SUBMITTED

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1237946 CONTD.... PAGE 2 of 4 21-NOV-12 14:57 (MT) Version: FINAL

						Vers	ion: FINAL
		Sample ID Description Sampled Date Sampled Time Client ID	L1237946-1 Water 13-NOV-12 CTRL #2	L1237946-2 Water 13-NOV-12 6.25 MG/L N	L1237946-3 Water 13-NOV-12 12.5 MG/L N	L1237946-4 Water 13-NOV-12 25 MG/L N	L1237946-5 Water 13-NOV-12 50 MG/L N
Grouping	Analyte						
WATER	, and yes						
Anions and Nutrients	Nitrate (as N) (mg/L)		0.056	6.09	12.5	24.6	49.0

ALS ENVIRONMENTAL ANALYTICAL REPORT

				vers	FINAL
	Sam	ple ID L1237946-	6 L1237946-7		
	Daga	ription Water	Water		
	Desc		2 13-NOV-12		
	Sample		2 10-1000-12		
	Sample	ient ID ^{100 MG/L N}	200 MG/L N		
	Ci	ient ID 100 MG/L N			
- ·					
Grouping	Analyte				
WATER					
	Nitrata (as Ni) (as s/l.)				
Anions and Nutrients	Nitrate (as N) (mg/L)	104	207		
Nutrients					

L1237946 CONTD.... PAGE 3 of 4 21-NOV-12 14:57 (MT) Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
ANIONS-NO3-IC-VA	Water	Nitrate in Water by Ion Chromatography	EPA 300.0
This analysis is carried of detected by UV absorbation		dures adapted from EPA Method 300.0 "Determir	nation of Inorganic Anions by Ion Chromatography". Nitrate is
* ALS test methods may i	ncorporate moc	lifications from specified reference methods to imp	prove performance.
The last two letters of the	e above test co	de(s) indicate the laboratory that performed analy	ytical analysis for that test. Refer to the list below:
Laboratory Definition C	ode Labor	atory Location	
VA	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH COI	LUMBIA, CANADA
Chain of Custody Numb	ers:		
GLOSSARY OF REPOR	-		
		n behaviour to target analyte(s), but that does no o samples prior to analysis as a check on recove	
mg/kg - milligrams per kil			
		sed on wet weight of sample. ed on lipid-adjusted weight of sample.	
mg/L - milligrams per litre	•	eu on lipiu-aujusteu weignt of sample.	
< - Less than.			
•		known as the Limit of Reporting (LOR).	
N/A - Result not available	e. Refer to qua	lifier code and definition for explanation.	
Test results reported rela	te only to the s	amples as received by the laboratory.	
IN ESS OTHERWISE	STATED ALL	SAMDIES WERE RECEIVED IN ACCEPTARIE	CONDITION

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Nautilus Environmental

· er

Chain of Custody (electronic)

X British Columbia: 8664 Commerce Court, Burnaby, BC, V5A 4N7

Date : Nov 1/12 Page 1 of 1

Sample Collection By:									ANALY	SES	REQ	JIRE	D			
	Report to);	·		Invoice to:								T]	ିତ
Company	Nautilus E	Invironment	al	· ·	Nautilus Envir	ronmental	-									Receipt Temperature (°C)
Address		imerce Cou			8664 Comme					. ₋	_ !				- -	atui
City/Prov/Postal Code	Burnaby,	BC, V5A 4N	7		Burnaby, BC,		-									beu
Contact	Krysta Ba	nack			Krysta Banac	k			1							e a
Phone	604- 420-	8773		· · · · · · · · · · · · · · · · · · ·	604- 420- 877	⁷ 3										⊢ ∺
Email	<u>krysta@n</u>	autilusenviro	onmental.co	m	krysta@nautil	usenvironmental.com	1									Gei
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	# OF CONTAINERS	COMMENTS										Å
CVL#2	NOU13/12	-	-	125mL	l	Day7(erio	X					+	┼╌┼	+		
6.25 mg/LN	{	-	-	[· · · · · · · · · · · · · · · · · · ·	X									-
2.5 mg/LN		-	_				X			\uparrow		1				
25 mg LN		_	_				∇		-				┢╼╍┼╴			
SO MYLN		<u> </u>	_				ヤント						++		++	
100 mg/LN			_	- (†\$†						╞─┼		++	
200 MKN		-				/				┝╌┤╴		1		-	$\left - \right $	
	×			w	<u>↓¥</u>							┼──	┞╍┼╴		+	
						····				┝─┼╸		+			╂╶┥	<u> </u>
										┝─┼╴		+	┟╼╼╇╍		╀─┤	
PROJECT INFORM		SA		EIPT	RELIQUINSH	ED BY (CLIENT)			QUINS				L			· · · - <u>- · · · ·</u>
Client:		Total # Co	ntainers:		Signature:	Marin		Signa								
P.O. No.:		Good Con	dition?		Print: Krysta			Print			<u>.</u>		<u> </u>			
Chinned View						autilus Environmen	tal	Com					<u> </u>	<u> </u>		
Shipped Via:		Matches S	cneaule?		Time/Date: No	ov 🖞 /12 @ 1630h			Date:				<u> </u>			<u> </u>
SPECIAL INSTRUCTION	NS/COMM	ENTS:						RECE	IVED	BY (L	ABO	RATO	DRY)	<u> </u>		<u> </u>
					Signature:				iture:	AT		<u> </u>				
Attln Con	Dana				Print:		<u></u>	Print:	N	Ŵ	JC	t t	ΓĘ	50	10	3°
					Company:			Comp	any:		-	,	<u> </u>			-4
					Time/Date:			Time/	Date:							

Additional costs may be required for sample disposal or storage. Net 30 unless otherwise contracted.

APPENDIX B – *Pimephales promelas* toxicity test data

Fathead Minnow Test Summary Sheet

(7-d Pimephales promelas Survival and Growth Test)

Client:	Golder	
Work Order No.:	12605	

Sample Information:

Sample ID:	Water Type 1
Sample Date:	Jan 16/13
Date Received:	Jan 16/13
Sample Volume:	60L

Dilution Water (initial water quality):

Туре:	140	Omg/L Hardness Lab Water
Temperature (°C)	26	
pH	7.5	
Dissolved Oxygen (mg/L)	7.6
Hardness (mg/L CaCO ₃)		142
Alkalinity (mg/L CaCO ₃)		16

Test Organism Information:

Batch No.:	011613
Source:	Aquatic Biosystems, CO
Age:	<24 hours

NaCl Reference Toxicant Results:

Reference Toxicant ID:	PP73	
Stock Solution ID:	n/a	
Date Initiated:	16-Jan-13	
7-d EC50 (95% CL):	4.5 (4.0 - 5.1)	-
7-d IC50 (95% CL):	4.8 (3.5-5.7) - Kol	
	5.0 (3.7-5.7)	

Survival:

Reference Toxicant Mean and Historical Range:

Biomass:

Reference Toxicant Mean and Historical Range:

4.2 (2.9 - 6.0) CV (%): 20

CV (%):

15

Test Results:

	Survival	Biomass
LC25 mg/L N (95% CL)	n/a	
LC50 mg/L N (95% CL)	433.1 (377.6 - 496.7)	
IC25 mg/L N (95% CL)		307.0 (220.5 - 550.5)
IC50 mg/L N (95% CL)		457.5 (233.3 - 622.8)

4.8 (3.6 - 6.3)

Reviewed by:

Jou

Jan. 30/13 Date reviewed:

Start Date/Time: Jan 16/13 @ 1430h Test Species: Pimephales promelas

Test Validity Criteria:

The heat is invalid if :

1) for the canital solutions, the combined and camulative incidence of any mortalities, or fish showing loss of equilibrium or other signs of angucal swimming behavior, is. 3/20%

 the average dry weight of the surviving control tab does not, attain 250 up when the tab are direct and weighed.

WG Range

T("C)=1	No. 14 10-1	Parti inc.	and the set of	1.16.16	1. 10. 10. 1	- 14 A	6.44.6.6
1.1.21=4	600 B 111	Pri (18	COLOR DO	合待 医	0.00.00()	en ei	医胸肌 医边

7-d Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client: Sample ID: Work Order #:	Golder Water 12605	Vater Type 1 (140 Hardness) (brown)					Start Date & Time: 16-Jan-13 @ 1430h Stop Date & Time: 23-Jan-13 @ 1455h Test Species: Pimephales promelas								
Concentration	0		1		2		3		4		5		6		
Control	init.	old	new	old	new	old	new	old	new	old	new	old	new	final	
Temperature (°C)	25.5	24.0	25.5	245	Up.o	250	263	250	20,0	25.0	25.0	26.0	25.0	24.0	
DO (mg/L)	7.6	7.0	7.7	6.3	7.4	6,2	73	63	72	6.5	7.6	6.5	8.3	26	
pH	7,5	7.4	7.4	6.9	7.2	20	7.2	7.3	27	7-1	7.4	7-0	73	71	
Cond. (µS/cm)	479	4	87		()		516		524		550		চ্ছট		
Initials	KLB	CJL	KIL KIL				\wedge			JU	1FJL	S I		KFL	

							Da	ays						
Concentration	0		1		2		3		4		5		6	7
25	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.5	24.0	25.5	25.0	26.0	250	26,2	2510	20.0	26.0	25.0	26.0	25.0	26.0
DO (mg/L)	7.6	6.9	77	6-5	7.4	6,3	73	6.3	2.2	6.3	7.6	6.4	8.43	25
рН	7.3	7.2	1.4	6.9	7.2	72	アン	ች3	27	7-1	7.3	7-0	7.4	71
Cond. (µS/cm)	682	706		1	+16	์ <i>ร</i> :	22	7	-28	7	65	F	85	864
Initials	KUB	KJL		r	れ		~	2		JW	IKJL	div		152

							Da	ays						
Concentration	0		1		2		3		4		5		6	7
50	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	35.0	24.0	25.5	25.0	Upio	250	20 20	2573	260	25.5	25.0	26.0	25-0	260
DO (mg/L)	7.6	1.2	7.7	6.7	7.4	6.2	7.3	64	7.2	6.7	7.6	6.5	8.83	7.6
рН	7.3	7-1	7.3	7.0	72	میر	7.6	73	7.5	7.1	7.3	7-0	7.4	7-1
Cond. (µS/cm)	884	91	912		74	୍	27	3	20	96	9	100	00	1074
Initials	WB	KJL		K.	TL		~	1		JWI	KJL	w		KTK

							Da	ays							
Concentration	0		1		2		3		4		5		6	7	
100	init.	old	new	old	new	old	new	old	new	old	new	old	new	final	
Temperature (°C)	25.0	24.0	25.0	25-0	26.0	2520	21.70	2500	24,0	26.0	25.0	26.0	24.0	24.30	包
DO (mg/L)	76	7-0	2.7	6.0	7.5	6/1	23	6.2	72	6.8	7-6	6.8	8.53	7.4	
pH	1.3	2-1	7.2	7-0	7.2	৴৽	76	72	37	7-1	73	7-0	7.4	7.1	
Cond. (µS/cm)	1265	13	w	1	515	12	95	12	83	13	86	14	22	1528	1
Initials	Yub	KIL	/	K:	JL.		\sim	^		JW	1456	NIC	1	Kor	1

DO meter:	DO-1	pH meter:	pH-1	Conductivity meter:	<u> </u>
[Control			Analysts:	KJL, AUD, KLB, Ju
Hardness*	(42				
Alkalinity*	16			Reviewed by:	JOU
* mg/L as CaCO3				Date reviewed:	Jan-29/13
Sample Description:	clear		·		
Comments:					

