

June 8, 2012

File: S110-01-09

Chuck Hubert Senior Environmental Assessment Officer Mackenzie Valley Environmental Impact Review Board P.O. Box 938 Yellowknife NT X1A 2N7

Dear Mr. Hubert:

Undertaking #2 - Response to Physical Properties of Fine PK for Gahcho Kué Project EIR0607-001 Environmental Impact Review Technical Sessions, May 22-25, 2012

De Beers Canada Inc. (De Beers) is pleased to submit the attached Technical Memorandums in response to Undertaking #2 to the Mackenzie Valley Environmental Impact Review Board (MVEIRB). The undertaking was requested at the May 22-25, 2012 Technical Sessions held for the Gahcho Kué Project.

Specifically, Undertaking #2 requested De Beers to get back to Kathy Racher of Wek'èezhii Land and Water Board (WLWB) (indicated incorrectly in the undertaking as MVLWB) on information on physical properties of Fine PK i.e., gravity, size, settle-ability, from each pit.

The attached Technical Memorandum entitled EBA Technical Memorandum - Gahcho Kué Fine PK Laboratory Testing Information (June 6, 2012) provides the response to Undertaking #2.

We trust the response provides the information necessary to fulfill our requirements.

Sincerely,

Veronica Chieft

Veronica Chisholm Permitting Manager

Attachment

C: K. Racher, Wek'èezhii Land and Water Board (WLWB)

TECHNICAL MEMO

ISSUED FOR USE

TO:	Andrew Williams, De Beers	DATE:	June 6, 2012
C :	Wayne Corso, JDS Dan Johnson, JDS		
FROM:	Bill Horne	EBA FILE:	E14101208
SUBJECT:	Gahcho Kué Fine PK Laboratory Testing Information		

I.0 INTRODUCTION

The following provides a summary of the laboratory testing information on the fine processed kimberlite (fine PK) in response to a query at the Gahcho Kué Technical Sessions that were held on May 23, 2012

Test results of the Gahcho Kué Fines testing programs are contained in the following documents:

- 1. De Beers 2002, Note for the Record Gahcho Kue Slimes Characterization, Compiled by Tomo, October 2002.
- 2. De Beers 2004, Note for the Record Gahcho Kué Phase II ODS Slimes Characterization, Compiled by Tomo, October 2004.
- 3. Patterson & Cooke 2005, Gahcho Kué Ore Dressing Study: Slurry Tests Using 5034 and Hearne Ore, submitted to De Beers.
- 4. De Beers 2008, Note for the Record Gahcho Kué Tuzo Slimes Dewatering Test Reports, Compiled by Tomo May 2008.
- 5. Golder 2011, Technical Memorandum DCN-033 Gahcho Kué EIS Post Submission/Integrated Evaluation of Post Closure Alternatives. Phase 2030: Task 20: Material Characterization.

The documents present fine PK settling tests, mineralogy tests, grain size, specific gravity, soil-water characteristics (SWCC), and hydraulic conductivities. The documents are attached to this memo.

2.0 BACKGROUND

Gahcho Kué fine PK is planned to be disposed of in three areas.

- Area 2 disposal area (3.3 Mt)
- Mined out 5034 pit (1.5 Mt)
- Mined out Hearne pit (3.0 Mt)

Gahcho Kue Fine PK properties.docx CONSULTING ENGINEERS & SCIENTISTS • www.eba.ca A comparison was made between the Gahcho Kué site and the EKATI Mine site at the technical sessions. It should be noted that the Gahcho Kué Area 2 disposal area is planned to contain 3.3 Mt of fine PK as opposed to the EKATI Processed Kimberlite Containment Area (PKCA) which has a capacity of 58 Mt. Currently, approximately 40 Mt of fine PK has been placed in the EKATI PKCA.

The source of the ore for the GK disposal areas is as follows:

- Area 2 majority from 5034 pit, small amount from the Hearne Pit
- Mined out 5034 pit majority from Hearne Pit, some from the Tuzo Pit
- Mined out Hearne pit majority from Tuzo Pit

3.0 **KEY FINDINGS**

The conclusions from the test data reports are as follows:

- Settling 5034 and Hearne material using Magnafloc E10 achieved clear overflow water with turbidity less than 100 NTU. (De Beers 2004).
- Settling rates determined for most Gahcho Kué samples from all 5034 and Hearne samples with 5 and 10 percent solids concentration ranged from 10.0 to 35.8 m/h, with a median settling rate of 23.1 m/h. Settling rates greater than 10 m/h are considered to settle easily (De Beers 2002).
- Settling rates for Tuzo ranged from 7.2 to 18.0 m/h with a median value of 16.2. One sample out of 15 samples from Tuzo had a settling rate less than 10 m/h. (De Beers 2008).
- Tuzo ore samples had a finer slurry particle size distribution than 5034 and Hearne samples. (De Beers 2008).
- The Gahcho Kué ore bodies contain Smectite clay. The natural state of the Smectite clay is generally highly calcium exchanged and has a relatively low exchangeable sodium percentage (ESP). It is expected that colloidally settling slurries will be generated from the ore and water combinations at the natural pH conditions. Good slurry flocculation and settling characteristics are expected. (De Beers 2008, Patterson & Cooke 2005).

4.0 CONCLUSIONS

Based on the test results, it is anticipated that the fine PK will settle adequately within Area 2. Minimal issues may be managed by blending of ores being fed in the plant.

2

DEBEERS

NOTE FOR THE RECORD GAHCHO KUE SLIMES CHARACTERISATION

Compiled by Phakamele Tomo

15 October 2002

Document No: T05-400130-855

Revision 1.0

Copyright © 2012 De Beers

All rights reserved. No part of this document may be reproduced, translated, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the owner.

> **Note:** If this copy is no longer in use, return to sender.

DOCUMENT INFORMATION

REPORT TITLE	GAHCHO KUE SLIMES CHARACTERISATION
AUTHOR	P TOMO
PUBLISH DATE	15 October 2002
REPORT NUMBER	T05-400130-855
PROJECTS & SERVICES AREA	Mineral Processing
	Water & Environmental Services

MINERAL PROCESSING MANAGER	H Voordewind
PROJETS & SERVICES MANAGER	B Greeff

APPROVAL

Name	Signature	Date
AJ Vietti		
Senior Researcher		
DebTech Research		
G Langefeld		
Senior Research Officer		
DebTech Research		

AUTHOR

Name	Signature	Date
PTomo		
Jr Process Engineer DPS Water & Environmental Services		

Document No.	Revision	Gahcho Kue Slimes	Page 258of 281
T05-400130-855	1.0	Characterisation	

ELECTRONIC SOURCE DATA

EFFECTIVE DATE	06 June 2012
FILE SIZE	8622 592 Bytes
FILE NAME	WES_Report_GahchoKueODS
APPLICATION	MS Word 97

CHANGE HISTORY

Date	CR No	Revision	Description of change
2002-10-15	-	1.0	New document

DISTRIBUTION LIST

COPIES:	OWNER		DIVISION / MINE
MASTER	Product D	ata Management	DebTech
1	Projects &	Services Library	DebTech
2	L	Johnson	DebTech
3	AJ	Vietti	DebTech
4	G	Langefeld	DebTech
5	Р	Tomo	DebTech

Document No.	Revision	Gahcho Kue Slimes	Page 259of 281
T05-400130-855	1.0	Characterisation	

TABLE OF CONTENTS

LIST OF ABBREVIATIONS	262
1. INTRODUCTION	263
2. METHODOLOGY	263
3. MINERALOGY ANALYSIS	264
3.1 TOTAL MINERAL ANALYSIS	264
3.1.1 5034 Diamond Drill Hole	264
3.1.2 Hearne Diamond Drill Hole Samples	265
3.2 CLAY MINERAL ANALYSIS	266
3.2.1 5034 Diamond Drill Hole Samples	266
3.2.2 Hearne Diamond Drill Hole Samples	267
3.3 EXTRACTABLE CATIONS AND ESP	268
3.3.1 5034 Diamond Drill Hole	268
3.3.2 Hearne Diamond Drill Hole	269
3.4 WATER ANALYSIS	270
3.5 SLIMES CHARACTERISATION	271
3.5.1 Slimes Characteristics	271
3.5.2 Flocculant Selection	273
3.5.3 Flocculant Dosage and Settling Characteristics	273
4. CONCLUSIONS	276
5. RECOMMENDATIONS	277
APPENDIX A: MINERALOGY RESULTS	278
APPENDIX B: MICROTRAC X100 SIZE DISTRIBUTION	281
APPENDIX C: SLIMES SETTLING CHARACTERISTICS DATA	282
APPENDIX D: SLIMES SETTLING CURVE	284

Document No. T05-400130-855	Revision 1.0	Gahcho Kue Slimes Characterisation	Page 261of 281

	BREVIATIONS		
CEC	Cation Exchange Capa	icity	
CTS	Characterisation and T Services	reatment Section within DebTech	n Projects &
ESP	Exchangeable Sodium	Percentage	
g/t	Grams per tonne		
me/100g	Milliequivalant per 100	grams of sample	
meq/l	Milliequivalant per litre		
mS/cm	MilliSiemens per centir	netre	
mg/l	Milligrams per litre		
NTU	Nephelometric Turbidit	y Unit	
WES	Water and Environmer	tal Services in Knowledge Servic	es
ODS	Ore Dressing Studies I	Department	
ods	Ore dressing study		
GRN			
GRN+K			
HK	Hypabyssal Kimberlite		
HK2			
HKB	Hypabyssal Kimberlite	Breccia	
HKg			
HK+B			
HK-GRN			
HK-TKNt			
HK+TKt			
HNHK			
TKSD			
TKtB-HKt			
Document No.	Revisior		Page 262of 281
T05-400130-855	1.0	Characterisation	

NOTE FOR THE RECORD

1. INTRODUCTION

Clay analysis and slimes characterisations were performed on Gahcho Kue samples as part of the ore dressing study for Gahcho Kue. The Water and Environmental Services (WES) involvement aims at characterising ore samples to establish expected changes in operating conditions because of changes in ore body.

Fifteen (15) samples for characterisation were received from Gahcho Kue. The descriptions of samples analysed are presented in Table 1. Nine of the samples were taken from 5034 Diamond Drill Hole and the other six samples were taken from Hearne Diamond Drill Holes.

Drill Hole ID	Drill Hole #	LR #	Sample	Av. Depth (m)
			Description	
	MPV-02-076C	LR 1244	GRN	236
	WIF V-02-070C	LR 1245	HK2	284
5034 Diamond Drill Hole		LR 1246	нк	47
	MPV-02-079C	LR 1247	НКВ	112
		LR 1248	HK-GRN	160
Hearne Diamond Drill hole	MPV-02-080C	LR 1249	HK-TKNt	100
Reame Diamond Dhii hole		LR 1250	HNHK	231
		LR 1251	HK+B	105
5034 Diamond Drill Hole	MPV-02-082C	LR 1252	GRN+K	189
		LR 1253	HK+TKt	243
	MP-02-084C	LR 1254	НК	86
Lisense Diensend Drill Liste		LR 1255	НК	60
Hearne Diamond Drill Hole	MPV-02-085C	LR 1256	HKg	142
		LR 1257	TKSD	237
5034 Diamond Drill Hole	MPV-02-087C	LR 1258	TKtB-HKt	153

Table 1: Gahcho Kue samples description

2. METHODOLOGY

The Characterisation and Treatment Section (CTS) within DebTech Projects & Services screened the samples at -1 mm size fraction.

A portion of screened –1 mm material was sent to the Agricultural Research Council (ARC), Institute of Soil, Climate and Water for mineralogy analysis. The mineralogy analysis includes the following characterisation:

• Total mineral analysis,

Document No.	Revision	Gahcho Kue Slimes	Page 263of 281
T05-400130-855	1.0	Characterisation	-

- Clay mineral analysis,
- Extractable cation and cation exchange capacity, and
- Particle size distribution

Slimes were generated using the screened –1 mm samples and de-mineralised water from Puréau Fresh Water Company. This water simulates pure/clean lake water expected to be used within treatment plant at Gahcho Kue.

- Typical process water was generated by adding about 2 litres of de-mineralised water in 500 g of crushed drill core.
- The mixture was stirred for 1 hour and then left to settle for 2 hours.
- The decant water was used to generate the slimes for testing using fresh ore samples.
- The slimes were generated at a concentration of 5 and 10 percent solids by mass for each sample tested.
- Slimes characteristics analysis was then performed.

3. MINERALOGY ANALYSIS

The mineralogy analysis was conducted on crushed -1 mm size fraction material. Tabulated results of total mineral, clay mineral and exchangeable cations analysis are presented in Appendix A.

3.1 Total Mineral Analysis

Total mineral analysis indicate minerals present in the $-2 \text{ mm} + 2 \mu \text{m}$ size fraction of the ore body.

3.1.1 5034 Diamond Drill Hole

Total mineral analysis results of 5034 Diamond Drill Hole samples is presented in Figure 1. The results indicated that the 5034 Diamond Drill Hole samples are composed of smectite, mica, serpentine, pyrophyllite, quartz, gibbsite, feldspar and calcite in the $-2 \text{ mm} + 2 \mu \text{m}$ size fraction.

The results indicated that smectite dominated the TKtB-HKt and HK+TKt samples from drill holes MPV-02-087C and MPV-02-082C respectively. The smectite content in these samples was 70 and 27 percent respectively. Samples with high smectite content, greater than 20 percent, in the absence of other mitigating factors, tend to cause settling difficulties when in suspension with water.

The feldspar (sodium-rich mineral) was dominant in GRN and HK-GRN samples from drill holes MPV-02-076C and MPV-02-079C and the content in these samples was 50 and 34 percent respectively. Samples with high feldspar content tend to have a high exchangeable sodium percentage (ESP).

The rest of 5034 Diamond Drill Hole samples were dominated by serpentine $[Mg_3Si_2O_5(OH)_4]$, which is a greenish, brownish mineral normally known as a source of magnesium. The serpentine content in 5034 Diamond Drill hole samples ranges between 5 and 77 percent.

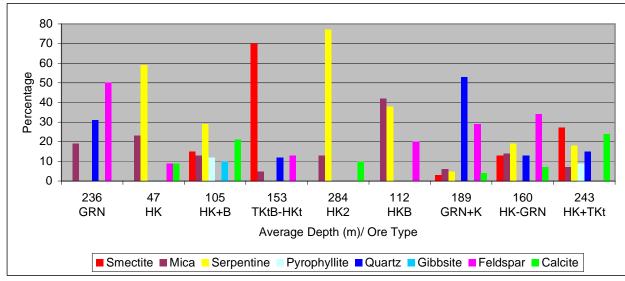


Figure 1: Total mineral analysis of 5034 diamond drill hole samples

3.1.2 Hearne Diamond Drill Hole Samples

Total mineral analysis results of Hearne Diamond Drill Hole samples are presented in Figure 2. The results indicated that the Hearne Diamond Drill Hole samples are composed of smectite, mica, serpentine, pyrophyllite, quartz, feldspar and calcite in the $-2 \text{ mm} + 2 \mu \text{m}$ size fraction.

Only HK-TKNt and TKSD samples from Hearne Diamond Drill Hole taken from drill holes MPV-02-080C and MPV-02-085C contained smectite mineral at a content of 58 and 35 percent respectively. The results showed that most of the Hearne Diamond Drill Hole samples are dominated by serpentine.

Document No.	Revision	Gahcho Kue Slimes	Page 265of 281
T05-400130-855	1.0	Characterisation	

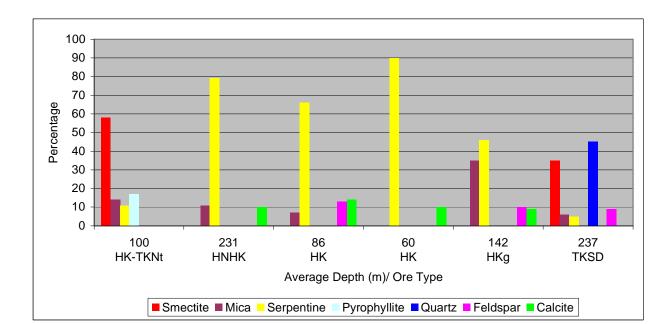
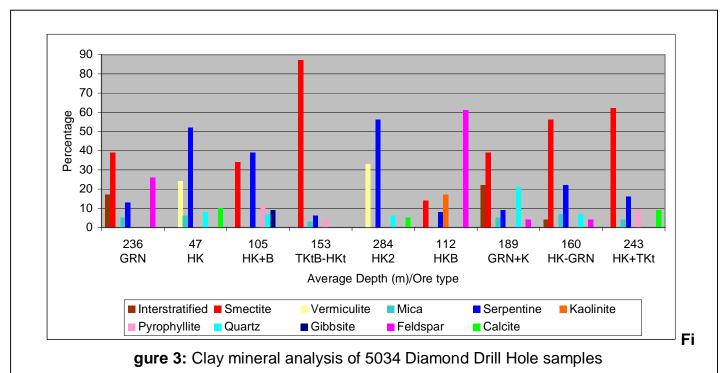


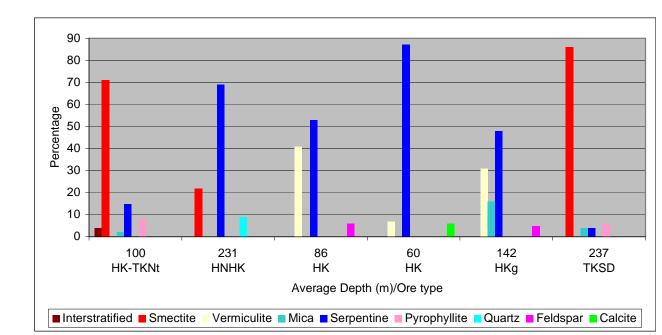
Figure 2: Total mineral analysis of Hearne Diamond Drill Hole samples


3.2 Clay Mineral Analysis

The clay mineral analysis indicates the mineralogy of the minus 2 micron size fraction (or clay fraction).

3.2.1 5034 Diamond Drill Hole Samples

Clay mineral analysis results of 5034 Diamond Drill Hole samples are presented in Figure 3. The results indicate that the 5034 Diamond Drill Hole samples are composed of interstratified, smectite, vermiculite, mica, serpentine, kaolinite, pyrophyllite, quartz, gibbsite, feldspar and calcite. The content of the problematic clay mineral, smectite, and ranges between 14 and 87 percent in the clay fraction of 5034 Diamond Drill Hole samples. This high smectite content may pose settling difficulties when the ore is suspended in water.


Document No.	Revision	Gahcho Kue Slimes	Page 266of 281
T05-400130-855	1.0	Characterisation	

3.2.2 Hearne Diamond Drill Hole Samples

Clay mineral analysis results of Hearne Diamond Drill Hole samples are presented in Figure 4. The results indicate that the Hearne Diamond Drill Hole samples are composed of interstratified, smectite vermiculite, mica, serpentine, pyrophyllite, quartz, feldspar and calcite. The content of the problematic clay mineral, smectite was found to be present in HK-TKNt, HNHK and TKSD at a content of 77, 22 and 86 percent in the clay fraction of Hearne Diamond Drill Hole samples. This high smectite content may pose settling difficulties when the ore is suspended in water.