7-d Chronic Freshwater Toxicity Test **Initial and Final Water Quality Measurements**

Client: Sample ID: Work Order #:	Golder Water 12605	Type 1	(140 Ha	rdness) (brou	n)		Date 8	& Time: & Time: becies:	23-Jan	-13 @		h		
% (V/V) mglLN		Days													
Concentration	0	0 1 2 3 4 5 6												7	
200	init.	old	new	old	new	old	new	old	new	old	new	old	new	final	
Temperature (°C)	25.0	24.0	25.0	25.0	260	25.3	2.,>	2572	20	25.5	25.0	26-0	24.0	26-0	
DO (mg/L)	7.6	6.9	2.7	6.3	7.5	61	73	63	712	6.5	76	6.7	8.73	7-4	
pH	7.2	7.1	2.3	6-9	7.2	71	73'S	7.2	ンで	70	7-3	7.0	7.4	7-1	
Cond. (µS/cm)	1999	213	ö	20	60	-U	دلا	20	40	21	35	22	20	2360	
Initials	MB													kge	

	Days													
Concentration	0		1		2		3		4		5		6	7
400	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.5	24.0	25.0	25.0	26.0	2000	260	2000	20-3	25·D	24.5	26.0	24.0	26.0
DO (mg/L)	7.6	7-1	7.7	6.7	7.6	61	7,3	6.2	7-3	6.8	7.6	7-0	8.93	76
pH	7.2	7-1	7-3	6-9	2.2	7.1	77	72	76	7-0	7-3	7.0	7.3	71
Cond. (µS/cm)	3450	35	70	31	150	35	70	350	à	37	60	37:	30	4030
Initials	Xcb	KJL		K			γ	~	-	SWI	1ctl	aw		Kor

							Da	ays				_		
Concentration	0		1		2		3		4		5		6	7
800	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.5	24.0	2500	250	26.0	2000	No	150	260	25.5	78.va		24.0	2600
DO (mg/L)	7.6	7.0	77	6.2	7.7	6,2	27	63	73	6.9	750	7.2	8.53	216
рН	7.2	7.0	7-3	6-9	7.2	70	75	72	7,5	7.1	7.3	7-0	7.3	72
Cond. (µS/cm)	6320	64	v	62	10	6 37	ro	634	6		190	65	60	6970
Initials	UB	150		K	TL .			A		JU	(KIL	Jiv		KR

							Da	ays						
Concentration	0		1		2		3		4		5		6	7
1600	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.5	ИO	24.0	25.0	26.0	257	24,00	2573	26,3					
DO (mg/L)	7.6	20	7.7	68	8.0	6 4	73	6.3	73					
pН	7.2	69	22	6-8	7.1	22	75	772	7,5					
Cond. (µS/cm)	11740	110	610	10	990	10	60	11	630					
Initials	YUB	VI		Ke	JL		-	~						

DO meter:

pH meter:

DO-1

Control

142

16

pH-1

Conductivity meter:

C-1

KJL, AND, KUB, JW

JOU

Reviewed by: Date reviewed:

Analysts:

* mg/L as CaCO3 Sample Description:

Hardness*

Alkalinity*

Comments:

7-d Fathead Minnow Toxicity Test Daily Survival

Client:	Golder
Sample ID:	Water Type 1 (140 Hardness)
Work Order #:	12605

Start Date & Time: <u>16-Jan-13</u> (0) (430) Stop Date & Time: <u>23-Jan-13</u> (0) (455)

Test Species: Pimephales promelas

Concentration	2-1-1-			Day of T	est - No.	of Surviv	ors		
(mg/L N)	Rep	1	2	3	4	5	6	7	Comments
Control	A	10	lo	10	IP	10	10	10	
	В	10	12			10	10	(0	
, ,	С	10	د			10	10	9	
25	Α	10	lə			10	lo	0	
	В	10	p			10	io	()	
	С	10	10			()	18	10	
50 ·	Α	ر٥	(7			10	0	đ	
	В	jÛ	10			10	10	lo	
	С	(0	iD			lo	10	9	
100	Α	12	(>			10	6	9	
	В	[p 0	0			Co	6	9	· · · · · · · · · · · · · · · · · · ·
	С	10	()			6	10	10	
200	Α	jo	10			10	P	a	and the second secon
	В	G	G			P	D	10	
	С	10	10			10	q	9	× ·
400	Α	10	10			8	8	6	
	В	0	10			9	7	6	
	C	0	Ю	9	J	4	6	ß	
800	Α	1050 10	1	4	ତ	~			
	В	10	9	53	2	2	1	4	
	С	0	9	3	ß	1	l	D	
1600	Α	10	2	D					
	В	(0	ν	0					
	С	í0	l	1	0				
	Α								
	В								
	С								
	Α								
•	В								
	C								
Tech Initials		KJL	KIL	N	~	Kor	KSV	kou	
Legend:	1- 2-	Fish dy Fish sh	-	oss of eq	uilibriur	n			

3- Fish showing atypical swimming

Jou

Comments:

Reviewed by:

Date reviewed:

Jan. 29/13

Fathead Minnow Toxicity Test Data Sheet Dry Weight Data

Client:

Golder

Start Date & Time: 16-Jan-13 @ |43.0h

Sample ID: Water Type 1 (140 Hardness)

Termination Date & Time: 23-Jan-13

3-Jan-13 Qi455h

Work Order No. 12605 د

(mg/L N) promu Pan weight Pan + organism Sample ID No. weighed Initials Rep Pan No. No. alive Initials (mg) (mg) KOL KJL KJL 10 1013 . 58 1019.65 10-19-10 Control Α 1 10 1020.93 10 1014.33 2 в 9 1032.45 9 1026.58 С 3 1008.30 1001 72 10 10 25 Α 4 $(\mathcal{O}$ (060.8b 10 1054-85 в 5 1023.19 10 1017-08 10 С 6 1052.85 ÍØ 7 6 1047.29 50 Α (026.37 10 1020-44 lo в 8 9 9 1040.42 1046.30 С 9 1037.3**%**3 1043.42 10 10 100 Α 10 los1.53 10 1045 - 17 10 в 11 1045.01 (0 1039.56 С p 12 1042.56 1035-49 D 10 200 Α 13 (048.410) 1041 - 90 10 в 14 10 a 1044.34 9 1037.97 С 15 6 6 612.46 1007.78 400 16 Α 6 6 1017.52 1021.11 в 17 3 3 1000 . 75 1002-74 С 18 999.86 O О 800 Α 19 1023.45 1 1023 . 33 в 20 1021.462 Ð 11 D $\sqrt{}$ С 21 1600 Α в С

Comments:

Reweighed pans: 6-1023.11 12-1044.97

Reviewed by:

JOh

Date Reviewed: Jan. 29/13

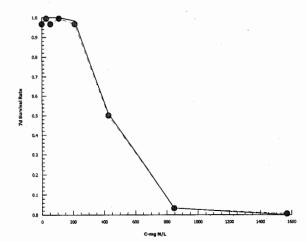
Generated: March 17, 2009

ETIS Anal	ytical Repo	ort							port Date: st Code:	28 Jan-13 14:11 (p 1 of 12605c 09-1579-095
athead Minno	w 7-d Larval Su	urviva	l and Growt	h Tes	st		./			Nautilus Environmenta
nalysis ID: nalyzed:	02-7922-0053 28 Jan-13 14:08	3	Endpoint: Analysis:		urvival Rat le 2x2 Con	e tingen cy Tal	ble		TIS Version: icial Results:	CETISv1.8.4 Yes
Batch ID:	15-8754-4616		Test Type:	Grov	wth-Surviva	ll (7d)		An	alyst: Kare	n Lee
Start Date:	16 Jan-13 14:30)	Protocol:	EPA	/821/R-02-	013 (2002)				oratory Water
Inding Date:	23 Jan-13 14:55	5	Species:	Pim	ephales pro	melas		Bri	ne:	-
Duration:	7d Oh		Source:	Aqu	atic Biosys	tems, CO		Ag	e: <24h	I
Sample ID:	07-1225-1114		Code:	2A7	416EA			Cli	ent: Gold	er
Sample Date:	16 Jan-13		Material:	NO3	3			Pre	oject:	
Receive Date:	16 Jan-13		Source:	Gold	ler					
Sample Age:	14h		Station:	Sod	ium Nitrate	in Water Ty	pe #1			
Data Transform	n	Zeta	Alt H	lyp	Trials	Seed			Test Resu	lt
Intransformed			C > T		NA	NA			Passes 7d	survival rate
Fisher Exact T Sample 0.11 Fest Acceptab	vs Control Lab Water	-	Test	Stat	P-Value 1.0000	P-Type Exact	Decision Non-Signi	i(α:5%)	ct	
Attribute	Test Stat	TAC	l imits		Overlap	Decision				
Control Resp	1	0.8 -			Yes		ceptability	Criteria		
Data Summary	1									
C-mg N/L	Control Type	NR	R		NR + R	Prop NR	Prop R	%Effect	:	
)	Lab Water	30	0		30	1	0	-3.45%		
).11	Negative Contr	29	1		30	0.9667	0.03333	0.0%		
'd Survival Ra	te Detail									
C-mg N/L	Control Type	Rep	1 Rep 2	2	Rep 3					
)	Lab Water	1	1		1					
).11	Negative Contro	11	1		0.9					

CETIS™ v1.8.4.29

Analyst:____

QA: 16h Jan. 30/13


CETIS Ana	lytical Rep	oort					•	ort Date: Code:	28		:11 (p 1 of 1 09-1579-095
Fathead Minne	ow 7-d Larval	Survival ar	d Growt	h Test					Na	autilus En	vironmenta
Analysis ID:	09-8202-8490		dpoint:	7d Survival Rat				IS Version:	CETISV	1.8.4	
Analyzed:	28 Jan-13 14	:08 Ar	alysis:	Untrimmed Spe	earman-Kärbe	r	Offic	cial Results:	Yes		
Batch ID:	15-8754-4616	6 Te	st Type:	Growth-Surviva	al (7d)		Ana	lyst: Kare	en Lee		
Start Date:	16 Jan-13 14	:30 Pr	otocol:	EPA/821/R-02-	-013 (2002)		Dilu	ent: Labo	oratory Wa	ter	
Ending Date:	23 Jan-13 14	:55 Sp	ecies:	Pimephales pro	omelas		Brin	e:			
Duration:	7d Oh	Sc	urce:	Aquatic Biosys	tems, CO		Age	: <24	r		
Sample ID:	07-1225-1114	4 Co	de:	2A7416EA			Clie	nt: Gold	ler		
Sample Date:	16 Jan-13	Ma	terial:	NO3			Proj	ect:			
Receive Date:	16 J a n-13	Sc	urce:	Golder							
Sample Age:	14h	St	ation:	Sodium Nitrate	in Water Type	e #1					
Spearman-Kä	rber Estimate	s									
Threshold Op	tion	Threshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCI	-	
Control Thresh	old	0.03333	0.00%	6 2.637	0.02976		433.1	377.6	496.7		
Test Acceptab	oility Criteria										
Attribute	Test Sta	at TAC Lin	nits	Overiap	Decision						
Control Resp	0.9667	0.8 - NL		Yes	Passes Acc	æptabilit y C	riteria				
7d Survival Ra	ate Summary		·		Calcula	ted Variate	e(A/B)				
						04 d E	044 0	01/9/	0/ Effect		Б