Document No.	Revision	Gahcho Kue Slimes	Page 267of 281
T05-400130-855	1.0	Characterisation	

Figure 4: Clay mineral analysis of Hearne Diamond Drill Hole samples

3.3 Extractable Cations and ESP

3.3.1 5034 Diamond Drill Hole

The extractable cation analysis and exchangeable sodium percentage results for 5034 Diamond Drill Hole samples are presented in Figure 5. Extractable cations are often adsorbed on the clay crystal lattice structure and can be exchanged by other cations in solution when in contact with water. The exchangeable sodium percentage (ESP) is an indication of the sodium-exchanged state of the clays in the ore in the dry state (i.e. *in situ*) and is determined from cation extraction test. The ESP is regarded as high if it is in excess of 15 percent and may potentially provide settling problems, while samples with ESP values less than 10 percent are regarded as being easy to settle.

The results indicated that 5034 Diamond Drill Hole samples are characterised by a very low content of sodium exchanged clay and have a high content of extractable calcium. The ESP values of 5034 Diamond Drill Hole samples are below 10 percent for most samples, except for GRN sample. The GRN sample had an ESP value of 11 percent, which is in the medium range.

Document No.	Revision	Gahcho Kue Slimes	Page 268of 281
T05-400130-855	1.0	Characterisation	

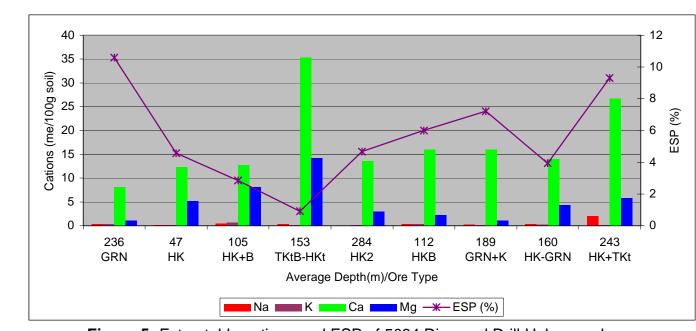
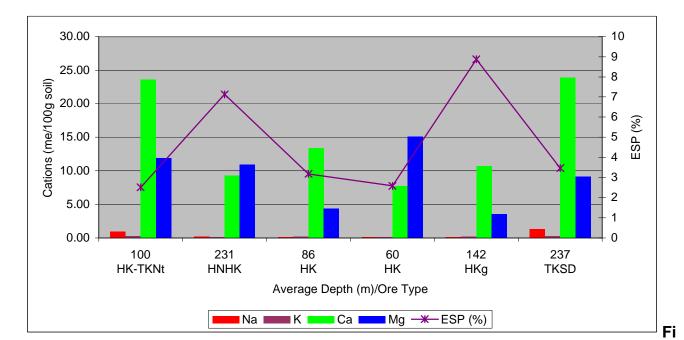



Figure 5: Extractable cations and ESP of 5034 Diamond Drill Hole samples

3.3.2 Hearne Diamond Drill Hole

The extractable cation analysis and exchangeable sodium percentage results for Hearne Diamond Drill Hole samples are presented in Figure 6. The result indicated that Hearne Diamond Drill Hole samples are characterised by a very low content of sodium exchanged clay and have high content of extractable calcium. The ESP values of Hearne Diamond Drill Hole samples are below 10 percent for all samples and indicate that easy settling slurry characteristics can be expected for these samples.

Document No.	Revision	Gahcho Kue Slimes	Page 269of 281
T05-400130-855	1.0	Characterisation	

gure 6: Extractable cations and ESP of Hearne Diamond Drill Hole samples

3.4 Water Analysis

The results of chemical analysis of the de-mineralised water from Puréau Fresh Water Company are presented in Table 2. Samples with SAR value in excess of 15 meq/l are expected to generate non-settling slurries, while the samples with SAR value less than 10 meq/l are expected to generate settling slurries. Partial settling characteristics is expected when the SAR value is between 10 and 15 meq/l.

The Sodium Absorption Ratio (SAR) of the Puréau Fresh Water was calculated from the chemical analysis data as being 0.1 meq/l. This SAR is lower than that of the 5034 process water, however, both water samples has a potential of generating easy settling slurries.

Determinant	Puréau Fresh Water	5034 Process Water*
рН	6.7	8.0
Conductivity (mS/m)	4.01	350 μS/cm
Colour (mg/t Pt-Co)	7	
Turbidity (NTU)	0.8	
Total Dissolved Solids (mg/l)	23	240

Table 2:	Summarised	chemical	analvsis	of raw water
	0 4111114110004	011011100	anany 010	or rail mater

Document No.	Revision	Gahcho Kue Slimes	Page 270of 281
T05-400130-855	1.0	Characterisation	

SAR (meq/l)	0.1	0.7
Sodium (mg/l Na)	<1	18.0
Potassium (mg/I K)	2	8.5
Magnesium (mg/l Mg)	<1	13.7
Calcium (mg/l Ca)	3	29.2
Sulphur (mg/I S)	<0.2	28.9
Fluoride (mg/l F)	<0.2	1.1
Sulphate (mg/I SO ₄)	7	80
Chloride (mg/l Cl)	8	10.5
P-Alkalinity (mg/l CaCO ₃)	<5	
Alkalinity (mg/I CaCO ₃)	<5	71
Nitrate (mg/l N)	0.2	0.8

*De Beers Canada provided 5034 process water chemical analyses and no water samples were submitted to DebTech for slimes characterisation. Thus Puréau Fresh water was selected to prepare slurry samples for characterisation

3.5 Slimes Characterisation

Slimes were prepared using -1 mm size fraction of screened samples from Gahcho Kue and de-mineralised water samples from Puréau Fresh. Slimes characterisation was conducted at a feed solids concentration of 5, and 10 percent for each sample.

3.5.1 Slimes Characteristics

5034 Diamond Drill Hole

Slimes characteristics of 5034 Diamond Drill Hole samples are presented in Table 3. Slimes samples with a pH within pH 9 – pH 11 range are regarded to be in a colloidally stable pH range and tend to be difficult to settle. The pH value of 5034 Diamond Drill Hole material was below pH 9 indicating that the slimes would settle readily.

The conductivity of 5034 Diamond Drill Hole slimes samples ranges from 1.07 to 2.38 mS/cm. Experience has shown that slurry samples with conductivity in excess of 3.0 mS/cm are easy to settle.

Particle size distribution graphs are presented in Appendix B. Microtrac X100 size distribution results indicated that the 5034 Diamond Drill Hole slimes samples had ultrafines ranging from low to medium content as indicated by the minus 22 micron size fraction.

Ore Type	Sample	Av. Depth	Req. %	Act. RD	Act. %	рН	Conductivit	ty % -22
Document N			Revisio	on		o Kue Sli		Page 271of 281
T05-400130	-855		1.0		Characterisation			

Table 3: Slimes characteristics of 5034 Diamond Drill Hole samples

		(m)	Solids	(kg/m ³)	Solids		(mS/cm)	micron Fraction
			5	1.033	5.1	8.00	1.61	24.9
GRN	LR1244	236	10	1.066	9.9	8.42	1.80	10.2
			5	1.033	5.1	8.53	2.09	12.5
HK2	LR1245	284	10	1.067	10.1	8.78	2.14	23.8
		47	5	1.034	5.3	8.46	1.78	23.8
HK	LR1246	47	10	1.066	9.9	8.72	1.92	26.6
нкв LR	1 04247	112	5	1.034	5.3	8.28	1.18	23.8
	LR1247		10	1.067	10.1	8.74	1.70	15.9
HK-GRN	LR1248	160	5	1.033	5.1	8.28	1.54	26.0
	LR 1240		10	1.066	9.9	8.69	1.88	14.0
HK+B	LR1251	105	5	1.033	5.1	8.13	1.29	9.7
ΠN+D	LRIZJI	105	10	1.066	9.9	8.36	1.81	22.8
GRN+K	LR1252	189	5	1.034	5.3	8.15	2.09	27.5
GRN+R	LNIZJZ	109	10	1.066	9.9	8.86	2.38	29.4
HK+TKt	LR1253	243	5	1.033	5.1	8.18	1.07	18.0
		240	10	1.066	9.9	8.64	1.39	31.4
TKtB-HKt	LR1258	153	5	1.034	5.3	8.20	1.38	25.4
	LK 1230	153	10	1.066	9.9	8.74	2.08	17.9

Hearne Diamond Drill Hole

Slimes characteristics of Hearne Diamond Drill Hole samples are presented in Table 4. The pH value of Hearne Diamond Drill Hole material was below pH 9 indicating that the slimes would settle readily. The conductivity of slimes samples ranged from 1.05 to 2.08 mS/cm.

Microtrac X100 size distribution results indicated that the Hearne Diamond Drill Hole slimes samples had ultra-fines ranging from low to high content as indicated by the minus 22 micron size fraction. A high content of ultra-fines, in excess of 40 percent, was recorded for the HK-TKNt slimes with a 10 percent solids concentration. A high content of ultra-fines, greater than 40 percent, increases the surface area of suspension in water thereby increasing the colloidal stability of the slimes.

ODS	Sample	Av. Depth (m)	Req. % Solids	Act. RD (kg/m ³)	Act. % Solids	рН	Conductivity (mS/cm)	% -22 micron Fraction
HK-TKNt	LR1249	100	5	1.035	5.4	8.26	1.05	29.3
			10	1.067	10.1	8.64	1.98	45.6
HNHK	LR1250	231	5	1.034	5.3	8.26	1.19	13.5

			10	1.066	9.9	8.68	2.08	20.7
HK	LR1254	86	5	1.034	5.3	8.24	1.16	34.2
			10	1.066	9.9	8.44	1.94	26.8
НК	LR1255	60	5	1.034	5.3	8.24	1.13	26.2
			10	1.066	9.9	8.65	1.71	19.9
HKg	LR1256	142	5	1.033	5.1	8.14	1.11	35.6
			10	1.066	9.9	8.56	1.68	24.7
TKSD	LR1257	237	5	1.033	5.1	8.15	1.65	30.5
			10	1.066	9.9	8.76	1.98	33.5

3.5.2 Flocculant Selection

Flocculant selection was conducted on the 10 percent solids concentration slurry, using E10, 156, 1011, AO17, AD2 and 5250L flocculants. Flocculant were stirred and hydrated in tap water for approximately two hours at a 0.025 percent strength.

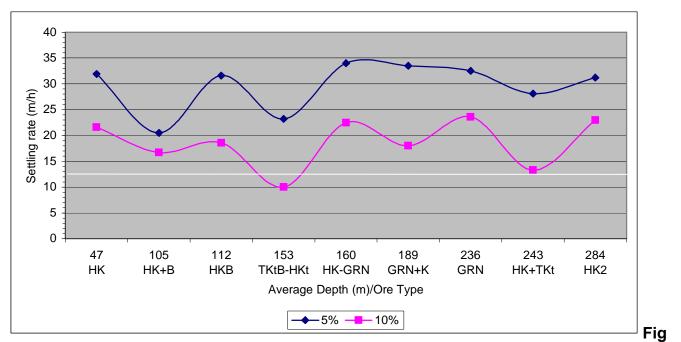
Ciba Chemical (Pelichem) produces Magnafloc E10, 156, 1011and 5250L flocculants while Ore Pro Consultant produces the AO17 and AD2 flocculants.

Ten millilitres of slimes sample was dispensed into six test tubes and each test tube was then dosed with 0.1 ml of flocculants. Test tubes are then shaken and observed for floc settling. A flocculant that produced good flocculation and clear water was selected for conducting settling tests.

From the selected flocculants, Magnafloc E10 produced good flocculation and very clear overflow water. Magnafloc E10 was used to perform settling test for the entire Gahcho Kue slimes samples, as it was the most efficient flocculant for settling the material.

3.5.3 Flocculant Dosage and Settling Characteristics

Tabulated data of the flocculant dose and settling characteristics of Gahcho Kue material is presented in Appendix C. The settling curves of the Gahcho Kue slimes are presented in Appendix D.


5034 Diamond Drill Hole Samples

The settling rates and flocculant dosage of 5034 Diamond Drill Hole samples as functions of depth are presented in Figure 7 and 8 respectively. Good settling rates were recorded for the slimes with a 5 and 10 percent solids concentration. As expected, lower settling rates were recorded for TKtB-HKt and HK+TKt samples, potentially due to domination by smectite mineral in the total mineral fraction.

Settling rates for 5034 Diamond Drill Hole samples ranges as follows:

- 5 percent solids concentration slimes: 23.2 m/h 34.0 m/h
- 10 percent solids concentration slimes: 10.0 m/h 23.6 m/h

Flocculant dose indicated that a slurry with a 5 percent solids concentration require 4.7 to 11.8 g/t while the 10 percent requires 5.9 to 11.8 g/t. There was a little variation in flocculant consumption for 5 and 10 percent solids concentration slimes of 5034 Diamond Drill Hole material.

ure 7: Settling rates of 5034 Diamond Drill Hole samples

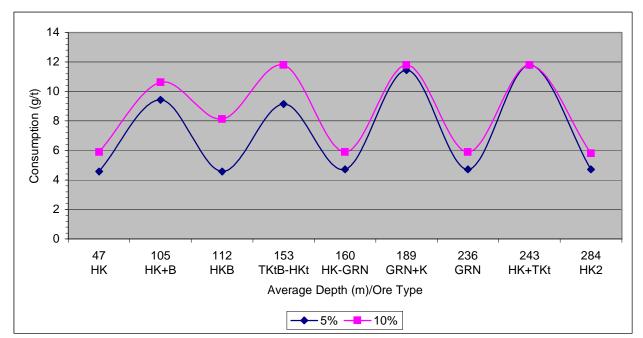


Figure 8: Magnafloc E10 dosages of 5034 Diamond Drill Hole samples

Document No.	Revision	Gahcho Kue Slimes	Page 274of 281
T05-400130-855	1.0	Characterisation	

Hearne Diamond Drill Hole Samples

The settling rate and flocculant dosage of Hearne Diamond Drill Hole samples as functions of depth are presented in Figure 9 and 10 respectively. Good settling rates were recorded for the slimes with a 5 and 10 percent solids concentration. Lower settling rates were recorded for HK-TKNt and TKSD samples. These samples were dominated by smectite mineral in the total mineral fraction. Settling rates for 5034 Diamond Drill Hole samples ranges as follows:

• 5 percent solids concentration slimes:

10 percent solids concentration slimes:

10.4 m/h – 24.8 m/h

Low flocculant doses were required to settle Hearne Diamond Drill Hole samples. The flocculant dose for the Hearne Diamond Drill Hole sample ranges from 6.9 to 13.7 g/t for 5 percent solids slurry and from 7.1 to 11.8 g/t for a 10 percent solids slurry samples.

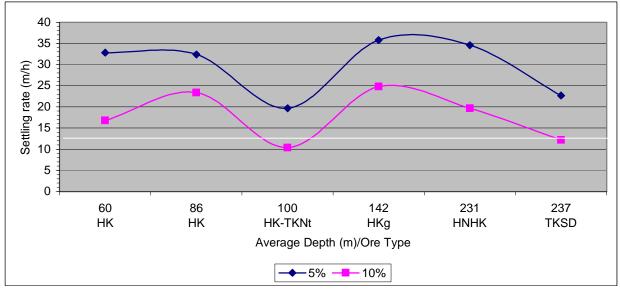


Figure 9: Settling rates of Hearne Diamond Drill Hole samples

Document No.	Revision	Gahcho Kue Slimes	Page 275of 281
T05-400130-855	1.0	Characterisation	

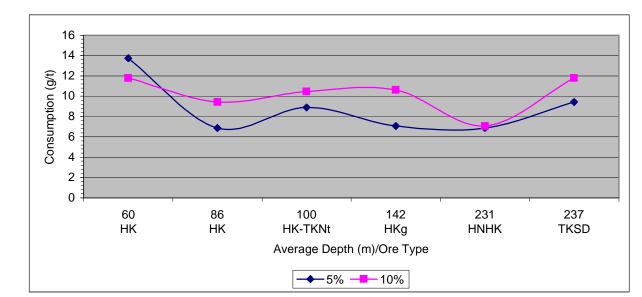


Figure 10: Magnafloc E10 dosages of Hearne Diamond Drill Hole samples

4. CONCLUSIONS

The pH value of Gahcho Kue slimes samples ranges between pH 8.0 and pH 8.8 and these values are typically in the unstable pH region and slurries within this pH range are expected to settle easily.

The ultra-fines content for most of the Gahcho Kue slimes samples ranges from low to medium. Only one sample, HK-TKNt, had a high ultra-fines content in excess of 40 percent. Ultra-fines content in excess of 40 percent increases the surface area of suspension and are responsible for absorbing flocculant.

No coagulation was required to render Gahcho Kue slimes unstable prior to flocculant addition.

A wide range of flocculants were able to bring about flocculation for Gahcho Kue slimes samples. Magnafloc E10 was the most efficient flocculant to use for the Gahcho Kue slimes samples.

Low flocculant dosages, ranging between 4.7 g/t and 13.7 g/t, were recorded for flocculating Gahcho Kue samples.

Good settling rates were determined for most Gahcho Kue slimes samples with 5 and 10 percent solids concentration. The settling rates of Gahcho Kue slimes samples ranges between 10 m/h and 35.8 m/h, with a median settling rate being 23.1 m/h.

Total mineral analysis indicated that Gahcho Kue ore bodies are composed of a wide range of minerals. High smectite content in the TKtB-HKt, HK+TKt, HK-TKNt and TKSD

samples has a potential to cause settling problems. This was seen by relative lower settling rates recorded by these samples.

The ESP values of the Gahcho Kue samples are less than 15 percent. Samples with such low ESP values are known to settle easily.

5. **RECOMMENDATIONS**

- Magnafloc E10 should be used to treat Gahcho Kue slimes samples and should be dosed in two sequential units.
- Feed slurry to the thickener should be in the order of 5 percent solids concentration as some poor settling characteristics were generally observed at 10 percent solids concentration.
- Design settling rate for Gahcho Kue thickening unit should be taken as 23 m/h.

Document No. T05-400130-855	Revision	Gahcho Kue Slimes Characterisation	Page 277of 281
	1.0		

APPENDIX A: MINERALOGY RESULTS

LR1255

LR1256

LR1257

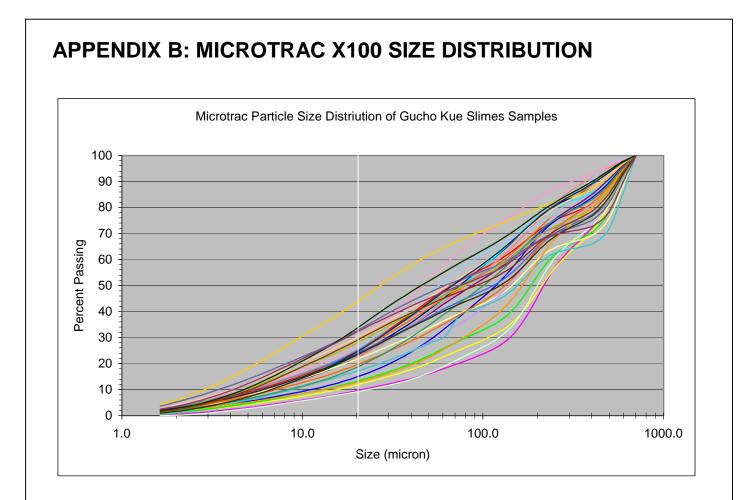
ΗK

HKg

TKSD

Table A1: Total Mineral Analysis

			Ia		1: 10	ai wine	eral An	alysis	5				
Sample	SODS	Av. Depth (m)	Smectite		Mica	Serpentine	Pvronhvllite		Quartz	Gibbsite	:	Feldspar	Calcite
LR1244	GRN	236			19				31		50)	
LR1245	HK2	284		1	13	77							10
LR1246	HK	47		2	23	59					g)	9
LR1247	HKB	112		4	12	38					20)	
LR1248	HK-GRN	160	13		14	19			13		34	4	7
LR1249	HK-TKNt	100	58		14	11	17						
LR1250	HNHK	231			11	79							10
LR1251	HK+B	105	15		13	29	12			10			21
LR1252	GRN+K	189	3		6	5			53		29	9	4
LR1253	HK+TKt	243	27		7	18	9		15				24
LR1254	HK	86			7	66					1:	3	14
LR1255	HK	60				90							10
LR1256	HKg	142		3	35	46					1(C	9
LR1257	TKSD	237	35		6	5			45		g)	
LR1258	TKtB-HKt	153	70		5				12		1:	3	
			Та	ble A	2: Cla	ay Mine	eral An	alysis	5				
Sample	SOD	Av. Depth (m)	Interstratified	Smectite	Vermiculite	Mica	Serpentine	Kaolinite	Pyrophyllite	Quartz	Gibbsite	Feldspar	Calcite
LR1244	GRN	236	17	39		5	13					26	
LR1245	HK2	284			33		56			6			5
LR1246	HK	47			24	6	52			8			10
LR1247	HKB	112		14			8	17				61	
LR1248	HK-GRN	160	4	56		7	22			7		4	
LR1249	HK-TKNt	100	4	71		2	15		8				
LR1250	HNHK	231		22			69			9			
LR1251	HK+B	105		34			39		11	7	9		
LR1252	GRN+K	189	22	39		5	9			21		4	
LR1253	HK+TKt	243		62		4	16		9				9
LR1254	HK	86			41		53					6	
				1		1			1				1


Document No.	Revision	Gahcho Kue Slimes	Page 278of 281
T05-400130-855	1.0	Characterisation	-
	1.0		

LR1258	TKtB-HKt	153	87		3	6		4			
			•		-	-					11
Document	No.		Revis	sion		Gahch	o Kue S	limes	Page	e 279of	281
T05-40013	0-855		1.(b		Char	acterisa	tion			

Sample	ODS	Av. Depth (m)	Na	К	Ca	Mg	CEC	ESP (%)			
LR1244	GRN	236	0.42	0.34	8.17	1.18	3.96	10.59			
LR1245	HK2	284	0.08	0.13	13.63	3.04	1.67	4.68			
LR1246	HK	47	0.15	0.17	12.32	5.22	3.19	4.58			
LR1247	HKB	112	0.43	0.40	16.00	2.29	7.15	6.00			
LR1248	HK-GRN	160	0.40	0.31	14.08	4.39	10.12	3.94			
LR1249	HK-TKNt	100	0.88	0.26	23.53	11.88	35.07	2.51			
LR1250	HNHK	231	0.17	0.08	9.22	10.91	2.38	7.13			
LR1251	HK+B	105	0.51	0.68	12.78	8.15	17.88	2.85			
LR1252	GRN+K	189	0.31	0.19	16.00	1.18	4.31	7.22			
LR1253	HK+TKt	243	2.07	0.17	26.68	5.81	22.23	9.31			
LR1254	HK	86	0.12	0.20	13.33	4.35	3.74	3.18			
LR1255	HK	60	0.07	0.12	7.65	15.10	2.67	2.58			
LR1256	HKg	142	0.12	0.18	10.67	3.56	1.35	8.87			
LR1257	TKSD	237	1.33	0.21	23.89	9.12	38.40	3.47			
LR1258	TKtB-HKt	153	0.42	0.21	35.26	14.25	45.70	0.91			

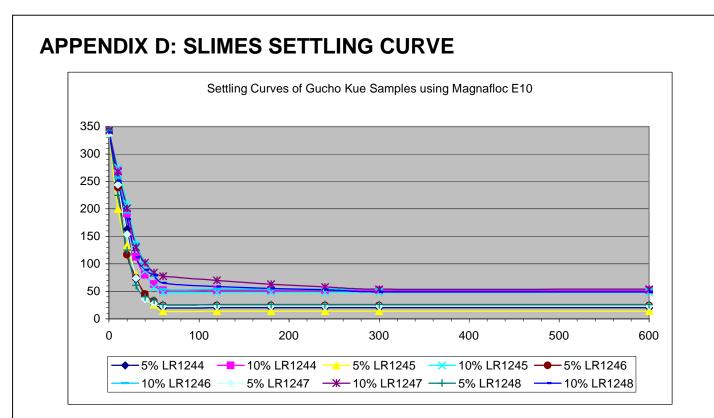
Table A3: Extractable Cations and Exchangeable Sodium Percentage

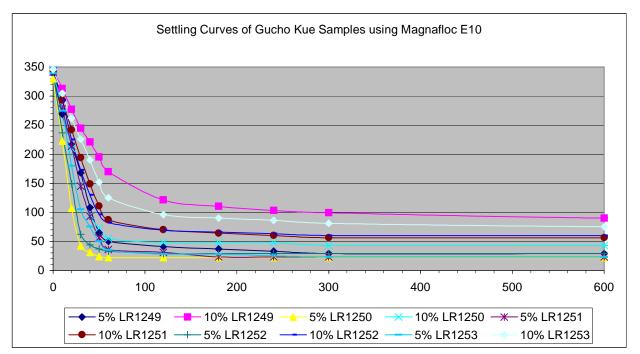
Document No.	Revision	Gahcho Kue Slimes	Page 280of 281
T05-400130-855	1.0	Characterisation	

Document No.	Revision	Gahcho Kue Slimes	Page 281of 281
T05-400130-855	1.0	Characterisation	

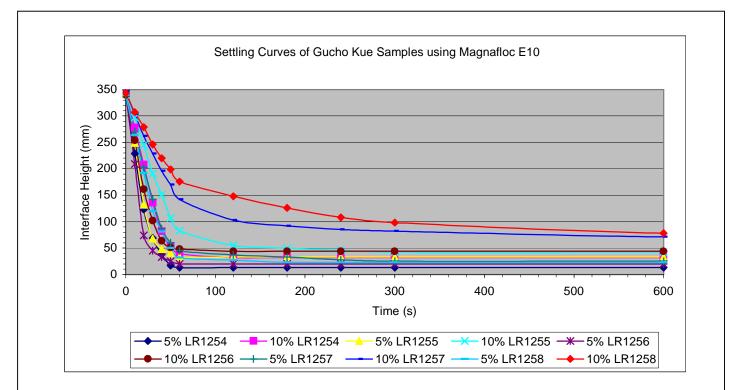
APPENDIX C: SLIMES SETTLING CHARACTERISTICS DATA

			Settling Characteristics					
Ore Type	Ore Type Sample	Av. Depth (m)	ml/1000ml	g/t	% Solids	Set. Rate (m/h)	Final Height (mm)	
GRN	LR1244	236	1.0	4.7	30.12	32.5	20	
GRN	LN 1244	230	2.5	5.9	42.28	23.6	52	
HK2	LR1245	284	1.0	4.7	29.98	31.2	14	
T IT\Z	LN 1243	204	2.5	5.8	44.36	23.0	48	
НК	LR1246	47	1.0	4.6	32.18	31.9	24	
LIIX	LN 1240	47	2.5	5.9	40.66	21.6	54	
НКВ	LR1247	112	1.0	4.6	42.98	31.6	23	
IND	LN1247	112	3.5	8.1	50.34	18.6	54	
HK-GRN	LR1248	160	1.0	4.7	32.78	34.0	26	
	LI\1240	100	2.5	5.9	52.98	22.5	49	
HK+B	LR1251	105	2.0	9.4	40.16	20.5	23	
TINTD	LNIZJI	105	4.5	10.6	54.59	16.7	56	
GRN+K	LR1252	189	2.5	11.4	38.97	33.5	29	
GRIN+R	LNIZJZ	109	5.0	11.8	51.10	18.0	60	
HK+TKt	LR1253	243	2.5	11.8	40.26	28.1	23	
11111+1111	LN 1255	243	5.0	11.8	58.98	13.3	75	
TKtB-HKt	LR1258	153	2.0	9.2	30.92	23.2	23	
		100	5.0	11.8	52.81	10.0	78	


 Table C1: Settling Data of 5034 Diamond Drill Hole Samples


Table C2: Settling Data of Hearne Diamond Drill Hole Samples

		Av. Depth		S	ettling Charac	Characteristics		
ODS	Sample	(m)	ml/1000ml	g/t	% Solids	Set. Rate (m/h)	Final Height (mm)	
HK-TKNt	LR1249	100	2.0	8.9	30.79	19.7	29	
T ITX- I TXINU	LIX 1243	100	4.5	10.5	45.98	10.4	78	
HNHK	LR1250	231	1.5	6.9	43.91	34.6	22	
I IINI IIX	LK1230		3.0	7.1	50.68	19.7	43	
нк	LR1254	86	1.5	6.9	40.18	32.4	13	
	LN1234	00	4.0	9.4	52.14	23.4	32	
нк	LR1255	60	3.0	13.7	46.16	32.8	33	
	LK 1235	00	5.0	11.8	59.08	16.8	42	
ШКа	LR1256	142	1.5	7.1	30.78	35.8	20	
HKg	LK 1230	142	4.5	10.6	54.66	24.8	44	


		•	
Document No.	Revision	Gahcho Kue Slimes	Page 282of 281
T05-400130-855	1.0	Characterisation	_

			2.0	9.4	31.08	22.7	25
TKSD	LR1257	237	5.0	11.8	52.19	12.2	71
			1				L
Document No	D.		Revision	G	ahcho Kue Slime	es	Page 283of 281
T05-400130-	855		1.0		Characterisation	1	
			1.0				

Document No.	Revision	Gahcho Kue Slimes	Page 284of 281
T05-400130-855	1.0	Characterisation	

Document No. T05-400130-855	Revision 1.0	Gahcho Kue Slimes Characterisation	Page 285of 281

APPENDIX B GAHCHO KUÉ PHASE II ODS SLIMES CHARACTERIZATION (2004)

NOTE FOR THE RECORD GAHCHO KUE PHASE II ODS SLIMES CHARACTERISATION

Compiled by

Phakamele Tomo

01 October 2004

Document No: 2240-900559-PSS-00001-5624

Revision 1.0

Copyright © 2004 De Beers

All rights reserved. No part of this document may be reproduced, translated, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the owner.

Note: If this copy is no longer in use, return to sender.

GTS – METALLURGY

APPROVAL PAGE

Supplier

DE BEERS CONSOLIDATED MINES LTD

GTS DIVISION

Physical	Cnr Crownwood and Diamond Rd
Address:	Theta Ext. 4
	Johannesburg
	2013
Postal Address:	PO Box 82851
	Southdale
	2135

Client

DE BEERS CANADA

GAHCHO KUE PROJECT

Physical Address:	400-65 Overlea Blvd
	Toronto
	Ontario
	M4H 1P1
	Canada
Postal	400-65 Overlea Blvd
Address:	Toronto, Ontario
	M4H 1P1
	Canada

ON BEHALF OF GTS METALLURGY

Name	Signature	Date
S Mahote Process Specialisation Services Manager GTS Metallurgy	Aller.	19/11/2004

AUTHOR(S)

Name	Signature	Date
P Tomo Process Engineer GTS Metallurgy	(D), 1	19/11/04

Document No. : 2240-900559-PSS-00001-5624 Gahcho Kue Phase II ODS Slimes Characterisation NFTR	Revision 1.0	Page 2of 14

DISTRIBUTION LIST

COPIES:	OWNER		DIVISION / MINE
MASTER	еВ		GTS - Metallurgy
1	W	Lamb	De Beers Canada
2	М	Van Staden	GTS - Metallurgy
3	А	Vietti	GTS - Technology
4	Р	Tomo	GTS - Metallurgy

Document No. : 2240-900559-PSS-00001-5624	Revision	Page 3of 14
Gahcho Kue Phase II ODS Slimes Characterisation NFTR	1.0	

TABLE OF CONTENTS

ACRONYMS, ABBREVIATIONS AND DEFINITIONS
ACRONYMS AND ABBREVIATIONS
DEFINITIONS
1. INTRODUCTION
2. LABORATORY SCALE TEST WORK
2.1 CHEMICAL ANALYSIS
2.2 MINERALOGICAL ANALYSIS
2.3 SLIMES GENERATION
2.4 REAGENT PREPARATION
2.5 SLIMES CHARACTERISATION
3. RESULTS
3.1 CHEMICAL ANALYSIS RESULTS
3.2 SLIMES CHARACTERISATION RESULTS
3.2.1 Feed Solids Optimisation
3.2.2 Flocculant demand 10
3.2.3 Settling data 11
4. CONCLUSIONS
5. REFERENCES
APPENDIX A: WATER ANALYSIS DATA
APPENDIX B: SLIMES SETTLING CURVE

Document No. : 2240-900559-PSS-00001-5624	Revision	Page 4of 14
Gahcho Kue Phase II ODS Slimes Characterisation NFTR	1.0	

ACRONYMS, ABBREVIATIONS AND DEFINITIONS

Acronyms and Abbreviations

AARL	Anglo American Research Laboratory
ARC	Agricultural Research Council – Institute of Soil, Climate & Water
CCC	Critical Coagulation Concentration
ESP	Exchangeable Sodium Percentage
ISO	International Standards Organisation
meq/100g	Milliequivalent per 100 grams of soil
meq/l	Milliequivalent per litre
ODS	Ore Dressing Studies
PSD	Particle Size Distribution
SAR	Sodium Absorption Ration
GTS	Group Technical Support
WES	Water and Environmental Services

Definitions

Document No. : 2240-900559-PSS-00001-5624	Revision	Page 5of 14
Gahcho Kue Phase II ODS Slimes Characterisation NFTR	1.0	

NOTE FOR THE RECORD

1. INTRODUCTION

This document form part of the slimes characterisation report that was done as part of Gahcho Kue Phase I ODS, Document No. T05-4000130-855. The work included full mineralogical characterisation and initial slimes characterisation of Hearne and 5034 samples. These results are available in a Note for the Record compiled by P Tomo [1].

The above note reported that the Gahcho Kue ore samples generated unstable slurries which were easy to treat. Magnafloc E10 was found to be best flocculant at low flocculant dosages ranging between 4.7 and 13.7 g/t.

The report is about work done as an input data pack to the paste characterisation work to be done at Paterson & Cooke Consulting Engineers in Cape Town.

2. LABORATORY SCALE TEST WORK

2.1 Chemical Analysis

One litre each of raw water and 'typical' process water samples were dispatched to AARL for full chemical analysis. Raw water samples were dispatched as received from De Beers Canada. The "typical" process water was generated using two different ore samples, that Hearne and 5034 ore bodies.

Typical process water was generated as follows:

- Measure up a 20% (by mass) slimes suspension to a total volume of 5 litres using raw water and -1 mm ore material as provided (e.g. 1 kg ore/5litres water);
- Stir the suspension for 20 minutes;
- Allow suspension to settle for 10 minutes;
- Decant the supernatant water; and
- This supernatant water should now be similar to typical thickener overflow (or process water) in chemical composition.

The stability of a clay suspension is influenced by the type of ions dissolved in the water, which in turn influences the types of ions adsorbed onto the clay surfaces, thus the need to perform the chemical analysis.

2.2 Mineralogical Analysis

The mineralogy of Hearne and 5034 ore bodies was analysed and reported previously [1]. The analysis indicated that the ores contained very low levels of sodium exchanged smectite clays.

2.3 Slimes Generation

Slimes samples were generated using Canada raw water and the screened -1 mm and - 300 μm ore material for both ore bodies.

Document No. : 2240-900559-PSS-00001-5624 Gahcho Kue Phase II ODS Slimes Characterisation NFTR

2.4 Reagent Preparation

Reagent used during flocculation was the same as the findings of the Gahcho Kue Phase I ODS, which is Magnafloc 10 (formerly E10).

- Flocculant preparation:
 - Flocculants were prepared at a working strength of 0.025 percent;
 - 0.025 grams of dry powders was added;
 - Added the powder to 100 ml of water; and
 - Hydrated the mixture for approximately 2 hours.

Reagents were not allowed to stay overnight and for each day a fresh batch of reagent solution was prepared.

2.5 Slimes Characterisation

The following characterisation tests were conducted:

- Measurement of the pH and electrical conductivity of all slurry samples using the 704 pHmeter and the Yokogawa Model SC82 Conductivity Meter, respectively;
- Particle size distribution (PSD) analysis of the slurry using Microtrac X100 Particle Size Analyser;
- Reagent demand test:
 - The objective of this test was to determine the quantity of reagent (coagulant and flocculant) required for clay particles to aggregate;
 - Using a 100ml of slurry at its natural pH, stirred with a magnetic stirrer, the coagulant at the CCC was added;
 - Flocculant was then added drop-wise until flocculation occurs. The volume of flocculant used was recorded;
- Settling tests:
 - The optimum flocculant doses, which gave the best results in terms of flocculation and supernatant clarity during reagent demand tests, were used for settling tests;
 - For each settling test, a one litre measuring cylinder was filled with slurry at its natural pH;
 - The required flocculant dose was then added and the cylinder again inverted three to four times for thorough mixing;
 - Once the cylinder was set down, the distance settled by the bed level interface was marked off and measured for 10s, 20s, 30s, 40s, 50s, 1min, 2min, 3min, 4min, 5min, 10min, 15min, 20min, 25min, 30min, 40min, 50min and 60min;
 - After 30 minutes, the turbidity of the supernatant was measured using Hach Ratio/XR Turbidimeter as well as the Wedge scale; and
 - The percent solid of the underflow slurry was measured using Mettler LP16 & PM2000 Drier.