C-mg N/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0.11	Negative Control	3	0.9667	0.9	1	0.03333	0.05773	5.97%	0.0%	29	30
28.6	-	3	1	1	1	0	0	0.0%	-3.45%	30	30
55.85		3	0.9667	0.9	1	0.03333	0.05773	5.97%	0.0%	29	30
110.5		3	1	1	1	0	0	0.0%	-3.45%	30	30
212.5		3	0.9667	0.9	1	0.03333	0.05773	5.97%	0.0%	29	30
428		3	0.5	0.3	0.6	0.1	0.1732	34.64%	48.28%	15	30
846.5		3	0.03333	0	0.1	0.03333	0.05774	173.2%	96.55%	1	30
1570		3	0	0	0	0	0		100.0%	0	30

7d Survival Rate Detail

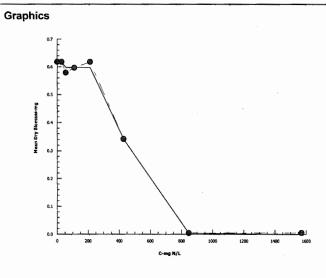
C-mg N/L	Control Type	Rep 1	Rep 2	Rep 3	
0.11	Negative Control	1	1	0.9	
28.6		1	1	1	
55.85		1	1	0.9	
110.5		1	1	1	
212.5		1	1	0.9	
428		0.6	0.6	0.3	
846.5		0	0.1	0	
1570		0	0	0	

Graphics

CETIS Ana	lytical Repo	rt					•	ort Date: Code:		Jan-13 14:1 12605c 09	
Fathead Minne	ow 7-d Larval Su	irvival and	Growth	Test		i.			Na	utilus Envi	ronmenta
Analysis ID:	11-2283-3052	End	point:	Mean Dry Biom	ass-mg		CETI	S Version:	CETISv1	.8.4	
Analyzed:	28 Jan-13 14:11	Anai	ysis:	Parametric-Two	Sample		Offic	ial Results:	Yes		
Batch ID:	15-8754-4616	Test	Type:	Growth-Surviva	l (7d)		Anai	yst: Kare	en Lee		
Start Date:	16 Jan-13 14:30			EPA/821/R-02-0	. ,		Dilue		oratory Wate	er	
Ending Date:	23 Jan-13 14:55			Pimephales pro			Brine				
Duration:	7d Oh	Sou	rce:	Aquatic Biosyst	ems, CO		Age:	<24	n		
Sample ID:	07-1225-1114	Cod	e:	2A7416EA			Clier	nt: Gok	der		
Sample Date:	16 Jan-13	Mate	erial:	NO3			Proje	ect:			
Receive Date:	16 Jan-13	Sou	rce:	Golder							
Sample Age:	14h	Stati	ion:	Sodium Nitrate	in Water Ty	pe #1					
Data Transfor	m	Zeta	Alt Hy	p Trials	Seed		PMSD	Test Resu	ult		
Untransformed	1	NA	C > T	NA	NA		17.7%	Fails mea	n dry bioma	ss-mg	
Equal Varianc	e t Two-Sample	Test									
Control	vs Control		Test S	tat Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
0.11	Lab Wate	r	2.41	2.132	0.109 4	0.0368	CDF	Significan	t Effect		
Test Acceptat	bility Criteria						, 18				
Attribute	Test Stat	TAC Limit	s	Overlap	Decision						
Control Resp	0.4943	0.25 - NL		Yes	Passes Ad	cceptability	Criteria				
PMSD	0.177	0.12 - 0.3		Yes	Passes Ad	cceptability	Criteria				
ANOVA Table									// 		
Source	Sum Squa	ires	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0229389	3	0.0229	3893	1	5.808	0.0736 Non-Significant Effect				
Error	0.0157976	2	0.0039	49404	4						
Total	0.0387365	5			5						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F		4.551	199	0.3603	Equal Var	riances			
Distribution	on Shapiro-Wilk W Normality		0.883	0.43	0.2829	Normal D	istribution _.				
Mean Dry Bio	mass-mg Summ	ary									
C-mg N/L	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Water	3	0.4943		0.6942	0.454	0.442	0.587	0.04646	16.28%	0.0%
0.11	Negative Contro		0.618	0.5243	0.7117	0.607	0.587	0.66	0.02178	6.1%	-25.02%
Mean Drv Bio	mass-mg Detail		·····						,r=u		
C-mg N/L	Control Type	Rep 1	Rep 2	Rep 3							
0	Lab Water	0.454	0.442	0.587					· · · · · · · · · · · ·	· · · · · ·	
0 11	Negative Contro		0.66	0.587							

0.11 Negative Control 0.607 0.66 0.587

Analyst:


QA: John -29/13

			cal Repo							oort Date: t Code:		12605cx 13-5425-37
Fathea	d Min	now 7	-d Larval Su	urvival and	Growt	h Test		·			n' e.	Nautilus Environment
Analysi Analyze			4038-7778 Jan-13 14:30		point: lysis:	Mean Dry Bio Linear Interpo	-	N)		TIS Versior		îISv1.8.4
Batch I	D:	06-7	7932-8484	Tes	Type:	Growth-Survi	val (7d)	· , · · · · · ·	An	alyst: Ka	aren Lee	· · · · · · · · · · · · · · · · · · ·
Start D	ate:	16.	Jan-13 14:30) Pro	ocol:	EPA/821/R-0	2-013 (2002)	Dil	Jent: La	aboratory	Water
Ending) Date	e: 23 .	Jan-13 14:55	5 Spe	cies:	Pimephales p	promelas		Bri	ne:		
Duratio	on:	7d	Oh	Sou	rce:	Aquatic Bios	ystems, CO		Ag	e: <2	24h	
Sample	e ID:	07-	1225-1114	Coc	e:	2A7416EA			Cli	ent: G	older	
Sample	e Date	e: 16 .	Jan-13	Mat	erial:	NO3			Pro	ject:		
Receiv	e Dat	e: 16.	Jan-13	Sou	rce:	Golder						
Sample	e Age	: 14h		Stat	ion:	Sodium Nitra	te in Water	Type #1				
Linear	Inter	polatio	n Options									
X Trans			Transform			Resamples	Exp 95					
Log(X+	1)	L	inear	195	8970	200	Yes	Two	-Point Inter	polation		
Test Ac	ccept	ability	Criteria									
Attribu	te		Test Stat	TAC Limi	ts	Overlap	Decisio	n				
Control	Resp	ว่	0.618	0.25 - NL		Yes	Passes	Acceptability	Criteria			
Point E	Estim	ates				5						
Level	mg	N/L	95% LCL	95% UCL								
IC5	218	3.9	N/A	249.3								•
IC10	238		195.7	296.5								
IC15	259		204.7	355.8								
IC20	282		214.6	435.1								
IC25	307		220.5	550.5								
IC40	395		223.4	592.5								
IC50	457		233.3	622.8				·····				
			s-mg Summ					alculated Va				
C-mg N	N/L.		ol Type	Count	Mear		Max	0.02178	0.03772		<u>%Eff</u>	
0.11 28.6		Negat	ive Control	3 3	0.618 0.618		0.66 0.66	0.02178	0.03772		0.0%	
20.0 55.85					0.579							
110.5				3 3	0.596		0.593 0.636	0.01159 0.02699	0.02008		6.319 3.459	
212.5				3	0.618		0.66	0.02039	0.03772		0.0%	
428				3	0.342		0.468	0.07812	0.1353	39.56%		
846.5				3	0.004		0.012	0.004	0.00692			
1570				3	0	Ò	0	0	0	0 170.270	100.0	
Mean [Dry B	iomas	s-mg Detail							.,		
C-mg I	•		ol Type	Rep 1	Rep	2 Rep 3						
0.11			ive Control	0.607	0.66	0.587						
28.6				0.607	0.66	0.587						
55.85				0.556	0.593							
110.5				0.609	0.636							
				0.607	0.66	0.587						
212.5					0.359							
212.5 428				0.400								
212.5 428 846.5				0.468 0	0.012							

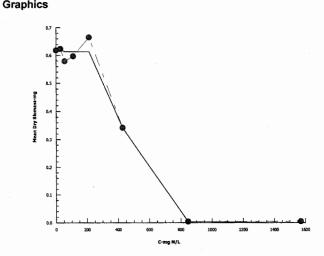
Analyst:_

QA: JGh Jah- 29/18

CETIS Ana	lytical Report		Report Date: Test Code:	28 Jan-13 14:30 (p 2 of 2) 12605cx 13-5425-3761	
Fathead Minn	now 7-d Larval Surviv	val and Grow		Nautilus Environmental	
Analysis ID: Analyzed:	01-4038-7778 28 Jan-13 14:30	Endpoint: Analysis:	Mean Dry Biomass-mg Linear Interpolation (ICPIN)	CETIS Version: Official Results:	

QA: JGh Tan. 29

113


Naut Analysis ID: 03-7310-4729 Endpoint: Mean Dry Biomass-mg CETIS Version:	ilus Environmental
Analyzed: 28 Jan-13 14:08 Analysis: Linear Interpolation (ICPIN) Official Results: Yes Batch ID: 15-8754-4616 Test Type: Growth-Survival (7d) Analyst: Karen Lee Start Date: 16 Jan-13 14:30 Protocol: EPA/821/R-02-013 (2002) Diluent: Laboratory Water Ending Date: 23 Jan-13 14:55 Species: Pimephales promelas Brine: Duration: 7d 0h Source: Aquatic Biosystems, CO Age: <24h Sample ID: 07-1225-1114 Code: 2A7416EA Client: Golder Sample Age: 16 Jan-13 Material: NO3 Project: Receive Date: 16 Jan-13 Source: Golder Sample Age: 14h Station: Sodium Nitrate in Water Type #1 Linear Interpolation Options X X Transform Y Transform Seed Resamples Exp 95% CL Method Log(X+1) Linear 317009 200	
Start Date: 16 Jan-13 14:30 Protocol: EPA/821/R-02-013 (2002) Diluent: Laboratory Water Ending Date: 23 Jan-13 14:55 Species: Pimephales promelas Brine:	.4
Sample Date: 16 Jan-13 Material: NO3 Project: Receive Date: 16 Jan-13 Source: Golder Sample Age: 14h Station: Sodium Nitrate in Water Type #1 Linear Interpolation Options X Y Transform Y Transform Seed Resamples Exp 95% CL Method Log(X+1) Linear 317009 200 Yes Two-Point Interpolation Test Stat TAC Limits Overlap Decision Control Resp 0.618 0.25 - NL Yes Passes Acceptability Criteria Point Estimates Level mg N/L 95% LCL 95% UCL IC5 226 N/A 253.1 IC10 244.9 201.7 294.8 IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC40 395.8 235.2 563.6 IC40.3 342.1 600.1	
X Transform Y Transform Seed Resamples Exp 95% CL Method Log(X+1) Linear 317009 200 Yes Two-Point Interpolation Test Acceptability Criteria Test Stat TAC Limits Overlap Decision Control Resp 0.618 0.25 - NL Yes Passes Acceptability Criteria Point Estimates Evel mg N/L 95% LCL 95% UCL Yes Passes Acceptability Criteria IC5 226 N/A 253.1 1 <td></td>	
Log(X+1) Linear 317009 200 Yes Two-Point Interpolation Test Acceptability Criteria Test Stat TAC Limits Overlap Decision Control Resp 0.618 0.25 - NL Yes Passes Acceptability Criteria Point Estimates Evel mg N/L 95% LCL 95% UCL Yes Passes Acceptability Criteria IC5 226 N/A 253.1 1	
Test Acceptability Criteria Attribute Test Stat TAC Limits Overlap Decision Control Resp 0.618 0.25 - NL Yes Passes Acceptability Criteria Point Estimates Evel mg N/L 95% LCL 95% UCL Yes Passes Acceptability Criteria IC5 226 N/A 253.1 1 1 1 1 2 1 2 1	
Attribute Test Stat TAC Limits Overlap Decision Control Resp 0.618 0.25 - NL Yes Passes Acceptability Criteria Point Estimates Evel mg N/L 95% LCL 95% UCL Evel 100 (244.9) 201.7 294.8 IC15 265.3 214.9 342.5 1	
Control Resp 0.618 0.25 - NL Yes Passes Acceptability Criteria Point Estimates Level mg N/L 95% LCL 95% UCL IC5 226 N/A 253.1 IC10 244.9 201.7 294.8 IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
Point Estimates Level mg N/L 95% LCL 95% UCL IC5 226 N/A 253.1 IC10 244.9 201.7 294.8 IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
Level mg N/L 95% LCL 95% UCL IC5 226 N/A 253.1 IC10 244.9 201.7 294.8 IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
IC5 226 N/A 253.1 IC10 244.9 201.7 294.8 IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	r
IC10 244.9 201.7 294.8 IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
IC15 265.3 214.9 342.5 IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
IC20 287.4 222.1 403.9 IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
IC25 311.3 228.3 469.2 IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
IC40 395.8 235.2 563.6 IC50 456.3 242.1 600.1	
IC50 456.3 242.1 600.1	
C-mg N/L Control Type Count Mean Min Max Std Err Std Dev CV% %Effect 0.11√ Negative Control 3 0.618 0.587 0.66 0.02178 0.03772 6.1% 0.0%	
28.6 3 ~ 0.6233 0.601 0.658 0.01757 0.03044 4.88% -0.86%	
55.85 V 3 0.579 0.556 0.593 0.01159 0.02008 3.47% 6.31%	
110.5 3 0.5967 0.545 0.636 0.02699 0.04674 7.83% 3.45%	
212.5 3 0.665 0.637 0.707 0.02139 0.03704 5.57% -7.61%	
428 3 0.342 0.199 0.468 0.07812 0.1353 39.56% 44.66%	
846.5 🖌 3 0.004 0 0.012 0.004 0.006928 173.2% 99.35%	
1570 3 0 0 0 0 0 100.0%	
Mean Dry Biomass-mg Detail	
C-mg N/L Control Type Rep 1 Rep 2 Rep 3	
0.11 Negative Control 0.607 0.66 0.587	
28.6 0.658 0.601 0.611	
55.85 0.556 0.593 0.588	
110.5 0.609 0.636 0.545	
212.5 0.707 0.651 0.637	
428 0.468 0.359 0.199	
846.5 0 0.012 0	
1570 0 0 0	