Document No. : 2240-900559-PSS-00001-5624				
Gahcho Kue Phase II ODS Slimes Characterisation NFTR				

3. RESULTS

3.1 Chemical Analysis Results

Summarised chemical analysis results of the water samples from Gahcho Kue are presented in Table 1 and a complete analysis is presented in Appendix A. An analysis of the water in which kimberlitic clay is suspended provides information as to the colloidal nature of the suspension. The stability of a clay suspension is influenced by the type of ions dissolved in the water, which in turn influences the types of ions adsorbed onto the clay surfaces.

The first parameter, which gives indications of the expected colloidal nature of slurry suspension, is the sodium absorption ratio (SAR). The SAR, measured in (meq/l), is a ratio of the concentrations of sodium (monovalent ion), calcium and magnesium (divalent ions) in the suspending water. Waters with a SAR in excess of 15 meq/l are expected to form non-settling suspensions.

The results indicated that the Gahcho Kue raw water and "typical" process water samples had a very low SAR value and thus are expected to generate easy settling slurries when in contact with kimberlitic-clay material.

Sample ID	GK Raw Water	Hearne "Typical" Process Water	5034 "Typical" Process Water
pH at 25 ⁰ C	6.7	6.4	7.1
Conductivity mS/m at 25°C	2	20	20
Calcium as Ca	2	11	11
Magnesium as Mg	0.6	5	4
Sodium as Na	0.6	13	9
SAR (meq/l)	0.1	0.8	0.6
Ionic Strength	0.0003	0.0024	0.0024

Table 1: Summarised chemical analysis results of Gahcho Kue water samples

3.2 Slimes Characterisation Results

3.2.1 Feed Solids Optimisation

Feed solids concentration optimisation was conducted using a 1 litre cylinder tests. During feed solids optimisation the reagent dosages were kept constant for each test while the feed solid concentration was changed.

The reagent dose for the Hearne feed solids optimisation was kept at 10 g/t and 39 g/t for a minus 1 mm and -300 μ m slurry samples respectively. The free settling rate for each feed solids concentration was measured and recorded. Figure 1 presents the settling flux as functions of feed solids concentration for Hearne ore body.

The results indicate that the optimum settling fluxes were achieved at 7.5 and 10 percent feed solids concentration for a minus 1 mm and -300 μ m Hearne slurry samples respectively.

Document No. : 2240-900559-PSS-00001-5624	Revision	Page 8of 14
Gahcho Kue Phase II ODS Slimes Characterisation NFTR	1.0	

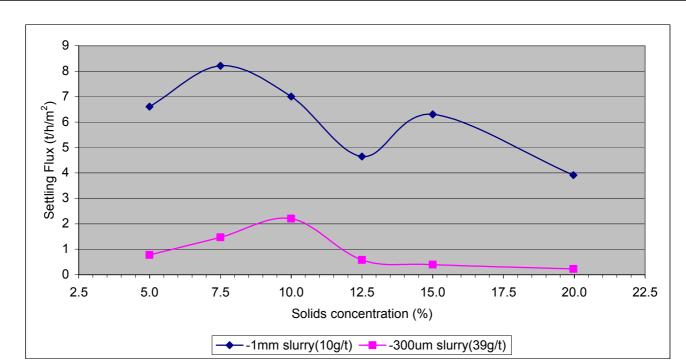
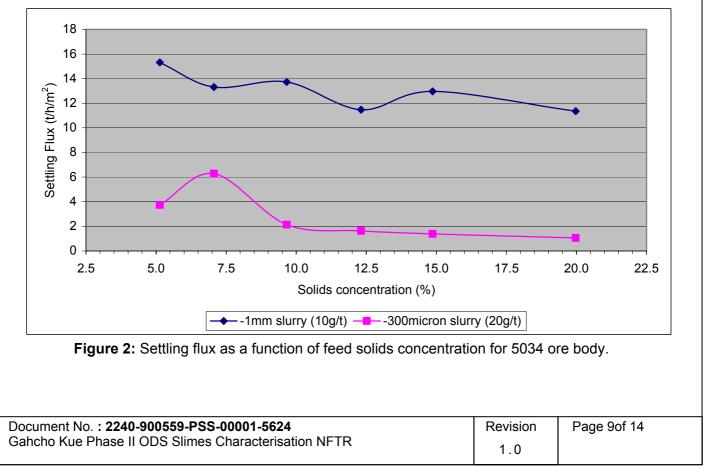
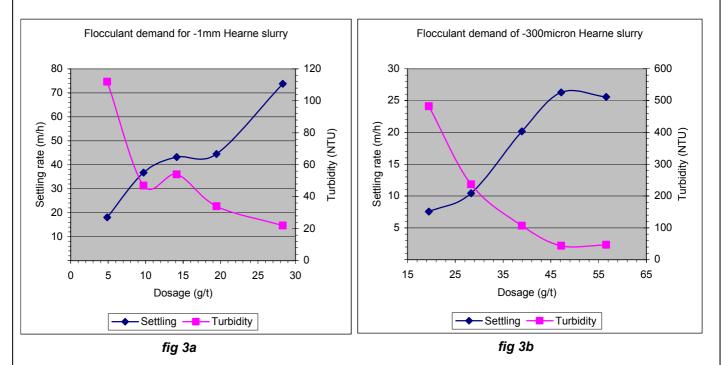



Figure 1: Settling flux as a function of feed solids concentration for Hearne ore body.

The reagent dose for the 5034 feed solids optimisation was kept at 10 g/t and 20 g/t for a minus 1 mm and -300 μ m slurry samples respectively. The free settling rate for each feed solids concentration was measured and recorded. Figure 2 presents the settling flux as functions of feed solids concentration for 5034 ore body.

The results indicate that the optimum settling fluxes were achieved at 5 and 7.5 percent feed solids concentration for a minus 1 mm and -300 μ m 5034 slurry samples respectively.

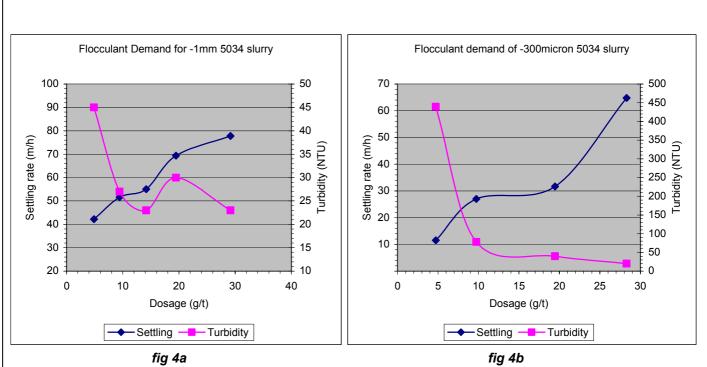


3.2.2 Flocculant demand

Flocculant demand was conducted in a beaker test at 5 percent feed solids concentration while varying flocculant dosage.

Figure 3 presents the flocculant demand result for the Hearne slimes samples. The results indicated that a flocculant dose of 5 to 10 g/t will be able to treat the -1mm Hearne slurry efficiently (Fig. 3a). The optimum flocculant dose for treating the -300 μ m Hearne slurry was ranging at between 28 to 38 g/t (Fig. 3b).

This indicates that a degritted Hearne material would require almost trice the flocculant dosage of treating a co-thickened Hearne material.



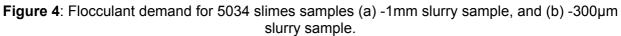

Figure 3: Flocculant demand for Hearne slimes samples (a) -1mm slurry sample, and (b) -300µm slurry sample.

Figure 4 presents the flocculant demand result for the 5034 slimes samples. The results indicated that a flocculant dose of 5 to 10 g/t will be able to treat the -1mm 5034 slurry efficiently (Fig. 4a). The optimum flocculant dose for treating the -300 μ m 5034 slurry was ranging at between 10 to 20 g/t (Fig. 4b).

This indicates that a degritted 5034 material would require almost twice the flocculant dosage of treating a co-thickened Hearne material.

Document No. : 2240-900559-PSS-00001-5624	Revision	Page 10of 14
Gahcho Kue Phase II ODS Slimes Characterisation NFTR	1.0	

3.2.3 Settling data

Settling tests were conducted on the slurry's natural pH and no pH modification tests were conducted. Magnafloc E10 was used for the settling tests of all slimes samples. The settling test results are presented in Table 2.

Good settling results were achieved for all slurry types tested. Very good settling rates higher than 10 m/h and overflow clarities of less than 100 NTU were achieved.

In general, flocculant demand was higher for finer slurry, with dosages of 10 g/t for coarser slurries and 20 - 38 g/t for finer slurry samples. Coarser slurry samples gave rise to higher terminal density of 1.673 and 1.718 t/m³ for Hearne and 5034 respectively.

	Slurry Type		Feed Solids		~LJ	Cond.	Dose	Settling Analysis			UF Slurry	
	Siui	ту туре	t/m ³	%	рН	(mS/cm)	g/t	m/h	t/h/m ²	NTU	%	t/m ³
Ī	Hearne	-1mm	1.048	7.4	9.0	0.195	10	20.4	9.48	59	64.6	1.673
		-300µm	1.066	9.9	9.1	0.398	38	10.3	2.24	94	44.2	1.380
	34	-1mm	1.067	10	9.2	0.167	10	20.0	11.40	58	67.1	1.718
	5034	-300µm	1.049	7.5	9.2	0.245	20	18.1	5.39	34	48.3	1.430

Table 2: S	Settling data	of Gahcho Kue	slimes samples
	Journg adua		

Document No.: 2240-900559-PSS-00001-5624	Revision	Page 11of 14
Gahcho Kue Phase II ODS Slimes Characterisation	1.0	

4. CONCLUSIONS

Gahcho Kue water was relatively easy to treat when combined with Hearne and 5034 material. This might be due to a very low SAR value of less than 1 meq/l, which is far less than a danger limit of 15 meq/l.

Settling characterisation was conducted to simulate treatment of both co-thickening (-1.5 mm) and degritted (-300 μ m) slurries. The optimum settling fluxes at the following feed solids concentration:

		-1.5 mm slurry (Co-thickening)	-300 µm slurry (Degritted)
٠	Hearne material:	7.5%	10%
٠	5034 material:	5%	7.5%

Flocculant demand indicated that degritted slurry would required almost twice the flocculant dosage of treating co-thickened slurry. The optimum flocculant dose for Gahcho Kue material is as follows:

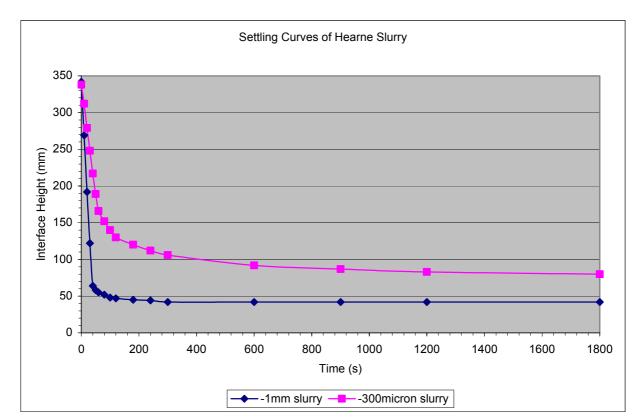
		-1.5 mm slurry (Co-thickening)	-300 µm slurry (Degritted)
٠	Hearne material:	5 – 10 g/t	28 – 38g/t
•	5034 material:	5 – 10 g/t	10 – 20g/t

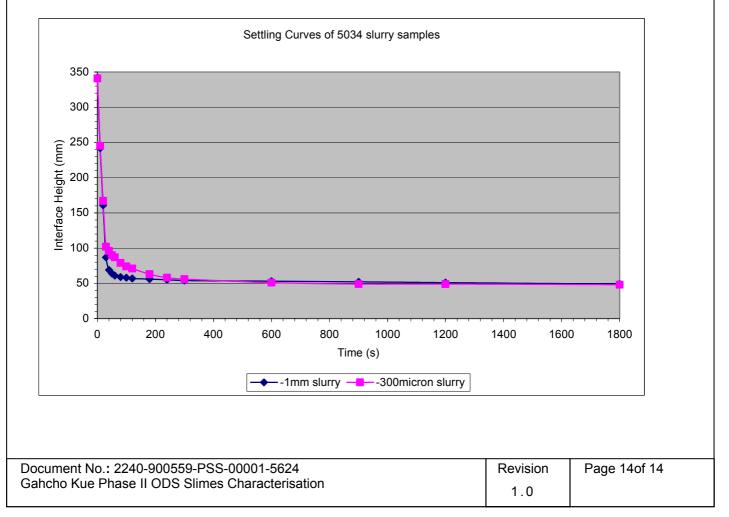
Good settling rates higher than10 m/h was achieved for all samples tested. Settling Hearne and 5034 material using Magnafloc E10 achieved clear overflow water with turbidity of less than 100 NTU.

The co-thickened slurry gave rise to high terminal density of approximately 66 percent solids while the de-gritted slurry had a average underflow density of about 46 percent solids. However, with a good raking mechanism and bed compaction, the underflow density can be increased.

5. **REFERENCES**

- 1 Tomo P *Gahcho Kue Slimes Characterisation*, Note for the Record, Document No. T05-400230-855, October 2002.
- 2 Van de Graaff, Patterson RA, (2001) Explaining the mysteries of salinity, sodicity, SAR and ESP in On-Site Practice in *Proceedings of On-Site '01 Conference: Advancing On-Site Wastewater Systems* by RA Patterson & MJ Jones (Eds), Published by Lanfax Laboratories, Armidale.


Document No.: 2240-900559-PSS-00001-5624 Gahcho Kue Phase II ODS Slimes Characterisation	Revision 1.0	Page 12of 14


APPENDIX A: WATER ANALYSIS DATA

SAMPLE I.D.	GK Raw Water	Hearne "Typical" Process Water	5034 "Typical" Process Water
pH at 25 [°] C	6.7	6.4	7.1
Conductivity mS/m at 25°C	2	20	20
Total Dissolved Solids at 180°C	<20	92	98
Total Suspended Solids at 105°C	<10	644	441
Alkalinity - mg/l CaCO ₃ pH 4,5	7	50	58
Ca Hardness as mg/I CaCO ₃	5	27	21
Mg Hardness as mg/I CaCO ₃	2	21	48
Total Hardness as mg/l CaCO ₃	7	48	69
Fluoride as F	<0.04	0.41	0.31
Chloride as Cl	1	26	23
Nitrites as NO ₂	<0.5	<0.5	<0.5
Nitrates as NO ₃	<0.5	2	<0.5
Nitrates as N	<0.5	1	<0.5
Phosphate as PO4	<0.5	<0.5	<0.5
Sulphate as SO₄	1	8	5
Total Phosphorus as P	<0.5	<0.5	<0.5
Silver as Ag	<0.2	<0.2	<0.2
Aluminium as Al	<0.5	<0.5	<0.5
Calcium as Ca	2	11	11
Chromium as Cr	<0.1	<0.1	<0.1
Copper as Cu	<0.5	<0.5	<0.5
Iron as Fe	<0.5	<0.5	<0.5
Magnesium as Mg	0.6	5	4
Sodium as Na	0.6	13	9
Potassium as K	0.7	7	10
Lead as Pb	<0.1	<0.1	<0.1
Zinc as Zn	<0.5	<0.5	<0.5
Silica as Si	<0.5	4	5
Cation / Anion Balance - % Diff.	1.09	-9.79	-15.65
SAR (meq/l)	0.1	0.8	0.6
Ionic Strength	0.0003	0.0024	0.0024

			_
Document No.: 2240-900559-PSS-00001-5624	Revision	Page 13of 14	
Gahcho Kue Phase II ODS Slimes Characterisation	1.0		

APPENDIX B: SLIMES SETTLING CURVE

APPENDIX C

GAHCHO KUÉ ORE DRESSING STUDY: SLURRY TESTS USING 5034 AND HEARNE ORE (2005)

GAHCHO KUÉ ORE DRESSING STUDY: SLURRY TESTS USING 5034 AND HEARNE ORE

Report Number: DGK-571.R03 Rev 0

March 2005

21 Montrose Arenue, Claressort, Cape Town, South Africo PO Bes 23621, Claremont, 7733, South Africa, Tel. +27 (021) 683-4734 Fex. +27 (021) 683-4168, Email: shriy@pice.co.ze, URL: www.acce.co.ze

SUMMARY

This document presents the slurry test results for the Gahcho Kué ore dressing study conducted by Paterson & Cooke Consulting Engineers (Pty) Ltd (PCCE) for Mr Tomo Phakamele of De Beers Technical Services.

Material Properties Tests

The following table summarises the properties of the two Gahcho Kué ore materials tested.

Material Type	Hearne Ore	5034 Ore
Solids density	2.63 t/m ³	2.65 t/m ³
d ₉₀ particle size	1035 µm	1027 µm
d ₈₅ particle size	930 µm	921 µm
d ₅₀ particle size	380 µm	369 µm
d10 particle size	32 µm	24 µm
Coefficient of sliding friction, µs	0.430	0.465
Average slurry pH	8.9	8.8
Freely settled bed packing concentration, Cbiree	40.5%v 64.1%w	40.5%v 64.4%w

Limits of Conventional, High Density and Paste

The following table summarises the classification of the two Gahcho Kué ore slurry samples according to PCCE's standard definitions.

	H	Iearne Ore	
	Conventional slurry	High density slurry	Paste
Yield stress range	$0 \text{ Pa} < \tau_y < 0.7 \text{ Pa}$	$0.7 \text{Pa} < \tau_y < 100 \text{Pa}$	100 Pa < τ _y
Concentration range	$0 < C_w < 64.1\%$ w	64.1%w < C _w < 76.1%m	76.1% < C _w
Approximate Slump	No slump	10.0 inch < slump < 12.0 inch	slump < 10.0 inch
		5034 Ore	
	Conventional slurry	High density slurry	Paste
Yield stress range	$0 Pa < \tau_y < 8.9 Pa$	$8.9 \text{Pa} < \tau_y < 100 \text{Pa}$	100 Pa < τ_y
Concentration range	$0 < C_w < 64.4\% w$	$64.4\% w < C_w < 74.4\% m$	74.4% < C _w
Approximate Slump	No slump	9.9 inch < slump < 12.0 inch	slump < 9.9 inch

TERMS OF REFERENCE

This work has been conducted by Paterson & Cooke Consulting Engineers (Pty) Ltd for Mr P Tomo of De Beers Technical Services under Order Number PO-0070907. The proposal for this work was presented in PCCE Proposal DGK-571.P02 "Gahcho Kué Ore Dressing Study: Rheological Characterisation and Flow Behaviour Tests" dated 20 October 2004.

CONTENTS

SUMMARYi			
TERMS OF REFERENCE			
CON	TENTSii		
NOM	ENCLATUREv		
I. I.1 1.2	INTRODUCTION 1 Background 1 Test Work Scope 1 1.2.1 Material property tests 1 1.2.2 Slump test 1 1.2.3 Viscometer tests 1 1.2.4 Clay Behavioural Analysis 1		
1.3	Units and Abbreviations		
1.4	Definitions		
1.5 1.6	Samples Supplied for the Test Work		
2. 2.1 2.2 2.3	MATERIAL PROPERTY TESTS		
2.4	Coefficient of Sliding Friction		
2.5 2.6	Freely Settled Bed Packing Concentration, C _{bfree}		
3.	SLUMP TESTS		
3.1	General 9		
3.2	Test Data		
4.	VISCOMETER TESTS		
4.1	Objective 15		
4.2	Test Equipment		
4.3	Instrument Calibration		
4.4	Test Procedure		
4.5	Measured Test Data		
4.6	Viscometer Test Results		
4.7	Rheological characterisation		
	4.7.1 Hearne ore		
	4.7.2 5034 ore		
5.	LIMITS OF CONVENTIONAL, HIGH DENSITY AND PASTE		
6.	SUMMARY OF FINDINGS		

APPENDIX A – DEFINITION OF TERMS AND BASIC RELATIONS
APPENDIX B – RELATIONSHIP BETWEEN ρ_m, C_v and C_w
APPENDIX C - PARTICLE SIZE DISTRIBUTION DATA
APPENDIX D – ROTATIONAL RHEOMETER TEST DATA
APPENDIX E – CLAY BEHAVIOURAL ANALYSIS OF GACHO KUE ORE SAMPLES

DOCUMENT DISTRIBUTION AND REVISION HISTORY

Rev	Date	Distribution / Revisions	Prepared	Reviewed	Client Approval
0	31/03/2005	Issued to Mr P Tomo from De Beers Technical Services	FvS	AP/WG	•
		F			

NOMENCLATURE

A	cross sectional area	m ²
С	solids concentration	
Cbfree	freely settled solids packing volumetric concentration	%
C _{bmax}	maximum solids packing volumetric concentration	%
Cv	volumetric solids concentration	%
Cw	mass solids concentration	%
d	particle size	m
d ₅₀	particle size at which 50% of the particles by mass are smaller than d_{50}	m
D	internal pipe diameter	m
f	friction factor	
g	acceleration due to gravity	m/s ²
k	hydraulic pipe roughness	m
K	fluid consistency index	Pa.s ⁿ
KB	Bingham viscosity	Pa.s
L	length	m
М	mass flow rate	kg/s
n	flow behaviour index	
Р	pressure	Pa
Q	volumetric flow rate	m ³ /s
Re	Reynolds number	
S	relative density	
Т	temperature	°C
V_{dep}	stationary deposition velocity	m/s
Vm	mean mixture velocity	m/s
3.0	shear rate	s ⁻¹
γ Γ		s ⁻¹
	pseudo or bulk shear rate (8V/D)	kg/m ³
ρ	density	Rg/III Pa
to	pipe wall shear stress	Fa Pa
τy	mixture yield stress	Fa
μ_{s}	coefficient of sliding friction between solid particle and pipe wall	79
μ	viscosity	Pa.s

Subscripts

- b bed
- m mixture (slurry), mass
- N Newtonian
- NN non-Newtonian
- s solids
- v volumetric
- w conveying fluid

1. INTRODUCTION

1.1 Background

Mr Phakamele Tomo is managing the ore dressing studies for De Beers Canada proposed Gahcho Kué project. The Gahcho Kué project is located approximately 300 km northeast of Yellowknife in the Northwest Territories.

The study is currently at pre-feasibility level. Paterson & Cooke Consulting Engineers (PCCE) submitted proposal DGK-571.P02 which allowed for pilot scale thickening, crushing of existing ore to -1.5 mm, and rheology characterisation of the Hearne and 5034 ore bodies.

This report presents the rheological characterisation of the Hearne and 5034 ore bodies. No further crushing was required as all the material delivered to the PCCE laboratory was less than 1.5 mm.

1.2 Test Work Scope

The following test work has been conducted to obtain design information for the Gahcho Kué ore dressing study using the Hearne and 5034 ore:

1.2.1 Material property tests

The material property tests include the following:

- Solids specific gravity
- Particle size analysis
- Slurry pH
- Solids freely settled concentration
- Coefficient of sliding friction between solids and pipe wall
- Particle micrographs (using an electron microscope).

1.2.2 Slump test

A standard 300 mm high, 12-inch slump cone was used for all the tests.

1.2.3 Viscometer tests

The rheology of the Hearne and 5034 ore was determined using PCCE's Rheolab MC 1 rotational rheometer.

1.2.4 Clay Behavioural Analysis

The behaviour of the varying clay mineral content in each sample was assessed by Paterson & Cooke Consulting Scientists (Pty) Ltd (PCCS). The results are presented in Appendix E.

1.3 Units and Abbreviations

SI units are used for this document. The following abbreviations are used:

%w - solids percentage by mass %v - solids percentage by volume.

1.4 Definitions

Appendix A presents a list of hydrotransport terms and definitions used in this report.

The following definitions, agreed upon during extensive discussions with De Beers Group Mines personnel, are used in this report:

- Vehicle is the mixture formed by the combination of water in the slurry and all solids finer than 75 μm.
- Slimes is all material finer than 300 µm.
- Grits is all material sized between 300 µm and 1.5 mm.
- Slurry is considered to be a mixture of slimes and grits.

Figure 1 and Figure 2 present the relationship between slurry density, solids mass concentration and solids volume concentration for the Hearne and 5034 ore respectively. Appendix B shows this data in tabular form.

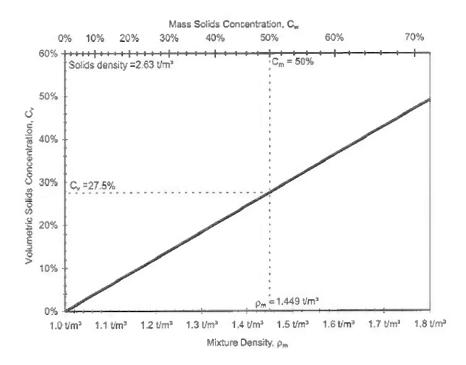


Figure 1: Relationship between pm, Cv and Cw for Hearne Ore

PATERSON & COOKE CONSULTING ENGINEERS (PTY) LTD

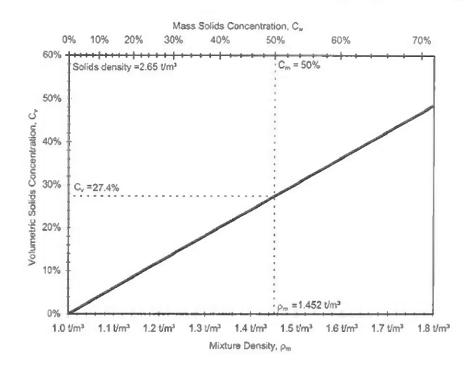


Figure 2: Relationship between ρ_m , C_v and C_w for 5034 Ore

1.5 Samples Supplied for the Test Work

Hearne and 5034 ore samples were delivered to PCCE's Laboratory on 24 January 2005, as shown in Table I.

Delivery Date	Sample Type	Description			
24 January 2005	Hearne Ore	9 x 50 litre blue loose lid drums each containing -1.5 mm dry ore material			
	5034 Ore	9 x 50 litre blue loose lid drums each containing -1.5 mm dry ore material			
	Process water	2 x 210 litre blue loose lid drums each containing approximately 200 litres of process water			

Table I: Sample Delivery and Des	scription
----------------------------------	-----------

Mr T Phakamele of De Beers Technical Services visited the laboratory the week starting 24 January 2005 and supplied PCCE with Magnafloc 10 used to flocculate the Hearne and 5034 ore.

1.6 Sample Preparation

The Hearne and 5034 ore arrived as a dry crushed sample. Each ore was prepared to produce representative slurry.

The following procedure describes the method used to prepare batches of flocculated slurry and slimes samples for the rheological characterisation tests:

- (i) Prepare a flocculent solution using Magnafloc 10 at a dosage of 0.25%w. The solution was left overnight to hydrate.
- (ii) Suitable quantities of water and solids to form 40 litres of mixture at a mass solids concentration of 10%w are placed in a 50 litre drum agitated using an impeller.
- (iii) The impeller speed is varied to achieve "just off the bottom" suspension of the solids in the drum.
- (iv) The mixture is blended for 30 seconds.
- (v) Flocculent is added at a dosage of 10 g/t of dry solids.
- (vi) The mixture is blended for 30 seconds and then allowed to settle over night.
- (vii) The following day the supernatant water is decanted from the mixture and stored for later use as make up water.

The thickened settled mixture is stored in drums for the material properties and rheological characterisation tests. During the pipe loop and rheology tests one litre samples were collected for particle size distribution analysis.

2. MATERIAL PROPERTY TESTS

The tests described below were conducted to determine material properties of the samples. The results are summarised in Table II.

2.1 Solids Specific Gravity, S.

The specific gravity of the material is determined using the method specified in ASTM D854-02 "Standard Test Method for Specific Gravity of Soils by Water Pycnometer"

2.2 Particle Size Analysis

The particle size distribution is determined by a combination of dry sieving (+75 μ m fraction) and hydrometer analysis (-75 μ m fraction) according to the method detailed in ASTM D 422-63 "Standard Test Method for Particle Size Analysis of Soils".

Appendix C presents the particle size distribution test data files. Figure 3 shows the average particle size distribution measured for the Hearne and 5034 ore for samples taken during the rheological characterisation tests. There is very little difference between the two ore types. The 5034 ore is slightly finer than the Hearne ore.

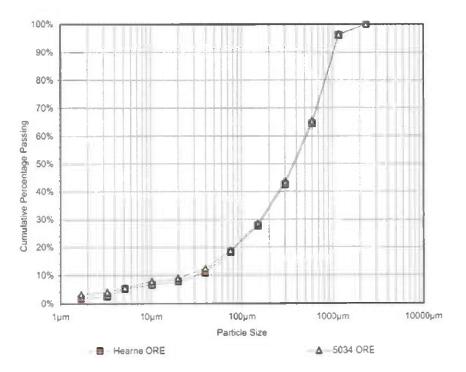


Figure 3: Particle Size Distribution of Hearne and 5034 Material

2.3 <u>Slurry pH</u>

The pH of the slurry is measured using a calibrated hand held pH meter.

2.4 Coefficient of Sliding Friction

The coefficient of sliding friction between the solids and the pipeline wall is measured using a tilting tube apparatus.

2.5 Freely Settled Bed Packing Concentration, Cbfree

The freely settled bed packing concentration by volume is calculated from the volume of the freely settled bed formed by a known volume of solids. A slurry sample is allowed to settle for 24 hours in a measuring flask. The actual solids volume is determined from the dry mass of material and the solids density.

2.6 Particle Micrographs

Figure 4 to Figure 7 show particle micrographs of the Hearne and 5034 ore at different magnifications respectively. The particles have sharp angular shapes typical for crushed or milled rock. Referring to the micrographs there is no visual difference between the two ore types.

Material Type	Hearne Ore	5034 Ore	
Solids density	2.63 t/m ³	2.65 t/m ³	
d ₉₀ particle size	1035 µm	1027 µm	
d ₈₅ particle size	930 µm	921 μm	
d ₅₀ particle size	380 µm	369 µm	
d ₁₀ particle size	32 µm	24 µm	
Coefficient of sliding friction, µs	0.430 ¹	0.4651	
Average slurry pH	8.9	8.8	
Freely settled bed packing concentration,	40.5%v	40.5%v	
Cbfree	64.1%w	64.4%w	

Table II: Gahcho Kué Ore Dressing Study Material Properties

Notes:

1. Applicable for grits fraction of slurry only

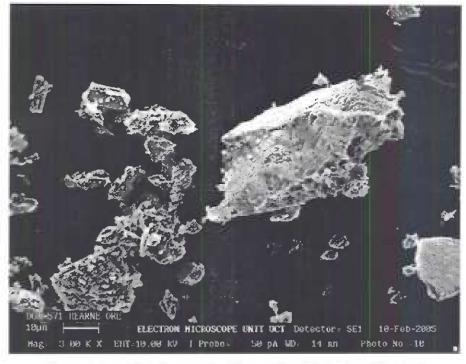


Figure 4: Particle Micrograph – Hearne Ore (High Magnification)

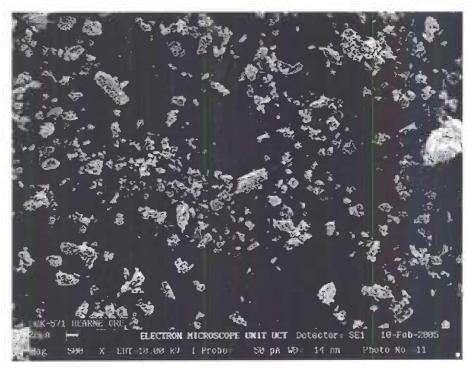


Figure 5: Particle Micrograph - Hearne Ore (Low Magnification)

PATERSON & COOKE CONSULTING ENGINEERS (PTY) LTD

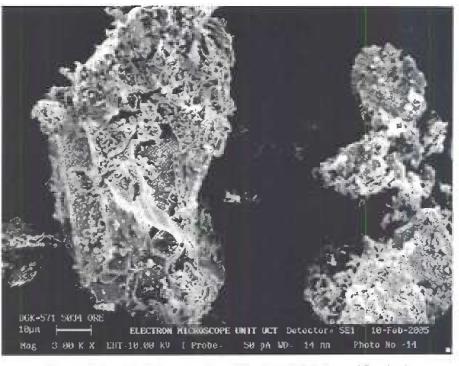


Figure 6: Particle Micrograph -- 5034 Ore (High Magnification)

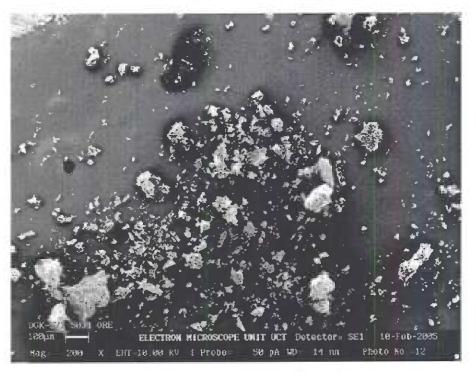
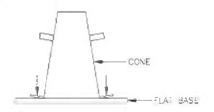


Figure 7: Particle Micrograph - 5034 Ore (Low Magnification)

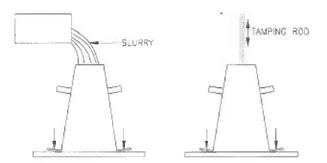
PATERSON & COOKE CONSULTING ENGINEERS (PTY) LTD

3. <u>SLUMP TESTS</u>

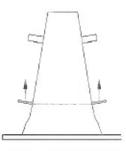

3.1 <u>General</u>

The slump test measures the consistency of the paste and is a good quality control measure for paste. Slump tests are conducted using the method specified in ASTM, C 143/C 143M "Standard Test Method for Slump of Hydraulic-Cement Concrete". A standard 300 mm high (12-inch) slump cone was used for all the tests.

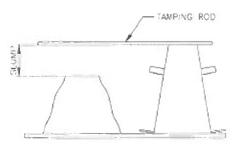
The procedure to measure the slump of paste is as follows:


Step 1: Position the cone

- Wet the inside of the cone surface and the wooden base plate.
- Position the cone in the centre of the wooden base.
- Place feet firmly on the slump cone foot tabs.


Step 2: Place slurry in the cone

- Fill the cone in three layers of slurry.
- Tamp each layer 25 times using a tamping rod, spreading the strokes uniformly across the cross-section of each layer. If after adding the final layer, the slurry level is below the top of the cone, fill the cone with slurry and level off the excess slurry.


Step 3: Remove slump cone

- Remove any slurry surrounding the cone base to avoid any interference with the slumping slurry.
- Lift the cone slowly vertically. It should take about 5 seconds to raise the cone completely.

Step 4: Record slump

• The difference in millimetres between the top of the cone and the displaced original centre of the top of the slurry sample defines the slump distance.

3.2 <u>Test Data</u>

Figure 8 shows the slump data as a function of the mass solids concentration for the Hearne ore. The concentration range tested varied from 75.3 %w (270 mm slump, 10.6 inch) to 78.3 %w (148 mm slump, 5.8 inch). There is a significant change in slump for a small change in mass solids concentration. For concentrations lower than 75.3 %w the slurry was too dilute to measure slump. Table III presents the data in tabular format.

Figure 9 shows the slump data as a function of the mass solids concentration for the 5034 ore. The concentration range tested varied from 73.2 %w (265 mm slump, 10.4 inch) to 76.9 %w (177 mm slump, 7.0 inch). There is a significant change in slump for a small change in mass solids concentration. For concentrations lower than 73.2 %w the slurry was too dilute to measure slump. Table IV presents the data in tabular format.

Figure 10 shows a comparison between the Hearne ore and the 5034 ore slump test data. For the same mass solids concentration the Hearne ore gives a higher slump value compared to the 5034 ore sample.

Table III: Slum, Test Data for the Hearne Ore Slum, Collot naise concentration Picture						
	Stur	-		Picture		
001	148 mm	5.8 inch	78.3 %w			
002	224 mm	8.8 inch	77.8 %w			
003	237 mm	9.3 inch	77.2 %w			
004	254 mm	10.0 inch	76.1 %w			
005	270 mm	10.6 inch	75.3 %w			

05.11.1 × 7 ~

Table IV: Slump Test Data for the 5034 Ore Slump Height Figure						
laan Numbri 2			, new Sc. Sciencentrellen	Picture		
001	177 mm	7.0 inch	76.9 %w			
002	200 mm	7.9 inch	76.5 %w			
003	239 mm	9.4 inch	76.0 %w			
004	252 mm	9.9 inch	74.4 %w			
005	265 mm	10.4 inch	73.2 %w			

Table IV: Slump	Test	Data	for	the	5034	Ore	
-----------------	------	------	-----	-----	------	-----	--

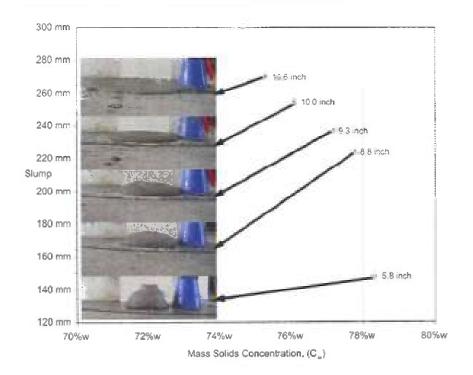


Figure 8: Slump versus Cw for Hearne Ore

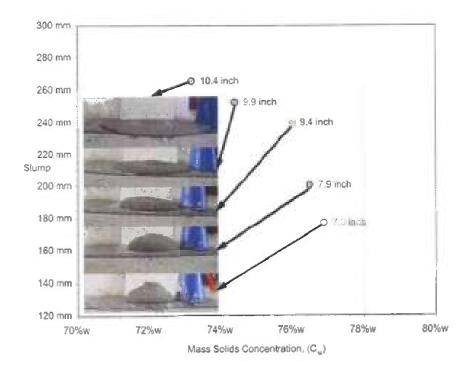


Figure 9: Slump versus Cw for 5034 Ore

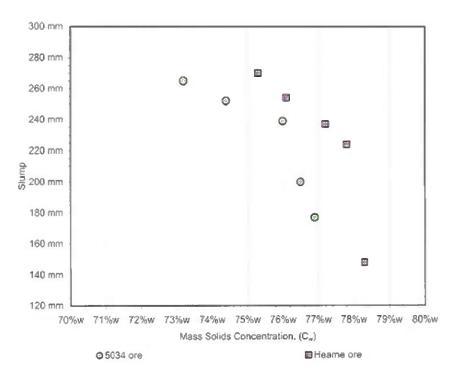


Figure 10: Comparison between 5034 and Hearne Ore Slump Test Data

4. VISCOMETER TESTS

4.1 Objective

The objective of the viscometer tests is to rheologically characterise the Hearne and 5034 ore slurry.