CETIS™ v1.8.4.29

Analyst:_____

QA: JOU 794-29/12

CETIS Ana	lytical Report		Report Date: Test Code:	28 Jan-13 14:11 (p 2 of 2) 12605c 09-1579-0954	
Fathead Minn	low 7-d Larval Survi	val and Grow		Nautilus Environmental	
Analysis ID:	03-7310-4729	Endpoint:	Mean Dry Biomass-mg	CETIS Version:	CETISv1.8.4
Analyzed:	28 Jan-13 14:08	Analysis:	Linear Interpolation (ICPIN)	Official Results:	Yes
Graphica					

0A: Joh Jan 29/12

Fathead Minnow Test Summary Sheet

(7-d Pimephales promelas Survival and Growth Test)

Client:	Golder	Start Date/Tim
Work Order No.:	12605	Test Species

Sample Information:

Sample ID:	Water Type 2
Sample Date:	Jan 16/13
Date Received:	Jan 16/13
Sample Volume:	60L

Dilution Water (initial water quality):

Туре:	350	mg/L Hardness Lab Water
Temperature (°C)	25	
pН	7.6	
Dissolved Oxygen (mg/L		7.8
Hardness (mg/L CaCO ₃)		348
Alkalinity (mg/L CaCO ₃)		38

Test Organism Information:

Batch No .:	011613	
Source:	Aquatic Biosystems, CO	
Age:	<24 hours	

NaCl Reference Toxicant Results:

Reference Toxicant ID:	PP73
Stock Solution ID:	n/a
Date Initiated:	16-Jan-13
7-d EC50 (95% CL):	4.5 (4.0 - 5.1)
7-d IC50 (95% CL):	-4.8 (3.5-5.7)- KTL
	5.0(3.7-5.7)

Jou

Survival:

Reference Toxicant Mean and Historical Range:

4.8 (3.6 - 6.3)	CV (%):	15

Biomass:

Reference Toxicant Mean and Historical Range:

4.2 (2.9 - 6.0) CV (%): 20

Test Results:

	Survival	Biomass
LC25 mg/L N (95% CL)	n/a	
LC50 mg/L N (95% CL)	949.2 (852.1 - 1057.0)	all many sectors and the secto
IC25 mg/L N (95% CL)	in the second	793.1 (n/a - 910.6)
IC50 mg/L N (95% CL)	and the second	862.7 (n/a - n/a)

Reviewed by:

Date reviewed: ______ fan - 30/13____

Start Date/Time: Jan 16/13 @ 1500h Test Species: Pimephales promelas

and Vallifity Critiseia	
teo least is invested if	
	the combined and completive
CADERTALIES OF LETTY STALE CONTRACT	or fish showing loss of equility

2) the average dry weight of the survising control fish does not attain 250 up when the link are dried and weighed.

services bertfigtungs, up >2021

WC Hampes

T ("C)=25 ± 1; DO (mpl) = 3.3 to 8.4; pH = 6 to 8.5

7-d Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	Golder	
Sample ID:	Water Type 2 (350 Hardness) (purple))
Work Order #:	12605	

Start Date & Time: 16-Jan-13 @ 1500h Stop Date & Time: 23-Jan-13 @ 1530h

Test Species: Pimephales promelas

(mg/L N)	Days													
Concentration	0		1		2	3			4	5		6		7
Control	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24,5	24.0	14.0	24.0	24.0	240	240	240	200	24.0	26.0	25.0	26-0	26.0
DO (mg/L)	7.8	7-4	1-7		78	6.4	73	65	72	6.3	8-(6.6	29	76
рН	7.6	7.4	24	71	7.6	72	78	73	279	7.2	7.6	7.3	7.5	7-4
Cond. (µS/cm)	1104	13	Ũ	1(7	1	- ((К	112	2	17	15	12	-71	1326
Initials	UB	KJL		K	JL		\sim	<u> </u>	<u> </u>	JW	1/ct	JW	IKR	Kr

		Days												
Concentration	0		1 2		2		3		4		5		6	
25	init.	old	new	final										
Temperature (°C)	24,0	24.0	24.0	24.0	24.5	24.0	24.0	2400	240	24.0	Theo	25-0	26.0	2620
DO (mg/L)	7.8	7.4	7.6	6-9	7-9	63	73	6.4	A2,	6.5	81	6.7	7-7	2.5
pH	7.7	7.4	7.7	71	76	22	78	73	7129	7.3	76	7.3	7.6	7,4
Cond. (µS/cm)	1285	13	28	17	325	1	1348	13	35	iφ	32	14	tsic	1550
Initials	reb	VIL		C	fL		~			Jw	1KH	JW	1452	Kor

		Days													
Concentration	0		1	2		3		4		5		6		7	
50	init.	old	new	old	new	old	new	old	new	old	new	old	new	final	
Temperature (°C)	24.0	24.0	24.0.	24.0	14.0	24,0	24-	210	vin	24.0	26.0	24.0	26.0	260	
DO (mg/L)	7.8	74	7.6	6.8	78	64	ሕን	6.4	72	6.3	800	6.8	7-8	74	
pH	7.7	7-5	7.7	Ta	7.6	21	28	7.3	37 97	7.3	76	7.3	7.7	7.3	
Cond. (µS/cm)	1456	ì	511	15	32	157	22	1511	5	16	20	16:	72'	0747	
Initials	UB	KJL		K	5L		6	^		JWI	KJL	ЯŲ	1102	1000	

	Days													
Concentration	0		1		2	3		4		5		6		7
100	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24,0	24.0	24,2	24.0	24.0	24,5	240	24,0	240	24.D	26.0	24.0	76.0	26-0
DO (mg/L)	7.8	7-3	7.7	6.8	78	6.2	7.3	6.3	ጉረ,	6.6	51	6.8	7.7	25
pH	7.7	74	7.7	7.2	7.6	7.2	78	7.2	719	7.3	77	7.3	7.7	7.4
Cond. (µS/cm)	1796	18	90	19	1920		192-1		1912		1990		90	2060
Initials	res	KJL	-	K	KJU		_		~		/KJL	SW	1kt	CSL

DO meter:	DO-1	pH meter:	pH-1	Conductivity meter:	C-1
ſ	Control			Analysts:	KJL, ASP, KLB, JU
Hardness*	348				
Alkalinity*	38			Reviewed by:	
* mg/L as CaCO3				Date reviewed:	Jan. 29/13
Sample Description:	clear		·		
Comments:					

7-d Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	Golder
Sample ID:	Water Type 2 (350 Hardness) (purple)
Work Order #:	12605

Start Date & Time: 16-Jan-13 @15001

Stop Date & Time: 23-Jan-13

23-Jan-13 @1530h

Test Species: Pimephales promelas

(mg/L N)		Days												
Concentration	0		1		2		3		4		5		6	
200	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.0	24.5	740	24.0	24.0	24.0	240	20	200	24.0	Vas	24.0	260	260
DO (mg/L)	7.8	7-3	7.8	6.3	79	63	ጉን	64	72	6.8	8.1	6.4	79	7-4
рН	7.7	7.3	227	22	7.6	72	78	7.2	78	7.3	7.7	7.3	27	74
Cond. (µS/cm)	2500	261	0	26	jo	267	rs	20	Pρ	27	20	28	30	2830
Initials	UB	1LJL		Ki	JL		^	_ ^		JW	(KJL	JW	1Kfl	KTC

		Days												
Concentration	0		1		2	3		4		5		6		7
400	init.	old	new	old	new	old	пеw	old	new	old	new	old	new	final
Temperature (°C)	24,0	24.0	24.0	24.0	2400	24/0	2410	240	vio	24-0	25.5	24.0	255	Uno
DO (mg/L)	7,8	7.0	79	6.2	18	64	73	63	22	6.9	8-1	6.8	7-9	73
pH	7.7	7.3	7-91	7.5	26	7-1	7.8	72	78	7.3	7.6	7-3	77	म्भ
Cond. (µS/cm)	3980	40			70	403	0	Ý	21C	41	30	42	00	4445
Initials	NUB	KAL		K	JL		~	-		JW!	KOL	JW	IKJL	Kor

	Days													
Concentration	0	0 1		2		3		4		5		6		7
800	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	34.0	24,0	24.0	US	24.0	240	240	24.0	240	24.0	14.	25-0	240	260
DO (mg/L)	7.8	7.0	79	6.8	7.8	6,3	373	6,2	7.3	6.9	8.0	7.4	8-0	24
рН	7.7	7.3	796	7.2	26	71	ネン	71	77	7.3	26	7-4	27	74
Cond. (µS/cm)	6740	69	NO RAC	6	930	68	50	68	76	68	230	200	50-697	7340
Initials	XIB	KTL		43	5L		0	~	, ,	JW		SW		por

	Days													
Concentration	0 1		2		3		4 ·		5		6		7	
1600	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	24.5	24.0	14.0	24.0	24.0	24,0	240	240	27.0					
DO (mg/L)	7.8	6-9	80.	6-8	76	6.4	73	6.3	3 ~3					
рН	7.6	7.3	Sunt	7-2	7-5	7.1	71	71	<u>۲</u> ۲				\checkmark	
Cond. (µS/cm)	12270	120	000		330	12	320	123	, P		/	1		
Initials	WB		~		-JL		~	,	^	/				