4.2 Test Equipment

PCCE's Rheolab MC 1 rotational rheometer, as shown in Figure 11, was used for the test work.

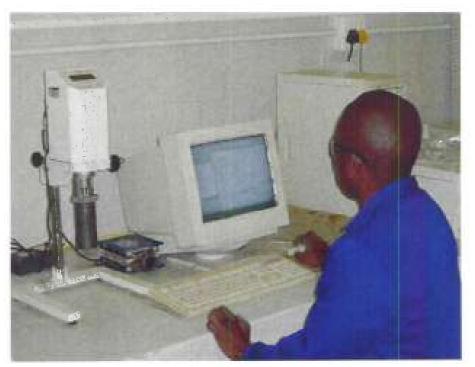


Figure 11: Rheolab MC 1 Rotational rheometer

4.3 Instrument Calibration

The rotational rheometer is calibrated regularly using oils with a known viscosity as shown in Figure 12.

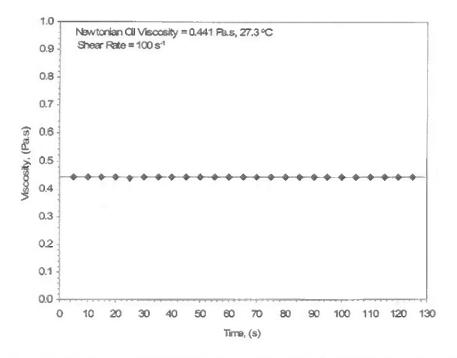


Figure 12: Newtonian Oil Viscosity at a Fixed Temperature Compared with the Rheometer Output.

4.4 <u>Test Procedure</u>

The output from the rheometer is a rheogram, a plot showing the relationship between wall shear stress and shear rate.

The rotational rheometer test sequence to produce a rheogram is as follow:

- Select the correct measuring system. The Z2/3 measuring system (DIN53018 standard) was used for the ore samples.
- (ii) Fill the cup with a representative sample of shurry to the designated mark.
- (iii) Place the cup on the laboratory jack centred below the viscometer bob.
- (iv) Slowly raise the jack so that the bob completely penetrates the slurry sample.
- (v) Fix the cup to the viscometer using the designated mounting screw.
- (vi) Use the software from the rotational rheometer to produce a rheogram of the slurry sample.

4.5 Measured Test Data

Appendix D presents the rheometer test data files. Each data file contains the following:

- Date, sample name and measuring system used for the tests
- Measured values of density and pH
- Measured values of shear stress, shear rate and viscosity
- A rheogram (plot of wall shear stress versus shear rate).

4.6 Viscometer Test Results

Figure 13 shows a rheogram of the Hearne ore data for mass solids concentrations ranging from 73.3%w to 78.3%w. The average test temperature and pH was 24.4 °C and 8.9 respectively. Figure 14 shows a rheogram of the 5034 ore data for mass solids concentrations ranging from 68.4%w to 76.9%w. The average test temperature and pH was 23.2 °C and 8.8 respectively.

Figure 15 and Figure 16 presents a comparison between the Hearne and 5034 ore data at 73.1% wand 76.0% w respectively. In both cases the 5034 data set are higher compared to the Hearne ore data set for approximately the same mass solids concentration.

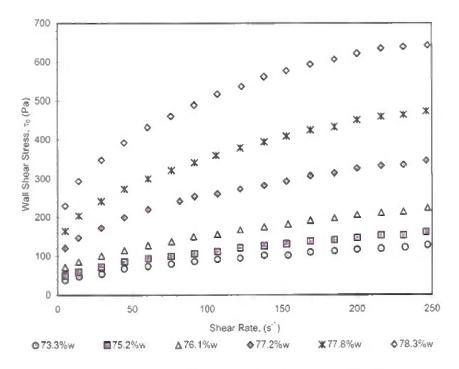
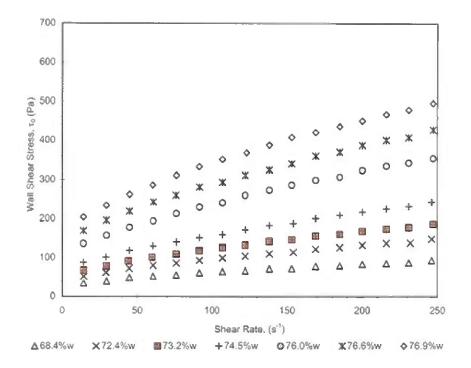



Figure 13: Rheogram Showing Hearne Ore Data

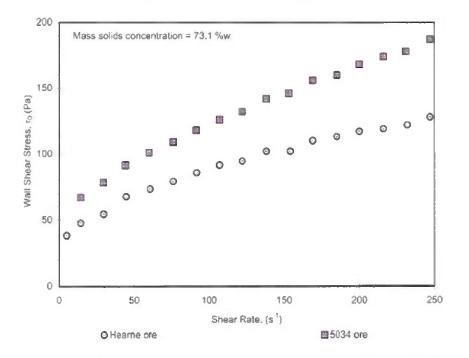
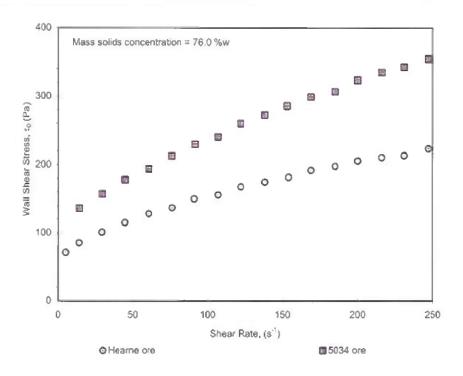



Figure 15: Rheogram Comparing Hearne and 5034 Ore Data at 73.1%w

4.7 Rheological characterisation

4.7.1 Hearne ore

The Hearne ore slurry was analysed as a Bingham plastic slurry, i.e. the rheology of the slurry is defined using a Bingham yield stress and plastic viscosity.

Figure 17 presents the plastic viscosity as a function of the mass solids concentration. Figure 18 presents the Bingham yield stress as a function of the mass solids concentration. There is good agreement between the correlation for Bingham yield stress and plastic viscosity compared to the data points. At 70% w and higher the slurry rheology increases significantly for a small change in solids mass concentration.

The formulas to calculate the rheological parameters for the Hearne ore are presented in Table V.

Table V: Hearne Ore	Rheological Parameters
Bingham Plas	tic Model
Applicable concentration rang	$c 72\%w < C_w < 0.79\%w$
Plastic Viscosity	Yield Stress
The plastic viscosity of the slurry is calculated using the formula:	The yield stress of the fluid is calculated using the formula:
$K_B = \mu_w + 350.0 C_w^{22.40}$ where	$\tau_y = 2970 \ x \ 10^2 \ C_w^{29.30}$
μ_w = viscosity of water at 25 °C (0.000894 Pa.s)	
The mass solids concentration is calculated us $C_m = \frac{Slurry}{Slurry}$	-

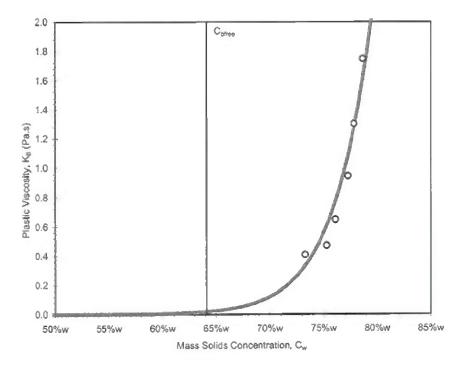


Figure 17: Plastic Viscosity as a Function of Mass Solids Concentration: Hearne Ore

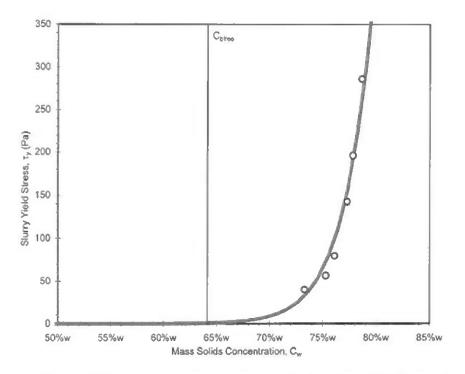


Figure 18: Yield Stress as a Function of Mass Solids Concentration: Hearne Ore

4.7.2 5034 ore

The 5034 ore slurry was analysed as a Bingham plastic slurry, i.e. the rheology of the slurry is defined using a Bingham yield stress and plastic viscosity.

Figure 19 and Figure 20 presents the slurry plastic viscosity and Bingham yield stress as a function of the mass solids concentration respectively. There is good agreement between the correlation for yield stress and plastic viscosity compared to the data points. At above 68% w the slurry rheology increases significantly for a small change in solids mass concentration.

The formulas to calculate the rheological parameters for the 5034 ore are presented in Table VI.

1.1

.

10010

10.1

1.00

-

Table VI: 5034 Ore I	Rheological Parameters
Bingham Plas	tic Model
Applicable concentration rang	$e 68\% w < C_w < 0.78\% w$
Plastic Viscosity	Yield Stress
The plastic viscosity of the slurry is calculated using the formula:	The yield stress of the fluid is calculated using the formula:
$K_{B} = \mu_{w} + 60.000 C_{w}^{14.700}$ where	$\tau_y = 13800 \ C_w^{-16.700}$
$\mu_w = \text{viscosity of water at 25 °C}$ (0.000894 Pa.s)	
The mass solids concentration is calculated us	ing the formula:
Slurry v	vet mass Iry mass

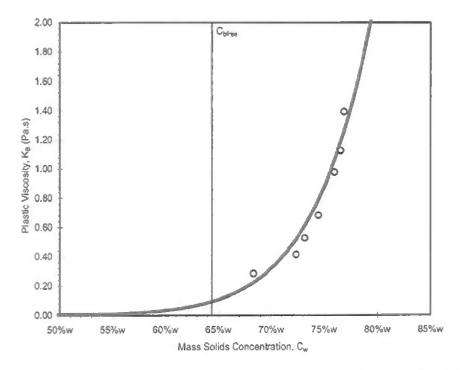


Figure 19: Plastic Viscosity as a Function of Mass Solids Concentration: 5034 Ore

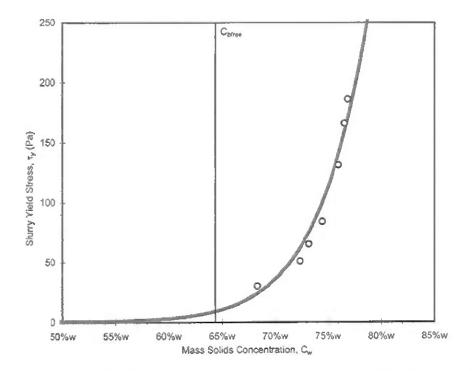


Figure 20: Yield Stress as a Function of Mass Solids Concentration: 5034 Ore

5. LIMITS OF CONVENTIONAL, HIGH DENSITY AND PASTE

The transition from a conventional reject slurry to a high density slurry is determined by the freely settled particle concentration. The transition from high density slurry to paste is based on the yield stress.

PCCE considers the following classifications for the Gahcho Kué ore dressing study:

- The limit for conventional rejects is considered to be less than 64.1% w for the Hearne ore and 64.4% w for the 5034 ore. This value corresponds to C_{bfree} determined for each ore type. The Bingham yield stress at this concentration is approximately 0.7 Pa for the Hearne ore and 8.9 Pa for the 5034 ore. For concentrations higher than this the slurry yield stress begins to increase significantly for a small increase in concentration.
- High density slurry can be considered for mass solids concentrations greater than C_{bfree} up to mass solids concentration at which the slurry yield stress equals 100 Pa. For a slurry yield stress of 100 Pa the mass solids concentration for the Hearne ore would be 76.1% w and 74.4% w for the 5034 ore.
- PCCE considers slurries with a yield stress greater than 100 Pa to be a paste. This definition of paste behaviour has reasonably general acceptance.

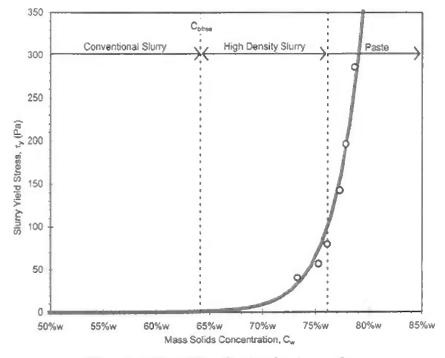

Table VII summarizes the slurry classification for the Gahcho Kué ore rejects.

Figure 21 and Figure 22 shows the transition concentrations on the yield stress graph for the Hearne and 5034 ore.

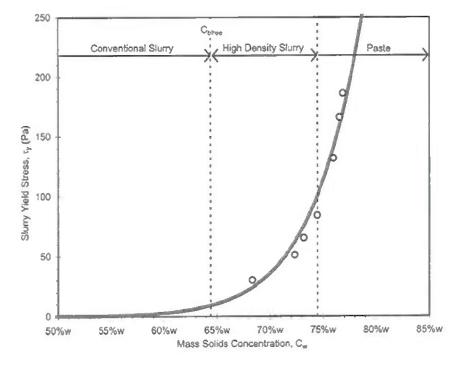

Hearne Ore				
Parameter Conventional slurry		High density slurry	Paste	
Yield stress range	0 Pa < 1, < 0.3 Pa	$0.7 \text{ Pa} \le \tau_y \le 100 \text{ Pa}$	$100 \text{ Pa} \le \tau_{\text{III}}$	
Concentration range	$0 < C_w < 64.1\%w$	$64.1\%w < C_w < 76.1\%m$	76.1% < C _w	
Approximate Slump	No slump	10.0 inch < slamp < 12.0 inch Slump - 10.6 inch	slump < 10.0 inch Slump - 5.8 inch	

Table VII: Gahcho Kué Ore Rejects Slurry Classification

5034 Ore				
Parameter Conventional slurry		High density slurry	Paste	
Yield stress range	01611-03716	8.9 Pa $\leq \tau_{\mu} \leq 100$ Pa	100 Pa < τ	
Concentration range	$0 < C_w < 64.4\%w$	$64.4\%w < C_w < 74.4\%m$	74.4% < C _w	
Approximate Slump	No slump	9,9 inch < slum, < 12.0 inch Slump - 10.4 Inch	slump < 9.9 inch	

6. <u>SUMMARY OF FINDINGS</u>

- There is almost no difference between the particle size distribution of the Hearne and 5034 ore.
- For the same mass solids concentration the Hearne ore gives a higher slump value compared to the 5034 ore sample.
- The 5034 ore gives a higher wall shear stress value for the same shear rate compared to the Hearne ore for the same mass solids concentration.
- Both the Hearne and 5034 ore were analysed as Bingham plastic slurries.
- The Gahcho Kué ore rejects slurry classification is presented in Table VII.
- The colloidal analysis in Appendix E of the two ore types confirmed that the natural state of the Gacho Kué materials fall within a favourable colloidally unstable (settling) condition extending across the entire pH range. Good slurry flocculation and settling characteristics are expected.

Sent via e-mail

F van Sittert (PrTech Eng) 31 March 2005 <u>H Myburgh</u>

APPENDIX A

DEFINITION OF TERMS AND BASIC RELATIONS

I. BASIC TERMS

1.1 Vehicle, Load and Slurry

The vehicle is the conveying medium - i.e. water, sea water or fine particle slurries.

The load is the transported material.

The slurry is a mixture of solid particles and fluid ranging from suspensions of coarse, fast-moving particles, possibly with bed load, to suspensions of fine highly concentrated particles moving slowly. The solid and liquid phases do not react chemically with each other.

1.2 Suspended Load

This term is used to describe mixtures or parts of mixtures in which none of the solid load is carried along the bed. The particles are considered to be individually visible (at least microscopically).

1.3 Bed Load

The bed load is defined as that part of the solid load which either is in contact with the pipe invert or in contact with particles which are themselves in contact with the pipe invert. The bed load is supported by the pipe either directly or by granular contact. The bed load may be transported as a sliding bed, rolling particles, layers of rolling particles or a combination of sliding and rolling. The bed load may also be stationary or move sporadically.

1.4 Saltation

Saltation is a term used to describe the motion of particles which are carried in the fluid by a series of leaps and jumps. The particles are picked up by fluid turbulence and deposited further on downstream, on the bottom of the pipe or on the bed load layer and the process is continually repeated. At very low velocities the bed formation tends to be rippled and most saltation occurs from the crest of the ripples.

1.5 Homogeneous Mixture

A homogeneous mixture is a solid-liquid mixture which remains homogeneous when quiescent for a long period of time. Particle size will usually be less than 30 μ m, although the size will depend on the relative density of the particles and the solids concentration.

1.6 Pseudo-Homogeneous Flow

Pseudo-homogeneous flow is defined as that flow regime which behaves as singlephase homogeneous flow at high mean mixture velocities, but becomes heterogeneous at lower mean mixture velocities. Pseudo-homogeneous flow can arise with virtually any slurry if the transport velocity is high enough to suspend particles reasonably uniformly by turbulence. The distribution of solid particles is uniform across the pipe section.

1.7 Heterogeneous Flow

In heterogeneous flow the concentration of solid particles across the pipe section is non-uniform and for particles of relative density greater than unity the concentration of solid particles increases towards the pipe invert.

1.8 Mixed Regime Flow

As a result of transporting a range of solid particle sizes simultaneously, more than one regime can exist at a time. For example, large particles may be carried with a heterogeneous concentration gradient in a homogeneous carrier consisting of fluid and fine particles.

1.9 Dense Phase Flow

Dense phase flow is defined to exist when the dominant mechanism supporting the particles in the mixture is interparticle contact. The mixture is essentially a settling mixture in which the solids concentration is close to or equal to the freely settled concentration across the whole of the pipe section.

1.10 Paste Flow

Paste mixtures contain a high percentage of fine particles which form a non-Newtonian vehicle. Typically the vehicle yield stress dominates the flow behaviour. Larger particles may be present but do not significantly contribute to the pipeline friction losses. Paste mixtures are generally operated in laminar flow due to the excessive amount of energy required to achieve turbulent flow.

1.11 Mean Mixture Velocity, Vm

The mean mixture velocity is the average flow rate, Q_m divided by the pipe cross-sectional area, A.

1.12 Stationary Deposit Velocity, Vdep

The stationary deposit velocity is the mean mixture velocity at and below which part of the bed load becomes stationary.

If the mean mixture velocity is below the stationary deposit velocity, solids will deposit on the bottom of the pipeline to form a bed over which solids will be

transported at a velocity equal to the stationary deposit velocity. However, because the effective flow area is reduced, the pressure gradient increases and the throughput decreases.

1.13 Delivered Volumetric Concentration, Cvd

The delivered volumetric concentration is the ratio of the solids flow rate, Q_s to the mixture flow rate, Q_m , ie:

$$C_{vd} = \frac{Q_s}{Q_m}.$$

In this report Cvd is commonly denoted as Cv.

1.14 Delivered Weight Concentration, Cwd

The ratio of the solids mass flow rate, M_s to the mixture mass flow rate, M_m is the delivered mass (or weight) concentration:

$$C_{vvd} = \frac{M_s}{M_m} = C_{vd} \frac{S_s}{S_m}.$$

1.15 Slurry Relative Density, Sm

The slurry relative density is the ratio of the mass of slurry to the mass of an equivalent volume of clear water:

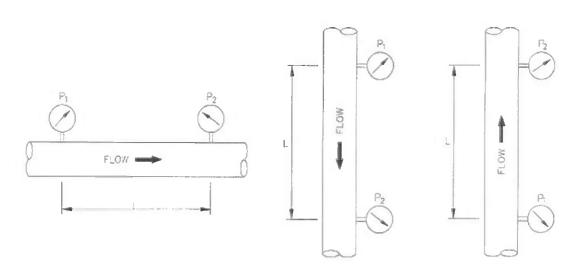
$$S_m = S_w + C_v (S_s - S_w).$$

1.16 In-situ Concentration, Cvt

The volumetric concentration in the pipe is known as the in-situ, spatial or transport volumetric concentration and is defined as the ratio of volume of solids, ∇_s in the pipe to the volume of mixture, ∇_m being transported in the pipe:

$$C_{vt} = \frac{\nabla_s}{\nabla_m}.$$

1.17 Particle Shape Factor, Sf


The particle shape factor is defined as the ratio of the settling velocity of a particle to the settling velocity of an equivalent diameter sphere (i.e. a sphere of the same density and mass as the particle) in water :

$$S_f = \frac{Particle settling velocity}{Sphere settling velocity}.$$

1.18 Pressure Gradient

The pipeline pressure gradient is defined as the change in pipeline pressure per unit length along the pipe axis in the direction of flow, i.e.

$$\frac{\Delta P}{\Delta L} = \frac{P_1 - P_2}{L}$$

2. <u>RHEOLOGY TERMS</u>

2.1 Rheology

Rheology is the science dealing with flow and deformation of matter. Within the context of slurry pipeline systems, rheology is defined as the viscous characteristics of a fluid or homogenous solid-liquid mixture. There are two terms in this definition that are important:

- The term viscous indicates that laminar flow is being considered (where viscous forces dominate) as opposed to turbulent flow (where inertial forces dominate). Thus, it is important to note that rheology refers to laminar flow phenomenon only.
- The term homogenous indicates that the solid particles are uniformly distributed across the pipe section.

2.2 Rheogram

A plot of shear stress versus shear rate for laminar flow conditions is called a rheogram.

2.3 <u>Pseudo-Shear Diagram</u>

A pseudo-shear diagram is a plot of pipe wall shear stress versus the bulk or pseudoshear rate for laminar flow conditions. The pseudo-shear rate is defined as:

$$\Gamma = \frac{8 V_m}{D} ,$$

where $\Gamma = pseudo-shear rate (s⁻¹)$ D = internal pipe diameter (m).

In laminar flow provided that there is no slip, the data will be co-incident irrespective of tube diameter.

2.4 Newtonian Fluids and Mixtures

Isaac Newton, the originator of the science of rheology, postulated that the relationship between shear stress and shear rate in a fluid is linear, i.e.:

 $\tau = \mu \gamma$,

where $\tau = shear stress (Pa)$ $\gamma = shear rate (s^{-1})$ $\mu = constant of prop$

= constant of proportionality known as the dynamic coefficient of viscosity (Pa.s).

Any fluid or mixture that obeys this relationship in laminar flow is considered to be Newtonian and the viscosity is sufficient to characterise the flow. Rheograms for Newtonian fluids and mixtures pass through the origin and the slope of the line is the viscosity.

2.5 Non-Newtonian Fluids and Mixtures

A non-Newtonian fluid or mixture has one or more of the following characteristics:

- a non-linear rheogram
- the rheogram does not pass through the origin
- the rheogram varies with time (i.e. dependant on the shear history).

2.5.1 Time independent mixtures

There are a large number of models that may be used to characterise time independent non-Newtonian mixtures. The most suitable model for most mineral slurry applications is the generalised yield pseudoplastic or Herschel-Bulkley model:

 $\begin{aligned} \tau &= \tau_y + K \ \gamma^n \ , \end{aligned}$ where $\tau_y &= yield \ stress \ (Pa) \\ K &= fluid \ consistency \ index \ (Pa.s^n) \\ n &= flow \ behaviour \ index. \end{aligned}$

Rheological models that can be described by the generalised yield pseudo plastic model are summarised in the table below.

Model	Yield Stress	Flow Behaviour Index	Constitutive Equation
Newtonian	$\tau_y = 0$	<i>n</i> = 1	$\tau = \mu \gamma$
Bingham plastic	$\tau_y > 0$	<i>n</i> = 1	$\tau = \tau_y + K \gamma$
Pseudo plastic	$\tau_y = 0$	<i>n</i> < 1	$\tau = K \gamma^n$
Yield pseudo plastic	$\tau_y > 0$	n < 1	$\tau = \tau_y + K \gamma''$
Dilatant	$\tau_y = 0$	n > 1	$\tau = K \gamma^n$
Yield dilatant	$\tau_y > 0$	<i>n</i> > 1	$\tau = \tau_y + K \gamma^n$

The Bingham model (n = 1) is widely used to characterise non-Newtonian mineral slurries. The Bingham model is a two parameter rheological model, i.e.:

$$\tau = \tau_{v} + K_{B} \gamma \; .$$

where $K_B =$ Bingham fluid consistency index (Pa.s).

The apparent viscosity is defined as the slope of a line drawn from the origin to a point on the rheogram corresponding to a specific shear rate. For a Bingham mixture, the apparent viscosity decreases with increasing shear rate.

Shear thinning refers to a decrease in the apparent viscosity with an increase in shear rate, while shear thickening refers to an increase in the apparent viscosity with an increase in shear rate.

2.5.2 Time dependent mixtures

A mixture that exhibits a reversible time-dependant decrease in apparent viscosity when sheared at a constant rate is said to be **thixotrophic**. The change in apparent viscosity is due to a structural breakdown of the mixture due to shearing. The structure is re-established if the mixture is left in a quiescent state. This is not common for mineral slurries.

Rheomalaxis is an irreversible decrease in apparent viscosity during shearing. Many flocculated mineral slurries exhibit rheomalaxis behaviour when initially sheared, but the usually apparent viscosity stabilises quickly and the slurries can be treated as time independent.

2.6 Rheological Characterisation of Tube Viscometer Data

The Herschel-Bulkley equation is used to describe the relationship between shear stress and shear rate for laminar flow. The shear stress in pipe flow is directly proportional to the distance from the centre of the pipe and the pressure gradient. The shear stress at the centre of the pipe is zero and reaches a maximum at the pipe wall. This linear relation of the shear stress with the radius of the pipe is valid regardless of the nature of the fluid.

For pipe flow the shear rate (i.e. velocity gradient) is a function of radial position,

shear stress and fluid rheology so the Herschel-Bulkley model cannot be directly applied to pipeline flow.

To relate the slurry rheology to pipeline flow, the following assumptions are made:

- (i) the flow is steady
- (ii) the mixture is homogenous
- (iii) there is no slip at the pipe wall
- (iv) there is no velocity gradient at the centre of the pipe
- (v) the tube is sufficiently long that end effects are negligible.

Using these assumptions, the following equation relating flow rate to shear stress at the pipe wall is developed:

$$\frac{8V_{m}}{D} = \frac{4n}{\tau_{o}^{3}} \left(\frac{1}{K}\right)^{\frac{1}{n}} \left(\tau_{o} - \tau_{y}\right)^{\frac{n+1}{n}} \left[\frac{\left(\tau_{o} - \tau_{y}\right)^{2}}{3n+1} + 2\tau_{y}\frac{\left(\tau_{o} - \tau_{y}\right)}{2n+1} + \frac{\tau_{y}^{2}}{n+1}\right] ,$$

where $\tau_o =$ shear stress at the pipe wall (Pa).

This equation is fitted to the measured pseudo-shear data to determine the rheological parameters (τ_y , K and n).

APPENDIX B – RELATIONSHIP BETWEEN $\rho_m,\,C_v$ and C_w

Test Name	Solids Density	Page Number
5034 Ore	2.65 t/m ³	B.2
Hearne Ore	$2.63 t/m^3$	B.3

Material Type:	5034 Ore	
Solids Density:	2.65 Vm²	
Water Density:	1.00 Vm³	
Sturry Density	Volumetric solids concentration, C,	Mass solids concentration, C
1.000 t/m ^a	0.0%	0.0%
1.025 t/m²	1.5%	3.9%
1.050 t/m²	3.0%	7.6%
1.075 t/m²	4.5%	11.2%
1.100 t/m ²	6.1%	14.6%
1.125 t/m ²	7.5%	17.8%
1.150 t/m ²	9.1%	20.9%
1,175 l/m²	10.6%	23.9%
1.200 t/m²	12.1%	26.8%
1.225 t/m ³	13.6%	29.5%
1.250 t/m ³	15.2%	32.1%
1.275 t/m³	16.7%	34.5%
1.300 t/m ²	18.2%	37.1%
1.325 t/m ²	19.7%	39.4%
1.350 t/m ³	21.2%	41.6%
1.375 t/m ³	22.7%	43.8%
1.400 t/m ³	24.2%	45.9%
1.425 t/m ³	25.8%	47.9%
1.450 t/m ³	27.3%	49.8%
1,475 t/m ³	28.8%	51.7%
1.500 t/m ³	30.3%	53.5%
1.525 t/m ²	31.8%	55.3%
1.550 t/m ³	33.3%	57.0%
1.575 t/m ³	34.8%	58.6%
1.600 Vm ³	36.4%	60.2%
1.625 t/m ³	37.9%	61.8%
1.650 t/m ³	39.4%	83.3%
1.675 t/m ³	40.9%	64.7%
1.700 t/m³	42.4%	66.1%
1.725 Vm ³	43.9%	87.5%
1.750 t/m²	45.5%	68.8%
1.775 t/m ²	47.0%	70.1%
1.800 t/m³	48.5%	71.4%
1.825 Um ^a	50.0%	72.6%
1.850 t/m ³	51.5%	73.8%
1.875 t/m³	53.0%	74.9%
1.900 t/m ²	54.5%	76.1%
1.925 t/m ³	56.1%	77.2%
1.950 t/m ³	57.6%	78.2%
1.975 t/m²	59.1%	79.3%
2.000 Um ³	60.6%	80.3%

Material Type:	Hearne Ore	
Solids Density:	2.63 t/m³	
Water Density:	1.00 t/m ³	
Slurry Density	Volumetric solids concentration, C,	Mass solids concentration, C
1.000 t/m³	0.0%	0.0%
1.025 t/m²	1.5%	3.9%
1.050 t/m ²	3.1%	7,7%
1.075 t/m ²	4.6%	11.3%
1.100 t/m ²	6.1%	14.7%
1.125 l/m³	7.7%	17.9%
1.150 Vm ²	9.2%	21.0%
1.175 Vm ²	10.7%	24.0%
1.200 Vm ²	12.3%	26.9%
1.225 t/m ²	13.8%	29.6%
1.250 t/m ³	15.3%	32.3%
1.275 t/m ²	16.9%	34.8%
1.300 t/m ²	18.4%	37.2%
1.325 t/m3	19.9%	39.6%
1.350 t/m ²	21.5%	41.8%
1.375 t/m ³	23.0%	44.0%
1.400 Vm²	24.5%	46.1%
1.425 Vm²	26.1%	48.1%
1.450 Vm ³	27.6%	50.1%
1.475 Vm ³	29.1%	52.0%
1.500 V/m³	30.7%	53.8%
1.525 t/m ³	32.2%	55.5%
1.550 t/m ²	33.7%	57.3%
1.575 t/m ³	35.3%	58.9%
1.600 l/m²	36.8%	60.5%
1.625 t/m ³	38.3%	62.1%
1.650 t/m ³	39.9%	63.6%
1.675 t/m ³	41.4%	65.0%
1.700 t/m ³	42.9%	66.4%
1.725 Vm ³	44.5%	67.8%
1.750 t/m ³	45.0%	69.1%
1.775 t/m ³	47.5%	70.4%
1.800 t/m ³	49.1%	71.7%
1.825 t/m ³	50.6%	72.9%
1.850 t/m ³	52.1%	74,1%
1.875 t/m ²	53.7%	75.3%
1.900 i/m ³	55.2%	76.4%
1.925 t/m ³	56.7%	77.5%
1.950 t/m ³	58.3%	78.6%
1.975 t/m ³	59.8%	79.7%
2.000 Um ^a	61.3%	80.7%

Test Name	Page Number	
5034 Ore	C.2	
5034 Ore-001	C.3	
5034 Ore-004	C.4	
5034 Ore-007	C.5	
Hearne Ore	C.6	
Hearne Ore-002	C.7	
Hearne Ore-004	C.8	
Hearne Ore-007	C.9	

NINHAM SHAND GEOTECHNICAL LABORATORY BRADFORD CLOSE AIRPORT INDUSTIA TEL (021) 934 2052 FAX (021) 934 8161 TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) **TEST REFERENCE : ASTM D854-58** TEST REFERENCE : TMH1 A2-A4 (1986) Test Instruction No.: NS CT 05 - 000345 Certification Date: 2005/02/16 Project No.: 09200/5/XY/R25 Date of Sampling : NA Clant Name: PATTERSON & COOKE Date Sample received: 2005/02/09 Project Name : DGK-S71 Date Test Commenced: 2005/02/14 Order Number : 2430 Date test Completed: 2005/02/15 Sample reference No Tested By: J Thapelo Sample No.: 5034 ORE Depth NA. Visual Description : KimberHe ore III. Atterberg Limits L Sieve Analysia II. Hydrometer Analysis Liquid Limit Percentage of Sieve Size Percentage Passing Diameter of soil ausoe sic. (mm) particle (mm) (%) Plastic Index NĂ 75.0 100 0.0392 12 100 37.5 Linear Shrinkage 100 26.5 0.0198 8 19 100 100 13.2 2.712 IV. Specific Gravity 0.0103 2 100 9.5 6.7 100 **Tabulated Summary** Percentage 0.0052 s 100 4.75 Gravel : Percentage relained on4.75 mm 0 2.36 100 0.0033 5 97 Sand : Percentage passing 4.75mm and retained 0.075mm 1.18 82 0.600 59 0.0017 3 39 0.300 Silt : Percentage passing0.075mm and retained 0.002mm 14 26 Q.150 18 0.075 Clay : Percentage passing 0.002mm 4 100 10 80 g 79 60 50 40 1.1 30 20 10 4.1 0.001 00 0,5 10 100 Partiala Siba Sweiji Authorized Signatory Remarks 1. Testing in compliance with ASTM D 422-63(1990) 2. Test results relate only to sample tested alla

This report shall not be reproduced receipt to fail, without the written approval of Ninhern Shand

NINHAM SHAND GEOTECHNICAL LABORATORY

BRADFORD CLOSE AIRPORT INDUSTIA TEL (021) 934 2052 FAX (021) 934 8161 TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) **TEST REFERENCE : ASTM D854-58** TEST REFERENCE : TMH1 A2-A4 (1986) Test Instruction No.: NS CT 05 - 000348 Certification Date : 2006/02/16 09200/5/XY/R25 Date of Sampling 114 Project No :: Olent Name: PATTERSON & COOKE Date Sample received: 2005/02/09 Project Name : DGK-571 Date Test Commenced: 2006/02/14 Order Number : 2430 Date test Completed: 2006/02/15 Tested By: J Thepelo Sample reference No.: Sample No : 5034 ORE / 001 Depth: NA. Visual Description : Kimberlite ore III. Atterberg Limits I. Sieve Analysis IL Hydrometer Analysis Liquid Limit Percentage of Sieve Siza Diameter of Percentage soil suspension Passing particle (mm) (mm) (%) Plastic Index NA 100 75.0 0.0392 13 100 37.5 Linear Shrinkage 100 26.5 10 0.0197 100 19 100 2.62 13.2 IV. Specific Gravity 0.0102 8 100 9.5 100 **Tabulated Summary** Percentage 6.7 0.0052 5 100 4.75 0 Gravel : Percentage retained on4.75 mm 100 2.36 0.0033 4 96 Sand : Percentage passing 4.75mm and retained 0.075mm 1.18 82 67 0.600 0.0017 4 44 Silt : Percentage passing0.075mm and retained 0.002mm 0.300 14 28 0.150 0.075 18 4 Clay : Percentage passing 0.002mm 105 80 ĸ 70 111 80 60 40 ----30 ----20 TTT 10 0 0.001 0.01 0.9 10 100 1 Particle Size (707) Authorized Signatory Remarks 1. Testing in compliance with ASTM D 422-63(1990) 2. Test results relate only to sample tosted. lille

> This report shall not be reproclased except in full, selflow inewriten approval of Hinham Shahd