DO meter:	DO-1	_ pH meter:	pH-1	Conductivity meter: C-1
Γ	Control			Analysts: (CTL, AWD, KLA, J
Hardness*	348	*		
Alkalinity*	78			Reviewed by: Jou
* mg/L as CaCO3				Date reviewed: Jan 29/13
				\sim /
Sample Description:				
Comments:				

7-d Chronic Freshwater Toxicity Test Initial and Final Water Quality Measurements

Client:	Golder	Start Date & Time: 16-Jan-13 (@ (500 h
Sample ID:	MHW Control	Stop Date & Time: 23-Jan-13 6 1520 h
Work Order #:	12605	Test Species: Pimephales promelas

% (v/v)		Days												
Concentration	0		1		2		3		4		5		6	7
MHW Control	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)	260	24.0	25.0	24.0	25.0	24.0	2500	240	150	24.0	26.0	24.0	Uno.	24.0
DO (mg/L)	7-5	7.4	Tit	7.0	26	6.	25	63	ጉሦ	6.9	78	6.9	79	74
рН	7-9	7.6	8.1	7.4	8-0	74	н	7.3	8-1	77	81	7.5	80	7-8
Cond. (µS/cm)	336	24	Ó	3	38	34	13	3	41	JW 382	1345	34	16	359
Initials	KJI	KJ	L	K	SU		n		1	30	Acr	Jh	1/15	KJC

					Days									
Concentration	0		1		2		3		4		5		6	7
1	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)														
DO (mg/L)														
рН														
Cond. (µS/cm)														
Initials														

		Days												
Concentration	0		1		2		3		4		5		6	7
	init.	old	new	old	new	old	new	old	new	old	new	old	new	final
Temperature (°C)														
DO (mg/L)														
рН														
Cond. (µS/cm)														
Initials														

Days														
0		1	2		3		4		5		6		7	
init.	old	new	old	new	old	new	old	new	old	new	old	new	final	
										_				
													1	
	CONTRACTOR OF STREET						0 1 2 3	0 1 2 3	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4 5	0 1 2 3 4 5	0 1 2 3 4 5 6	

DO meter:	DO-1	pH meter:	pH-1	Conductivity meter:	C-1
	Control			Analysts:	KIL, AUD, CLB. JW
Hardness*	100				
Alkalinity*	68			Reviewed by:	
* mg/L as CaCO3	-C			Date reviewed	Jan-29/13
Sample Description:					

Comments:

7-d Fathead Minnow Toxicity Test Daily Survival

 Client:
 Golder

 Sample ID:
 Water Type 2 (350 Hardness)

 Work Order #:
 12605

Start Date & Time: 16-Jan-13 (a) 1500h Stop Date & Time: 23-Jan-13 (a) 1500h Test Species: Pimephales promelas

Concentration				Day of T	est - No.	of Surviv	ors		
(mg/L N)	Rep	1	2	3	4	5	6	7	Comments
Control	Α	(0	í0	10	10	10	10	0	·
	В	(>	(0	1		(<u>0</u> 8	8	10	
	С	6	10			10	10	Ø	
25	Α	(0	10			10	10	10	
	В	10	(0			(ک	10	10	
	С	(0	10			10	נס	10	
50	Α	10	10			(2)	iρ	10	
	В	(0	[0			10	10	10	
	С	10	(0			10	10	lo	
100	Α	10	10			10	[0	10	
	В	10	ĨD			(0	0	0	
	С	10	10			lo	(ð	lo	
200	Α	j0	10			12	10	12	
	В	(0	io			10	(0	lo	
	С	្រ	10			0	၂၀	6	
400	Α	(0	10			9	9	q	
	В	10	0			lo`	10	12	
	С	10	10		J.	12	10	10	
800	Α	10	0	1	90	6	6	6	
	В	10	_10 /		9	9	9	69	
	С	10	10	J	3	8	8	X	
1600	Α	10	¥		0				
	В	6)	3	0					
	С	ú,	3	0					
MHW Control	A	p	10	10	12	6	10	10	
	В	10	(0	10	19	10	10	ŵ	
	С	10	()	[]	12	10	10	10	
	A								
	В								
	С								
ech Initials		KJU	Lo	2		Kr	KIL	KJZ	

Legend:

1- Fish dying

2- Fish showing loss of equilibrium

3- Fish showing atypical swimming

JOL

Comments:

Reviewed by:

an-29/13 Date reviewed:

Fathead Minnow Toxicity Test Data Sheet Dry Weight Data

Client:

Golder

Start Date & Time: 16-Jan-13 @ 15000

Sample ID: Water Type 2 (350 Hardness)

Termination Date & Time: 23-Jan-13 @1530h

Work Order No. 12605 d

(mg/L N) purple Pan weight Pan + organism Sample ID Rep Pan No. No. alive Initials No. weighed Initials (mg) (mg) KJL 10 KJL 1041.08 1034.60 Control 22 10 Α 8 8 1010.49 1015.79 в 23 10 1006.49 1012.44 С 10 24 10 1027.54 1033.98 10 25 Α 25 1033.34 D 1027.48 10 в 26 1037.89 Ø 1030.97 ĺΟ С 27 10 1041.72 10 1035.94 50 Α 28 1032.686 1039.38 в 29 10 10 1051.84 10 (0) 1045 93 С 30 10 1027.57 10 1021.68 100 31 Α (0) 1017.88 1011 . 64 10 32 В 1048 · 01 0 1047.21 С 10 33 1035 . 744 1042.38 10 lo 200 34 Α (0) 1045.70 1039.26 10 в 35 10 1049.45 1055.63 0 С 36 9 9 1025.37 1019 . 93 400 Α 37 0 627.08 1020.40 10 в 38 1050.50 1036.43 10 lo 1029.11 С 39 6 6 foz6.43 1050.50 1046.81 800 40 Α 9 9 1044.95 1050-15 в 41 8 Ŷ \mathbf{J} 1053 . 14 1057.18 С 42 1600 Α в С

Comments:

Reweighed pars: 29-1039.28 37-1025.28

Reviewed by:

JOL

Date Reviewed: Jan-29/13

Generated: March 17, 2009

Fathead Minnow Toxicity Test Data Sheet Dry Weight Data

Client:

Sample ID:

____ MHW Control

Start Date & Time: 16-Jan-13 @14/0h

Termination Date & Time:

23-Jan-13 @ 1425h

Work Order No.: 12605

Golder

Sample ID	Rep	Pan No.	No. alive	Initials	Pan weight (mg)	Pan + organism (mg)	No. weighed	Initials
(Control (M+IW)	A	16R	10	KJL	1025-12	1029.66	10	KJL
(MHW)	в	17R	10		1026.23	1030.65	10	1
	С	18R	(0		1033-90	1039.77	()	J
	Α							
	в							
	С						-	
	А							
	в							
	С							
	Α							
	в							
	с							
	А							
	в							
	С							
	А							
	в							
	С							
	Α							
	В							
	с							
100	Α							
	в							
	С							

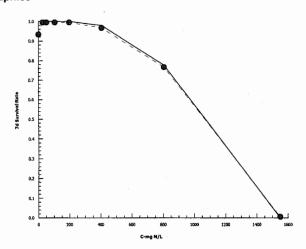
Comments:

Reviewed by:

Date Reviewed: Jan 30/13

CETIS Ana	lytical Repo	rt					-		Report Da Fest Code			13 14:13 (p 1 of 1 5d 09-7236-508
Fathead Minn	ow 7-d Larval Su	rviva	and Growt	h Tes	st i	n in Alt at i	. a				Nautilu	is Environmenta
Analysis ID: Analyzed:	03-8027-4214 28 Jan-13 14:12		Endpoint: Analysis:		urvival Rati le 2x2 Con	e tingency Tal	ble		CETIS Ver Official Re		CETISv1.8.4 Yes	-
Batch ID: Start Date: Ending Date: Duration:	11-9022-3412 16 Jan-13 15:00 23 Jan-13 15:30 7d 1h		Test Type: Protocol: Species: Source:	EPA Pime	wth-Surviva /821/R-02- ephales pro atic Biosyst	013 (2002) melas	. ·	1	Analyst: Diluent: Brine: Age:	Karer Labor <24h	ratory Water	······································
Sample ID: Sample Date: Receive Date: Sample Age:	16 Jan-13		Code: Material: Source: Station:	NO3 Gold	ler	in Water Ty	pe #2		Client: Project:	Golde	er	· _ ·
Data Transfor		Zeta	Alt H C>T		Trials NA	Seed NA				t Resul	lt survival rate	
Fisher Exact Sample 0.23 Test Acceptat	vs Control Lab Water		Test : 1	Stat	P-Value 1.0000	P-Type Exact	Decision Non-Signi		ffect			-
Attribute	Test Stat				Overlap	Decision					· · · · · · · · · · · · · · · · · · ·	
Control Resp	1	0.8 -	NL		Yes	Passes A	ceptability	Criteria				
Data Summar C-mg N/L 0	Control Type Lab Water	NR 30	R 0		NR + R 30	Prop NR	Prop R 0	%Eff				
0.23	Negative Contr	28	2		30	0.9333	0.06667	0.0%				
7d Survival R	ate Detail											
C-mg N/L	Control Type	Rep		2	Rep 3							
0 0.23	Lab Water Negative Control	1	1 0.8		1 1							
	Water = ttive Corr		* • •	ely	•	d con	trol i	nate	er har	dne	(25	

CETIS™ v1.8.4.29


Analyst:

OA: JOL 29/13

CETIS Ar	nalytical Repo	ort					-	ort Date:	28		4:12 (p 1 of 1
							Test	Code:			09-7236-508
Fathead Min	nnow 7-d Larval S	urvival and	Growt	h Test	s. 1.	· ·			Na	utilus E	nvironmental
Analysis ID: Analyzed:	: 12-6207-3129 28 Jan-13 14:12		lpoint: Ilysis:	7d Survival Rat Untrimmed Spe		ärber		S Version: ial Results:	CETISv1 Yes	.8.4	
Batch ID:	11-9022-3412	Tes	t Type:	Growth-Surviva	ıl (7d)		Anal	yst: Kare	n Lee		
Start Date:	16 Jan-13 15:00) Pro	tocol:	EPA/821/R-02-	013 (2002	2)	Dilue	ent: Labo	oratory Wat	er	
Ending Dat	e: 23 Jan-13 15:30	0 Spe	cies:	Pimephales pro	omelas		Brin	e:			
Duration:	7d 1h	Sou	Irce:	Aquatic Biosyst	tems, CO		Age:	<24	ı		
Sample ID:	09-2607-8051	Coc	le:	3732D463		·····	Clier	nt: Gold	ler		
Sample Dat	e: 16 Jan-13	Mat	erial:	NO3			Proj	ect:			
Receive Da	te: 16 Jan-13	Sou	irce:	Golder							
Sample Age	e: 15h	Sta	tion:	Sodium Nitrate	in Water	Type #2					
Spearman-l	Kärber Estimates										
Threshold (Option TI	reshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL		
Control Thre	eshold 0.	06667	0.00%	5 2.977	0.02344		949.2	852.1	1057		
Test Accep	tability Criteria										
Attribute		TAC Limi	its	Overlap	Decisio	n					
Control Res	p 0.9333	0.8 - NL		Yes	Passes	Acceptability	Criteria				
7d Survival	Rate Summary				Cal	culated Varia	te(A/B)				
C-mg N/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	в
0.23	Negative Control	3	0.933	3 0.8	1	0.06667	0.1155	12.37%	0.0%	28	30
27.25		3	1	1	1	0	0	0.0%	-7.14%	30	30
51.55		3	1	1	1	0	0	0.0%	-7.14%	30	30
105		3	1	1	1	0	0	0.0%	-7.14%	30	30
198		3	1	1	1	0	0	0.0%	-7.14%	30	30
406.5		3	0.966		1	0.03333	0.05773	5.97%	-3.57%	29	30
806		3	0.766		0.9	0.08819	0.1528	19.92%	17.86%	23	30
1550		3	0	0 .	0	0	0		100.0%	0	30
	Rate Detail		_								
C-mg N/L	Control Type	Rep 1	Rep 2								
0.23	Negative Control	1	0.8	1							
27.25		1.	1	1							
51.55		1	1	1							
105		1	1	1							
198 1		1	1	1							
406.5		0.9	1	1							
806 📈		0.6	0.9	0.8							
4550 /		0	•	•							

Graphics

1550 🗸

0

0

0

Analyst:____

OA: JOL 25/13

CETIS Ana	lytical Re	eport			•		•	ort Date: Code:		Jan-13 14:1 12605d 09	
Fathead Minne	ow 7-d Larv	al Surviva	and Grow	th Test					Na	utilus Env	ironmenta
Analysis ID:	17-7664-40	95	Endpoint:	Mean Dry Bior	•		CET	S Version:	CETISv1	.8.4	
Analyzed:	28 Jan-13 1	4:13	Analysis:	Parametric-Tw	vo Sample		Offic	ial Results:	Yes		
Batch ID:	11-9022-34	12	Test Type:	Growth-Surviv	a l (7d)		Anal	yst: Kare	en Lee		
Start Date:	16 Jan-13 1	5:00	Protocol:	EPA/821/R-02	2-013 (2002)		Dilue	ent: Labo	oratory Wat	er	
Ending Date:	23 Jan-13 1	5:30	Species:	Pimephales p	romelas		Brine	e:			
Duration:	7d 1h		Source:	Aquatic Biosys	stems, CO		Age:	<24	า		
Sample ID:	09-2607-80	51	Code:	3732D463			Clier	nt: Gold	ler		
Sample Date:	16 Jan-13		Material:	NO3			Proje	ect:			
Receive Date:	16 Jan-13		Source:	Golder							
Sample Age:	15h		Station:	Sodium Nitrate	e in Water Ty	pe #2					
Data Transfor	m	Zeta	Alt H	lyp Trials	Seed		PMSD	Test Resu	ılt		
Untransformed		NA	C > 1	NA	NA		20.8%	Passes m	ean dry bio	mass-mg	
Equal Varianc	e t Two-San	ple Test									
Control	vs Cont	rol	Test	Stat Critical	MSD DF	P-Value	P-Type	Decision(c:5%)		
0.23	Lab V	Vater	1.677	2.132	0.123 4	0.0844	CDF	Non-Signi	ficant Effect	t	
Test Acceptab	ility Criteria										
Attribute	Test S	tat TAC	Limits	Overlap	Decision						
Control Resp	0.4943	3 0.25	- NL	Yes	Passes A	cceptability	Criteria				
PMSD	0.2079	0.12	- 0.3	Yes	Passes A	cceptability	Criteria				
ANOVA Table											
Source	Sum S	òquares	Mear	n Square	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.0140	01572	0.014	401572	1	2.812	0.1689	Non-Signi	ficant Effect	t	
Error	0.0199	3774	0.004	1984436	4						
Total	0.0339	95347			5		,				
Distributional	Tests										
Attribute	Test	····		Test Sta	t Critical	P-Value	Decision	(α:1%)	-		
Variances		nce Ratio I		1.854	199	0.7008	Equal Var				
Distribution	Shap	iro-Wilk W	Normality	0.8926	0.43	0.3321	Normal D	istribution			
Mean Dry Bio	mass-mg Su	immary									
C-mg N/L	Control Typ	e Cour	nt Mean	n 95% LCI	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Lab Water	3	0.494	43 0.2944	0.6942	0.454	0.442	0.587	0.04646	16.28%	0.0%
0.23	Negative Co	ntrol 3	0.59	0.4442	0.7378	0.595	0.53	0.648	0.03412	10.0%	-19.55%
Moon Dry Rio	mass-mg De	etail									
weath Dry Blo	Control Typ	e Rep	1 Rep	2 Rep 3							
-	oond of typ										
C-mg N/L	Lab Water	0.454	0.442	2 0.587							

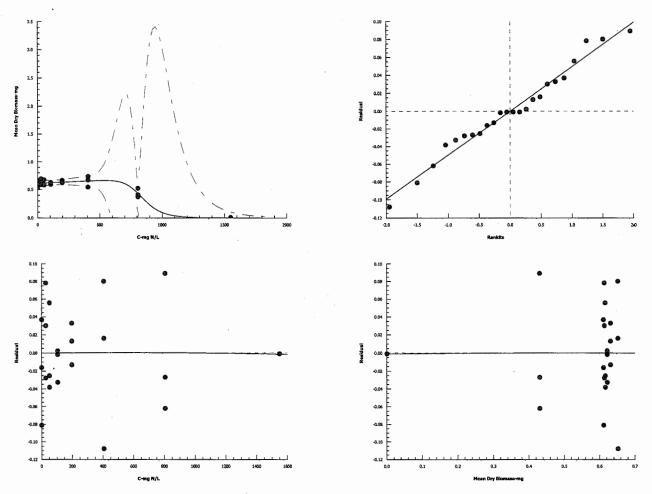
Negative Control = Water Type 2 (350mg/L hardness)

Analyst:

QA: JGU 10. m. 29

113

	5 Anar	ytical Repo	ort					•	ort Date: Code:		3 14:19 (p 1 of 2) d 09-7236-5084
Fathea	d Minno	w 7-d Larval S	urvival and	Growth 7	Test		·				Environmental
Analys Analyz		03-9555-1701 28 Jan-13 14:1			ean Dry Bioma onlinear Regre	•			IS Version: cial Results:	CETISv1.8.4 Yes	
Batch		11-9022-3412			rowth-Survival		, . <u></u>	Anal	vet: Kare	n Lee	· · · · · ·
Start D		16 Jan-13 15:0			PA/821/R-02-0			Dilu	,	ratory Water	
		23 Jan-13 15:3			imephales pro			Brin			
Duratio		7d 1h	Sou		quatic Biosyste			Age			
Sample		09-2607-8051	Cod	e: 3	732D463			Clie	nt: Gold	er	
-		16 Jan-13			03			Proj			
-		16 Jan-13	Sou	_	older			,			
	e Age:		Stat		odium Nitrate	in Water Ty	/pe #2				
Non-Li	near Ree	gression Optic	ons		<u> </u>	,					······································
	Function					X Trans	form Y Tra	ansform V	Veighting Fu	nction	PTBS Functio
4P Log	-Logistic	+Hormesis EV	[Y=A(1+EX)	/(1+(2ED+	1)(X/D)^C)]	None	None	e N	ormal [W=1]		Off [Y*=Y]
Regres	sion Su	mmary									
Iters	Log Ll	_ AICc	BIC	Adj R2	Optimize	F Stat	Critical	P-Value	Decision(o	x:5%)	
12	61.05	-112	-109.4	0.9424	Yes	0.3289	3.007	0.8544	Non-Signif	icant Lack of Fit	
Point E	Estimate	5							:		
Level	mg N/									·····	
IC5	721.2	N/A	N/A								
IC10	743.1	N/A	N/A								
IC15	761.6	N/A	N/A								
IC20	778	N/A	N/A								
IC25	793.1	N/A	910.6								
IC40	835	N/A	N/A								
IC50	862.7	N/A	N/A			,					,
Test A	cceptabi	lity Criteria									
Attribu	ite	Test Stat	TAC Limi	ts	Overlap	Decision					
Contro	Resp	0.591	0.25 - NL		Yes	Passes A	cceptability	Criteria			
Regres	ssion Pa	rameters									
Param	eter	Estimate	Std Error	95% LC	L 95% UCL	t Stat	P-Value	Decision	(a:5%)		
A		0.6112	0.017	0.5779	0.6445	35.96	<0.0001	Significar	nt Parameter		
С		11.04	49.69	-86.36	108.4	0.2222	0.8264	Non-Sign	ificant Param	eter	
D		862.7	268.8	335.9	1390	3.209	0.0044	Significar	nt Parameter		
E		0.000165	0.000151	-0.0001	3 0.000462	1.091	0.2884	Non-Sign	ificant Param	eter	
ANOV	A Table	,									
Source	e	Sum Squ	ares Mea	in Square	DF	F Stat	P-Value	Decision			
Model		1.034474	1.03	4474	1	379.5	<0.0001	Significar	nt		
Lack o	f Fit	0.004143	0.00	1036	4	0.3289	0.8544	Non-Sign	ificant		
Pure E	rror	0.050376	0.00	3149	16						
Residu	al	0.054519	0.00	2726	20						
Residu	ual Analy	rsis									
		Method			Test Stat		P-Value	Decision			
	000	Mod Leve	ene Equality	of Variand	æ 1.983	3.5	0.1789	Equal Va	riances		
Attribu Varian											
		Shapiro-V	Vilk W Norm -Darling A2	•	0.9749 0.2975	0.9169 2.492	0.7875 0.6196		Distribution Distribution		


OA: JOh Tan 19/14

Analyst:

CETIS Ar	nalytical Repo	ort		-			•	ort Date: Code:		Jan-13 14:19 (p 2 of 2) 12605d 09-7236-5084
Fathead Mi	nnow 7-d Larval S	urvival an	d Growth T	est					Na	utilus Environmental
Analysis ID Analyzed:	: 03-9555-1701 28 Jan-13 14:1		•	ean Dry Bio Inlinear Reg	-			S Version: ial Results:	CETISv1 Yes	.8.4
Mean Dry B	iomass-mg Summ	агу			C	alculated Va	riate	-		
C-mg N/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	-
0.23	Negative Control	3	0.591	0.53	0.648	0.03412	0.0591	10.0%	0.0%	
27.25		3	0.6407	0.586	0.692	0.03065	0.05308	8.29%	-8.4%	
51.55		3	0.6137	0.578	0.672	0.02941	0.05093	8.3%	-3.84%	
105		3	0.611	0.589	0.624	0.01106	0.01916	3.14%	-3.38%	
198		3	0.642	0.618	0.664	0.01332	0.02306	3.59%	-8.63%	
406.5		3	0.648	0.544	0.732	0.05519	0.09558	14.75%	-9.65%	
806		3	0.431	0.369	0.52	0.04564	0.07904	18.34%	27.07%	
1550		3	0	0	0	0	0		100.0%	
Mean Dry B	liomass-mg Detail			-		· · ·				
C-mg N/L	Control Type	Rep 1	Rep 2	Rep 3						
0.23	Negative Control	0.648	0.53	0.595						
27.25		0.644	0.586	0.692						
51.55		0.578	0.672	0.591						
105		0.589	0.624	0.62						
198		0.664	0.644	0.618						
406.5		0.544	0.668	0.732						
806	1	0.369	0.52	0.404						
1550		0	0	0						

Graphics

4P Log-Logistic+Hormesis EV [Y=A(1+EX)/(1+(2ED+1)(X/D)^C)]

CETIS™ v1.8.4.29

QA: JOL Jan-29/13

Analyst:

Client: <u>Golder</u> W.O.#: <u>12605</u>

Hardness and Alkalinity Datasheet

		,	Alkalinity							
Sample ID	Sample Date	Sample Volume (mL)	(mL) 0.02N HCL/H₂SO₄ used to pH 4.5	(mL) of 0.02N HCL/H ₂ SO ₄ used to pH 4.2	Total Alkalinity (mg/LCaCO ₃)		Sample Volume (mL)	Volume of 0.01M EDTA Used (mL)	Total Hardness (mg/L CaCO ₃)	Technician
MHW Control	Jan 10/13	50	3.5	3.6	68		50	5.0	100	KLB
Water Type 1 (140)	Jan 15/13	50	0.9	1.0	16		50	7.1	142	Jub .
Water Type 2 (350)	Jan 15/13		2.0	a .1	38		50	17-7174	354348	KUB KUB
				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
							-			
										<u> </u>
	<u></u>									
······································	· · · · · · · · · · · · · · · · · · ·		· ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
		Notes:								
Reviewed by:		Ì	HL		Date Revie	ewed:		Jani	9/13	
								\checkmark	1	

NAUTILUS ENVIRONMENTAL ATTN: Karen Lee 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received:07-DEC-12Report Date:17-DEC-12 14:18 (MT)Version:FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1247250

Project P.O. #: NOT SUBMITTED Job Reference: C of C Numbers: 1, 2

C of C Numbers: Legal Site Desc:

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1247250 CONTD PAGE 2 of 6

17-DEC-12 14:18 (MT) Version: FINAL L1247250-1 L1247250-2 L1247250-3 L1247250-4 L1247250-5 Sample ID Description water water water water water Sampled Date 07-DEC-12 07-DEC-12 07-DEC-12 07-DEC-12 07-DEC-12 Sampled Time CONTROL #1 25 MG/L N #1 50 MG/L N #1 100 MG/L N #1 200 MG/L N #1 Client ID Grouping Analyte WATER Alkalinity, Total (as CaCO3) (mg/L) Anions and 17.6 Nutrients Chloride (Cl) (mg/L) 114 Nitrate (as N) (mg/L) 216 0.106 26.3 52.8 106 Sulfate (SO4) (mg/L) 20.3 **Total Metals** Calcium (Ca)-Total (mg/L) 48.2 Magnesium (Mg)-Total (mg/L) 5.12 Potassium (K)-Total (mg/L) 2.2 Sodium (Na)-Total (mg/L) 27.2

L1247250 CONTD.... PAGE 3 of 6 17-DEC-12 14:18 (MT) Version: FINAL

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1247250-6 water 07-DEC-12 400 MG/L N #1	L1247250-7 water 07-DEC-12 800 MG/L N #1	L1247250-8 water 07-DEC-12 1600 MG/L N #1	L1247250-9 water 07-DEC-12 CONTROL #2	L1247250-10 water 07-DEC-12 25 MG/L N #2
Grouping	Analyte					
WATER						
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)				43.1	
	Chloride (Cl) (mg/L)				287	
	Nitrate (as N) (mg/L)	431	875	1730	0.358	461
	Sulfate (SO4) (mg/L)				49.3	
Total Metals	Calcium (Ca)-Total (mg/L)				118	
	Magnesium (Mg)-Total (mg/L)				12.4	
	Potassium (K)-Total (mg/L)				5.4	
	Sodium (Na)-Total (mg/L)				71.0	

L1247250 CONTD.... PAGE 4 of 6 17-DEC-12 14:18 (MT) Version: FINAL

					Vers	ion: FINAL
	Sample ID Description Sampled Date Sampled Time Client ID	L1247250-11 water 07-DEC-12 50 MG/L N #2	L1247250-12 water 07-DEC-12 100 MG/L N #2	L1247250-13 water 07-DEC-12 200 MG/L N #2	L1247250-14 water 07-DEC-12 400 MG/L N #2	L1247250-15 water 07-DEC-12 800 MG/L N #2
Grouping	Analyte					
WATER	Analyte					
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)					
	Chloride (Cl) (mg/L)					
	Nitrate (as N) (mg/L)	925	1150	633	399	809
	Sulfate (SO4) (mg/L)					
Total Metals	Calcium (Ca)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					

	ALS ENVIRONME	NTAL AN	ALYTICAL	REPOF	RT Vers	EC-12 14:18 (l ion: FINAL
	Sample ID	L1247250-16				
	Description Sampled Date	water 07-DEC-12				
	Sampled Time					
	Client ID	1600 MG/L N #2				
Brouping	Analyte					
VATER						
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)					
	Chloride (CI) (mg/L)					
	Nitrate (as N) (mg/L)	1620				
	Sulfate (SO4) (mg/L)	1020				
Fotal Metals	Calcium (Ca)-Total (mg/L)					
	Magnesium (Mg)-Total (mg/L)					
	Potassium (K)-Total (mg/L)					
	Sodium (Na)-Total (mg/L)					

L1247250 CONTD.... PAGE 5 of 6

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Descr	ription	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Chloride (Cl)	MS-B	L1247250-1, -9
	Individual Parameters	Listed:		
Qualifier	Description			
MS-B	Matrix Spike recovery	could not be accurately calculate	ed due to high analyte	background in sample.
est Method R	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-COL-VA	Water	Alkalinity by Colourimetric (Au	itomated)	EPA 310.2
This analysis is colourimetric m	01	edures adapted from EPA Method	d 310.2 "Alkalinity". Tot	tal Alkalinity is determined using the methyl orange
ANIONS-CL-IC-	VA Water	Chloride by Ion Chromatograp	bhy	APHA 4110 B.
		edures adapted from APHA Meth Determination of Inorganic Anior		natography with Chemical Suppression of Eluent ohy".
ANIONS-NO3-IC	C-VA Water	Nitrate in Water by Ion Chrom	atography	EPA 300.0
This analysis is detected by UV		edures adapted from EPA Method	d 300.0 "Determination	of Inorganic Anions by Ion Chromatography". Nitrate is
ANIONS-SO4-IC		Sulfate by Ion Chromatograph	•	APHA 4110 B.
		edures adapted from APHA Meth Determination of Inorganic Anior		natography with Chemical Suppression of Eluent phy".
MET-TOT-ICP-V	A Water	Total Metals in Water by ICPC	DES	EPA SW-846 3005A/6010B
States Environ	mental Protection Agen	cy (EPA). The procedures may i	nvolve preliminary sam	aluating Solid Waste" SW-846 published by the United aple treatment by acid digestion, using either hotblock of a - optical emission spectrophotometry (EPA Method
ALS test metho	ods may incorporate mo	difications from specified referen	ce methods to improve	performance.
The last two lette	ers of the above test co	de(s) indicate the laboratory that	performed analytical a	nalysis for that test. Refer to the list below:
Laboratory Defi	inition Code Labor	atory Location		
VA		NVIRONMENTAL - VANCOUVE	R. BRITISH COLUMB	IA. CANADA
hain of Custod				
1	2			
	REPORT TERMS			
		n behaviour to target analyte(s), i o samples prior to analysis as a c		r naturally in environmental samples. For
	ns per kilogram based o		SHEEK OH IECOVELY.	
		ed on wet weight of sample.		
		ed on lipid-adjusted weight of san	nple.	
mg/L - milligrams < - Less than.	s per litre.			
	ted Detection Limit. also	known as the Limit of Reporting	(LOR).	
		lifier code and definition for expla		
Test results rend	orted relate only to the s	amples as received by the labora	atory	
,	5	SAMPLES WERE RECEIVED IN	5	NITION.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review. Nautilus Environmental

TESTING LOCATION (Please Circle)

British Columbia 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N3 Phone 604.420.8773

Chain of Custody

Date Pec 716	2 (V
Date <u>/ CC / P</u>	'ageo'	t

Sample Collec	tion By:			······································			· · · · · · · · · · · · · · · · · · ·				ANAL	YSES	REQU	JIREC	>		
Report t Comp	any		0		Invoice Comp	any	()								:		ature (°C)
City/S Conta Phone Email	e	karen@nautilu	Isenvironment	al.com	City/S Conta Phone Email	e	en@nautilusenvironmental.com	(Nitrate) NO ₃ -N	(Sodium) Na	(Potassium) K	(Calcium) Ca	(Magnesium) Mg	(Sulfate) SO4	de) Cl	ity		Receipt Temperature (°C)
SAMP	LE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NO. OF CONTAINERS	COMMENTS	(Nitrat	(Sodiu	(Potas	(Calcit	(Magn	(Sulfat	(Chloride) Cl	Alkalinity		Å
i Contro	ol #1	07-Dec-12			125mi Bottle	i	FHM Day 0	x	x	x	x	x	x	x	x		
25 mg/L	. N - #1	07-Dec-12			125ml Bottle	1	FHM Day 0	x									
3 50 mg/L	N - #1	07-Dec-12			125ml Bottle	1	FHM Day 0	x									
4 100 mg/l	LN-#1	07-Dec-12			125ml Bottle	1	FHM Day 0	x									
5 200 mg/ (LN-#1	07-Dec-12			125ml Bottle	1	FHM Day 0	x									
6 400 mg/	LN-#1	07-Dec-12			125ml Bottle	1	FHM Day 0	x									
7 800 mg/	LN-#1	07-Dec-12			125ml Bottle	1	FHM Day 0	×		1	ļ						
8 1600 mg /	/LN-#1	07-Dec-12			125ml Bottle	1	FHM Day 0	x							R I N i	111 ka nu	
9							· · · · · · · · · · · · · · · · · · ·		L							W U U	1
0							-				L1.	2472	250-(COFC		132 66 8 16	
PROJE	CT INFORM	ATION	· · \$	AMPLE RECE			RELINQUISHED BY (CLIENT)	1000000									
Client:			Total No.	of Containers	Ś	(Signature)	LEOUY	(Signatu							_	•	
PO No.:			Received G	ood Conditio			nen Dec 7/12	(Printed	Name)							(Date)	
Shipped Via:			Matches 1	est Schedule	?	(Company) Nau	nen Dec 7/12 tilles Environnerte	(Compa	ny)								
SPECIAL INST Day 0. Samp		COMMENTS: 7 (day FHM chror	nic nitrate test v	with lab water-		RECEIVED BY (COURIER)		; '	RE	CEIV	ED B	Y (LA	BORA	TÖR	0	
Day 0. Samp	ies not prese					(Signature)	(Time)	(Signati		J	De	>(7	1	A.	US	
						(Printed Name)	(Date)	(Printed	Name)	<u> 00</u>			t		<u> </u>	(Date)	
						(Company)	<u> </u>	(Cómpa	ηγ)	<u>``</u>				··			
																	1

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

TESTING LOCATION (Please Circle)

Nautilus Environmental

Chain of Custody

\bigcirc

British Columbia 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N3 Phone 604.420.8773

Date De A -,2

Sample Colle	ction By:		- <u></u>									ANAL	YSES	REQU	JIRE	>			
Report	to:		\sim		Invoice	То:													Ş
Comp	pany		(l)		Comp	any	Ű) 2
Addro	ess				Addre	ess			l			·			. <u> </u>	-	-	_ ·	atu
City/	State/Zip				City/s	State/Zip													per
Conta	act				Conta	ict		·····					Ъ						e
Phon	e				Phone	e		<u> </u>	ő	e) К	P.	м (ч	3	σ				н К
Emai	1	<u>karen@nautilu</u>	isenvironmenti	al.com	Email	<u>kar</u>	en@nautilusenvironmental.co	<u>om</u>	e) N	√ (m	sium	(j	esiur	e) S(de) (ξį			Receipt Temperature (°C)
SAMP	LE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NO. OF CONTAINERS	COMMENT	ſS	(Nitrate) NO ₃ -N	(Sodium) Na	(Potassium)	(Calcium) Ca	(Magnesium)	(Sulfate) SO ₄	(Chloride)	Alkalinity			a a
1 Contr	rol #2	07-Dec-12			125ml Bottle	1	FHM Day	0	x	x	x	x	x	x	x	x			
2 25 mg/	LN-#2	07-Dec-12	·······		125ml Bottle	1	FHM Day	0	x		_								
3 50 mg/	L N - #2	07-Dec-12			125ml Bottle	1	FHM Day	0	x							-			
4 100 mg/	LN-#2	07-Dec-12			125ml Bottle	1	FHM Day	0	x										
5 200 mg/	LN-#2	07-Dec-12			125ml Bottle	1	FHM Day	0	x										
6 400 mg/	/LN-#2	07-Dec-12			125ml Bottle	1	FHM Day	0	x										
7 800 mg/	LN-#2	07-Dec-12			125mi Bottle	1	FHM Day	0	x									í	
8 1600 mg	/LN-#2	07-Dec-12			125ml Bottle	1	FHM Day	0	x										
9			·							_				Di Di s		 		I	•
10			······································							_									
PROJI	ECT INFOR		S	AMPLE RECEI	(PT		RELINQUISHED BY (CLIE			_		L1	247:	250-(#1#{	()) 	1	
Client;			Total No.	of Containers	B	(Signature)	a	(FOOL	(Signatu	rê						<u>ن</u>			
PO No.:			Received G	ood Condition	n?	(Printed Name)	arentee	Dec AN	(Printed	Name)							(=	-	-
Shipped Via:			Matches T	est Schedule	7	(Company) Na	aren Lee aren Lee artilus Envire	ment	(Cómpai	(Y)									
		COMMENTS: 7	day FHM chron	ic nitrate test v	vith lab water-		RECEIVED BY (COURIER	२)			RI	ECEIV	ED B	Y (LA	BORA	TOR	()		
Day 0. Samp	nes not biese	aveu.				(Signature)		(Time)	(Signatu	ne)	•		;		<u> </u>	÷	(Time	2)	
						(Printed Name)		(Date)	(Printed	Name)	<u> </u>			····			(Date	,	
						(Company)			(Compar	ιy)									·
			-											•					

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.

NAUTILUS ENVIRONMENTAL ATTN: Karen Lee 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received:14-DEC-12Report Date:24-DEC-12 09:56 (MT)Version:FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #:

NOT SUBMITTED

1, 2

L1249902

Job Reference: C of C Numbers: Legal Site Desc:

Project P.O. #:

At the

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Version: FINAL L1249902-2 L1249902-1 L1249902-3 L1249902-4 L1249902-5 Sample ID Description water water water water water 14-DEC-12 Sampled Date 14-DEC-12 14-DEC-12 14-DEC-12 14-DEC-12 Sampled Time CONTROL #2 25 MG/L N- #2 50 MG/L N- #2 100 MG/L N- #2 200 MG/L N- #2 Client ID Grouping Analyte WATER Nitrate (as N) (mg/L) Anions and 0.992 29.8 57.1 114 220 Nutrients

L1249902 CONTD.... PAGE 2 of 5 24-DEC-12 09:56 (MT)

Version: FINAL L1249902-7 L1249902-6 L1249902-8 L1249902-9 L1249902-10 Sample ID Description water water water water water 14-DEC-12 Sampled Date 14-DEC-12 14-DEC-12 14-DEC-12 14-DEC-12 Sampled Time 400 MG/L N- #2 800 MG/L N- #2 CONTROL #1 25 MG/L N- #1 50 MG/L N- #1 Client ID Grouping Analyte WATER Nitrate (as N) (mg/L) Anions and 443 877 0.110 54.7 107 Nutrients

L1249902 CONTD.... PAGE 3 of 5 24-DEC-12 09:56 (MT)

	_				Versio	sion: FINA				
		Sample ID Description Sampled Date Sampled Time	L1249902-11 water 14-DEC-12 100 MG/L N- #1	L1249902-12 water 14-DEC-12 200 MG/L N- #1	L1249902-13 water 14-DEC-12 400 MG/L N- #1	L1249902-14 water 14-DEC-12 800 MG/L N- #1				
		Client ID	100 MG/L N- #1	200 MG/L N- #1	400 MG/L N- #1	800 WG/L N- #1				
Grouping	Analyte									
WATER										
Anions and Nutrients	Nitrate (as N) (mg/L)		218	431	823	895				

L1249902 CONTD.... PAGE 4 of 5 24-DEC-12 09:56 (MT) Version: FINAL

Reference Information

Test Method References:

lest method Kelerenco	53.		
ALS Test Code	Matrix	Test Description	Method Reference**
ANIONS-NO3-IC-VA	Water	Nitrate in Water by Ion Chromatography	EPA 300.0
This analysis is carried o detected by UV absorbar		dures adapted from EPA Method 300.0 "Determ	ination of Inorganic Anions by Ion Chromatography". Nitrate is
* ALS test methods may in	corporate mod	ifications from specified reference methods to in	nprove performance.
The last two letters of the	above test coo	de(s) indicate the laboratory that performed ana	lytical analysis for that test. Refer to the list below:
Laboratory Definition Co	ode Labor	atory Location	
VA	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH CO	DLUMBIA, CANADA
Chain of Custody Numbe	rs:		
1	2		
applicable tests, surrogate mg/kg - milligrams per kilo mg/kg wwt - milligrams per mg/kg lwt - milligrams per mg/L - milligrams per litre. < - Less than. D.L The reported Detec	that is similar in the sare added to ogram based o rr kilogram base kilogram base tion Limit, also	o samples prior to analysis as a check on recov	ot occur naturally in environmental samples. For ery.

_

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Naut	cilus Env	ironmen	tal	TESTING LOG	CATION (Pleas	e Circle)	British Columbla 8664 Commerce Cou					Chai	in of C	Cust	D(
SD							Burnat Phone	·mbia, Ca	anada VS	a 4n3		Date	ecty/P	- /	_0
Sample Collection By:									[[[[[[///	ei 1	n		1
Report to: Company	$\widehat{()}$		Invoice Comp	()		L	-124g	902-0	20FC						
Address		<u> </u>	.	- Comp				1	1 -	_	;				
City/State/Zip		·····		- 1	State/Zip						1.	•			
Contact				- Conta								I			
Phone				- Phon	е —			Z_Z							
Email	karen@nautili	usenvironment	tal.com	Email	Email karen@nautilusenvironmental.com										
SAMPLE ID	DATE	ТІМЕ	MATRIX	CONTAINER	NO. OF	COMMEN		I (Nitrate) NO ₃ -N							
Control #2	14-Dec-12			125ml Bottle	CONTAINERS 1	FHM Day									-
25 mg/L N - #2	14-Dec-12			125mi Bottie	1	FHM Day		×							-
50 mg/L N - #2	14-Dec-12		<u></u>	125ml Bottle	1	FHM Day	y 7	×						+	
100 mg/L N - #2	14-Dec-12			125ml Bottle [.]	1	FHM Day	y 7	×			<u> </u>				-
200 mg/L N - #2	14-Dec-12			125mi Bottle	1	FHM Day	y 7	×		-					
400 mg/L N - #2	14-Dec-12			125mi Bottie	1	FHM Day	y 7	x							,
800 mg/L N - #2	14-Dec-12			125mi Bottle	1	FHM Day	y 7	x							
1600 mg/L N - #2	<u>14-Dec-12</u>		<u></u>	125mi Bottie	1	FHM-Day	y 7	- ×					_		
		· ·										_			
PROJECT INFORMATION SAMPLE RECEIPT					RELINQUISHED BY (CLIENT) (Signature) (Time)			RELINQUISHED BY (COURIER) (Signature) (Time)							
Client:		Total No. of Containers			(Printed Name) (Date)			(Printed Name) (Date)							
PO No.:		Received Good Condition?			Ka	ren Lee	Pec 14/12	- -	nanne)				(I	Datey	
Shipped Via:		Matches T	est Schedule	7	(Company) Nautilus Environmental				(Company)						
SPECIAL INSTRUCTIONS/COMMENTS: 7 day FHM chronic nitrate test with lab water- Day 7. Samples not preserved.								RECEIVED BY (LABORATORY)							
ay 7. Samples not pre					(Signature)		(Time)	(Signatu	Act					Fime)	-
					(Printed Name)		(Date)	(Printed	Name)				(1	Date)	
					(Company)	<u> </u>		(Compa	(אי	•			Dec Imp c	<u>214</u>	-
						therwise contracted.						te	up à	J2.	,!

•

Mautilus Environmental	TESTING LOCATION (Please Circle)

Chain of Custody

 6 8

(GG)				1249902-C0			D British Colum 8664 Commerce (Burnaby, British (Phone 604.420.8)	Court Columbia, Ca	nada VSA (4N3		Date_	Decl	u/l ¹ _Page_	ے کے of	
Sample Collection By:		• {	1249902-01	0,0				ANALYSES REQUIRED								
Report to: Company Address City/State/Zip Contact Phone Email	karen@nautili	(t)	al.com	Addre Comp Addre City/S Conta Phone Email	ess State/Zip Act e	en@nautilusenviror		(Nitrate) NO ₃ -N				· · · · · · · · · · · · · · · · · · ·			Receipt Temperature (°C)	
SAMPLE ID	DATE	TIME	MATRIX	CONTAINER TYPE	NO. OF CONTAINERS	C	OMMENTS	Nitrat							l s	
Control #1	14-Dec-12			125ml Bottle	1	F	HM Day 7	×						<u>├</u> ──		
25 mg/L N - #1	14-Dec-12		<u> </u>	125ml Bottle	1	F	HM Day 7	T x							1	
50 mg/L N - #1	14-Dec-12	1		125mi Bottle	1	F	HM Day 7	x			<u> </u>		-			
100 mg/L N - #1	14-Dec-12			125mi Bottle	1	F	HM Day 7	x								
200 mg/L N - #1	14-Dec-12			125mi Bottle	1	F	HM Day 7	- Â							-	
400 mg/L N - #1	14-Dec-12			125mi Bottle	1	F	HM Day 7	×				-+-		<u> </u>	+	
800 mg/L N - #1	14-Dec-12			125mi Bottle	1	F	HM Day 7	x					+	<u> </u>	1	
-1609-mg/L-N-#1				125mi Bottie			HM-Day-7		-				-			
					·	· · · · · · · · · · · · · · · · · · ·										
PROJECT INFORMATION SAMPLE RECEIPT				RELINQUISHED BY (CLIENT)			RELINQUISHED BY (COURIER)									
Client:	t: Total No. of Contain			5 5	(Signature)	ase	(Time) LPOOH	(Signatu						(Time)		
PO No.:	Received Good Condition?			n7	(Printed Name) (Date) Karen Lee Deel4/12				(Printed Name) (Date)							
Shipped Via:	Matches Test Schedule?			?	Karen Lee Deel4/12 (Company) Nautilus Environmentel			(Company)								
SPECIAL INSTRUCTIONS/COMMENTS: 7 day FHM chronic nitrate test with lab water- Day 7. Samples not preserved.				RECEIVED BY (COURIER)			RECEIVED BY (LABORATORY)									
Day 7. Samples not pre	serveu.			•	(Signature)		(Time)	(Signatu	Ë)z	0		: :	·	(Time) (5	
					(Printed Name)		(Date)	(Printed	Name)				T	ec 14	f	
					(Company)			(Compari	γ)						<u>.</u>	
					l							1.	C	226		

Additional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.