NINHAM SHAND

GEOTECHNICAL LABORATORY BRACFORD CLOSE AIRPORT INDUSTIA FAX (021) 934 8161 TEL (021) 934 2052 TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) **TEST REFERENCE : ASTM D854-58** TEST REFERENCE : TMH1 A2-A4 (1986) Test Instruction No.: NS CT 05 - 000348 Certification Date : 2005/02/16 09200/5/XY/R25 Project No .: Date of Sampling : NA Clent Name: PATTERSON & COOKE Date Sample received: 2005/02/09 DGK-571 Project Name : Date Test Commenced: 2005/02/14 Order Number : 2430 Date test Completed 2005/02/15 Tested By: J Thapelo Sample reference No. 5034 ORE / 004 Sample No.: Depth: NA Visual Description : Kimberiite ore III. Atterberg Limits L Sieve Analysis II. Hydrometer Analysis Liquid Limit Percentage of Percentage Passing Sieve Size Diameter of soil suspension particle (mm) (mm) (3) NA Plastic Index 100 75.0 0.0391 14 37.5 100 Linear Shrinkage 100 26.5 0.0197 10 19 100 100 13.2 IV. Specific Gravity 2.509 0.0102 9 100 9.5 100 Tabu/ated Summary Percentage 6.7 0.0051 6 4.75 100 Gravel : Percentage retained on4.75 mm Q. 100 2.38 0.0033 3 97 Sand : Percentage passing 4.75mm and 1.18 78 retained 0.075mm 72 0.600 0.0017 3 49 Silt : Percentage passing0.075mm and retained 0 002mm 0.300 19 33 0.150 22 0.075 Clay : Percentage passing 0.002mm з 100 90 40 R 70 60 98 43 33 20 10 $\mathbf{F}^{(i)}$ a 10 105 0,001 0.91 0.1 1 Particle Size (mm) Authorized Signatory Remarks 1. Testing is compliance with ASTM D 422-63(1990) 2. Test results relate only to sample testad. alle

> This report shall not be reproduced except in 5.8, without the written approval of Minham Shand

NINHAM SHAND GEOTECHNICAL, LABORATORY BRADFORD CLOSE AIRPORT INDUSTIA TEL (021) 934 2052 FAX (021) 934 8161 TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) **TEST REFERENCE : ASTM D854-58** TEST REFERENCE : TMH1 A2-A4 (1986) Test Instruction No.: NS CT 05 - 000348 Certification Date : 2005/02/16 09200/5/XY/R25 Project No.: Date of Sampling : NA Cient Name PATTERSON & COOKE Date Sample received: 2005/02/09 DGK-571 Project Name Date Test Commanced: 2005/02/14 Order Number : 2430 Date test Completed: 2005/02/15 Sample reference No.: Tested By: J Thapelo 5034 ORE / 007 Sample No. Copth: NA. Visual Description : Kimberite ORE III. Attecherg Limits 1. Sleve Analysis II. Hydrometer Analysis Liquid Lime Percentage of Sieve Size Percentage Diameter of sol suspension Passing particle (mm) (mm) (%) NA Plastic Index 100 75.0 0.0393 12 37.5 100 Linear Shrinkage 100 26.5 0.0198 9 100 19 100 13.2 **IV. Specific Gravity** 2.643 0.0103 7 100 9.5 100 Tabulated Summary Percentage 8.7 0.0052 6 100 4.75 0 Gravel : Percentage retained on4 75 mm 100 2.38 0.0033 4 95 Sand : Percentage passing 4.75mm and 1,18 83 retained 0 075mm 65 0.600 0.0017 3 0.300 42 SIIt : Percentage passing0 075mm and retained 0.002mm 14 27 0.150 18 0.076 Clay : Percentage passing 0.002mm 4 100 90 80 T 10 60 50 40 11 30 20 11 10 Ŧ 11 a 0.01 0.1 50 0.001 1 Particle Size (mm) Authorized Signatory Remarks 1. Testing in compliance with ASTM D 422-63(1990) 2. Test results relate only to sample tosted. aba

> This report shall not be reproduced except in full, without the written approval of Ninham Shand

NINHAM SHAND GEOTECHNICAL LABORATORY BRADFORD CLOSE ARPORT INDUSTIA TEL (021) 934 2052 FAX (021) 934 8161 TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) **TEST REFERENCE : ASTM D854-58** TEST REFERENCE : TMH1 A2-A4 (1986) Test Instruction No NS CT 05 - 000348 Cerofication Date : 2005/02/16 09200/5/XY/R25 Project No.: Date of Sampling : NA Client Name: PATTERSON & COOKE Date Sample received: 2005/02/09 Project Name : DGK-571 Date Test Commonced: 2005/02/14 Order Number 2430 Date test Completed: 2006/02/18 Sample reference No.: Tested By: J Thapelo Sample No : Heame ORE Depth: NA Visual Description : Kimberite ore **BL Atterberg Limits** L Sieve Analysis II. Hydrometer Analysis Louid Limit Percentage of Sieve Size Percentage Diameter of soil suspension (നന) Passing particle (mm) (%) Piastic Index NA 100 75.0 0.0394 11 100 37.5 Linear Shrinkage 100 26.5 2 0.0199 100 19 100 13.2 **IV. Specific Gravity** 2.618 0.0103 8 100 9.5 100 **Tabulated Summary** Percentage 67 0.0052 4 100 4,75 Gravel : Percentage retained on4 75 mm 0 100 2.36 0.0033 2 99 Sand : Percentage passing 4.75mm and retained 0.075mm 1.18 82 54 0.600 0.0017 1 43 Silt : Percentage passing0 075mm and retained 0.002mm 0.300 17 29 0.150 0.075 18 Clay : Percentage passing 0.002mm 1 100 1111 90 82 2 70 60 8 60 40 4 30 20 ŧø 0 0.01 0.5 10 103 100.0 Periode Size (mm) Authorized Signatory Remarks 1. Testing in compliance with ASTM D 422-83(1990) and TMH 1 A2-A4(1985) 2. Test results relate only to sample tosted. Non-

> This report shall not be reproduced accept in Full, without the written approval of Ninham Shand

Page C.7 March 2005

NINHAM SHAND GEOTECHNICAL LABORATORY BRADFORD CLOSE AIRPORT INDUSTIA TEL (021) 934 2052 FAX (021) 934 8161 TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) **TEST REFERENCE : ASTM D854-58** TEST REFERENCE : TMH1 A2-A4 (1986) **Yest Instruction No.:** NS CT 05 - 000348 Certification Date : 2005/02/16 09200/5007/925 Project No.: Date of Sampling : NA Client Narte: PATTERSON & COOKE Date Sample received: 2005/02/09 Project Name : **DGK-571** Date Test Commenced: 2005/02/14 Order Number : 2430 Date test Completed 2005/02/15 Sample reference No : Tested By: J Thapelo Sample No.: Hearne ORE - 002 Depth: NA: Visual Description : Kimberije ore III. Atterberg Limits L Sieve Analysis II. Hydrometer Analysia **Liquid Limit** Percentage of Sieve Sze Diameter of Percentage soil suspension Passing perticle (mm) (mm) (%) Plastic Index NA 100 75.0 0.0391 13 37.5 100 Linear Shrinkage 100 26.5 0.0197 10 100 19 100 13.2 2618 IV. Specific Gravity 0.0103 7 9.5 100 100 **Tabulated Summary** Percentage 6.7 0.0051 6 4.75 100 Gravel : Percentage relained on4.75 mm 0 100 2.36 0.0033 4 98 Sand : Percentage passing 4.75mm and 1.18 80 retained 0.075mm 87 0.608 0.0017 2 Silt : Percentage passing0.075mm and retained 0.002mm 0.300 48 17 30 0.150 0.075 20 Clay : Percentage passing 0.002mm з 100 90 ę 113 69 60 40 2 30 20 4 10 0 0.01 10 100 0.001 0.1 Particle Size (nm) Remarks 1. Tosting in compliance with ASTM D 422-63(1990) and TMH 1 A2-A4(1988) 2. Test results relate only to sample tested. Authorized Signatory Hart .

> This report shall not be reproduced ascept in S.R. without the written approval of Ninham Shand

NENHAM GEOTEC BRADFO TEL (021

NEUHAM SHAAD GEOTECHNICAL LABORATORY BRADFORD CLOSE AIRPORT INDUSTIA TEL (021) 934 2052 FAX (021) 934 8161

NS CT 05 - 000348

TEST REPORT FOR PARTICLE SIZE ANALYSIS AND ATTERBERG LIMITS OF SOILS TEST REFERENCE : ASTM D 422 - 63 (1990) TEST REFERENCE : ASTM D854-58 TEST REFERENCE : TMH1 A2-A4 (1986)

Test Instruction No.: Project No.: Client Name: Project Name : Order Namber : Sample reference No.: Sample No.: Depth: Visual Description :

L Sieve Analysis

Percentage Passing

> 100 100

100 100

100 100

100 100

100 94

60

38

24

16

Sieve Sce

(mm) 75.0

37.5 26.5

19

13.2

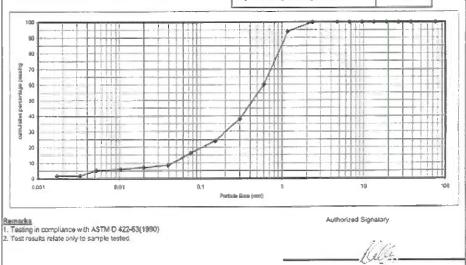
9.5 6.7

4,75 2.38

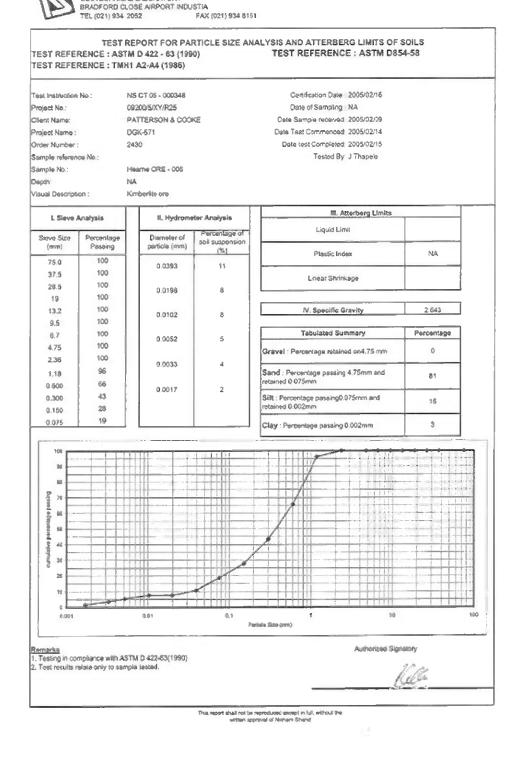
1,18

0.600

0.300


0.150

0.075



Certification Date : 2005/02/16 Date of Sampling : NA Date Sample received: 2005/02/08 Date Test Commenced: 2005/02/14 Date test Completes: 2005/02/15 Tested By: J Thepelo

II. Hydrome	ter Analysis	III. Alterberg Limits	erg Linits	
Diameter of	Percentage of soil suspension	Liquid Limit		
particle (mm)	(%)	Plastic Index	NA	
0.0396	9			
		Lirear Shrinkage		
0.0199	7		1	
0.0103	6	IV. Specific Gravity	2.653	
0.0052	5	Tabulated Summary	Percentage	
		Gravel : Percentage rotained on4.75 mm	0	
0.0033	2	Sand : Percentage passing 4.75mm and retained 0.075mm	84	
0.0017	2	Silt : Percentage passing0.075mm and retained 0.002mm	14	
		Clay : Percentage passing 0.002mm	2	

This report shall not be reproduced seatest in full, without the written approval of Ainham Shand. NINHAM SHAND GEOTECHNICAL LABORATORY

APPENDIX I	D –	RHEO	METE	R TEST	DATA
------------	------------	------	------	--------	------

Test Number	Material Type	Mass Solids Concentration	Page Number
001		76.9 %w	D.2
002	1	76.5 %w	D.3
003	5034 Ore	76.0 %w	D.4
004		74.4 %w	D.5
005		73.2 %w	D.6
006		72.3 %w	D.7
007	1	68.3 %w	D.8

Test Number	Material Type	Mass Solids Concentration	Page Number
001		78.3 %w	D.9
002	1	77.8 %w	D.10
003	Hearne Ore	77.2 %w	D.11
004		76.1 %w	D.12
005	1	75.3 %w	D.13
006	1	73.3 %w	D.14

Page D.2 March 2005

ata Senes Information			1031 001 1		
ame: ample:			5034-001 1		
ampa; perator:			HM		
emerica:					
umber of Intervala			4		
pplication:			U\$200/32 V2.30 21001	513-33024	
evice:			MC1+ SN679534		
leasurement Date:			2005/02/04		
leasurement Time:			11:05 AM		
leasuring Systems:			22/3-DIN		
siculating Constants.					
Socialing Constants.			0.28396508		
C65:			21.5		
Start Delay Time [s]:			0,496		
Measurement Type:			2		
lervak			1		
umber of Data Points.			0		
me Setting:			2 Meas. Pts., Reject		
rne seung.			Heas. PL Duration 3 s		
leasuring Profile:			HARMON I. P. MAN MARKED & M.		
Shear Rate			d(gamma)/dt = 0 5 1/	s Lin, Continuous Ramp	
dervak:			4		
umber of Oata Points			20		
me Setting:			20 Meas. Ph.		
			Hees, Pt. Duration 4 a		
leasuring Profile: Shear Rale			diagonality - 565 -	tistin Casterin Borns	
aramár 75.858			o/Seururitot = 300 2	1/s Lin, Continuous Ramp	
Meas Pts	Shear Rate	Shear Stress	Viscosity	Mess Solids Concentration	Temperature
	[1/67	[Pa]	[mPa-s]	[%/w]	23.5
1	247	496	2,010	78.9	23.5
2 Î	231	479	2,070	76.9	25.5
3	216	467	2,170	78.9	25.5
4	200	450	2,250	78.9	25.5 25.6
5	185	436	2,300	78.9	25.6
6	169	421 408	2,490	76.9	23.5
	163	408	2,860	78.9	25.5
9	123	368	3,010	78.9	25.5
10	123	352	3,290	78.9	255
11	91.4	333	3,540	76.9	25.5
12	26.1	311	4,080	76.9	23.5
			4,740	78.9	25.5
13	60.4	285			
54	45	262	5,830	75.9	23.5
14 15	45 29.4	252 234	5,030 7,960	76.9	25.5
54	45	262	5,830	75.9	23.5 25.5 23.5
14 15 16	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15 16	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15 16	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15 16	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15 16	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15 16	45 29.4	252 234	5,030 7,960	76.9	25.5
14 :5 :6 1	45 29.4	252 234	5,030 7,960	76.9	25.5 23.5
14 :5 :6 1	45 29.4	252 234	5,030 7,960	76.9	25.5
14 15 16 1	45 29.4	252 234	5,030 7,960	76.9 76.6 78.9	255 255
14 15 16 1 000	45 29.4	252 234	5,030 7,960	76.9 78.6 78.9	255 255
14 15 16 1 000	45 29.4	252 234	5,830 7,960 14,600	76.9 76.6 78.9	255 255
14 15 16 1 000	45 29.4	252 234	<u>\$,830</u> 7,960 14,600	76.9 76.6 78.9	255 255
14 15 (6]	45 29.4	252 234	\$,839 7,960 14.600	76.9 76.6 78.9	25.5
14 15 16 16 100 500 400	45 29.4	262 234 204	<u>\$,830</u> 7,960 14,600	76.9 76.6 78.9	255 255
14 15 16 16 100 500 400	45 29.4	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	25.5
14 15 16 16 1000 500 - 400	45 29.4	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 1000 500 - 400	45 29.4	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 500 500	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 75 16 3 000 500 400	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 500 500	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 :5 :6 000 500 500 -	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 000 500 400	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 600 500 500 400 500 500 600 600 600 600 600 6	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 000 500 400 500 400 10 500 10 10 10 10 10 10 10 10 10	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 600 500 500 400 500 500 600 600 600 600 600 6	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 000 500 500 100 100 100 100 100	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 000 500 500 100 100 100 100 100	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 000 500 500 400 200 400 200 400 500 400 500 400 500 400 500 400 500 400 500 5	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 000 500 500 100 100 100 100 100	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 500 500 200 400 200	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 500 500 200 400 200	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 500 500 200 400 200	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255
14 15 16 16 500 500 200 400 200	45 29.4 14	262 234 204	\$,830 7,960 14.600	76.9 76.6 78.9	255 255

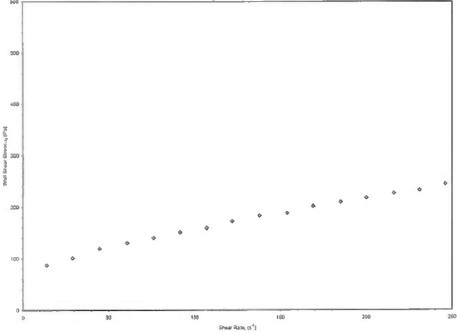
190

Prear Rate, (s⁴)

200

250

•


60

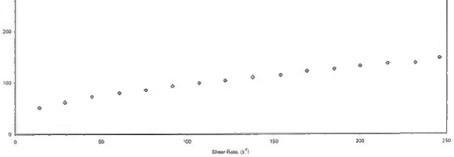
103

ata Senes information lame					
lame -					
			5034-002 1		
ample:			1		
perator:			HM		
lemarks;					
umber of Intervals:			4		
oplication.			U\$200/32 V2.30 2100%	513-33024	
levice:			MC1+ SN679534		
leasurement Date:			2005/02/04		
loasurement Time:			12:39 PM		
leasuring Systems:			Z 2/3-DIN		
and the of a state the			4 0-3- 0-MA		
alculating Constants					
Cs/:			0.28396508		
Cas:			21.5		
Start Delay Trme [s]:			2,354		
Measurement Type:			2		
			· •		
tionvalt			4		
umber of Data Points:			20		
BUILDER OF LIGHTLE FORMAS			20		
irre Setting			20 Meas. Pts.		
ing opting			Nees, Pt. Duration 4 a		
Annual An Dealtras			Mass, P.C. PARADOLI 4 5		
leasuring Profes:			A	And the Charles and Charles	
Shear Plata			d(gamma)/dt # 300 5	1/s Lin, Continuous Ramp	
Mana Pha	Barr Barr	6444 - Parra	10	I	Panar
Moas, Pis.	Shear Rate	Shear Stress	Vacoaity	Mess Solds Concentration	Temperature
-	[1/6]	(Pa)	[mPa 6]	(%)	[*C]
1	247	428	1,740	76.6	25.5
2	231	408	1,760	76.6	25.5 25.5
3	218	401	1,100	76.6	
4	200	358	1,940	76.6	25.5
5	185	375	2.010	76.6	25.5
6	169	361	2,190	76.6	25.5 26.5 26.5 26.5
2	153	341	2,230	76.6	25.5
8	138	325	2,300	76.6	25.5
5	122	311	2.540	75.6	25.5
10	107	293	2,730	76.6	25.6
11	91.6	281	3,070	76.6	25.6
. 12	75.#	260	3,430	76.6	25.6 25.6
13	60.8	243	4,000	76.6	25.6
14	44.9	219	4,890	78.6	25.6
15	29.4	\$96	6.650	76.6	25.5
16	34	169	12.100	76.5	25.6
8000					A.V.V
500 500 200	¢	•	•	¢	• •

ta Series Information me: mole:					
me:					
man I m.			5034-003 1		
			3		
erakor:			HM		
marka:					
mber of Imervals.			4		
plication:			US200/32 V2.30 21001	513-33024	
fiot:			UC1+ \$N679534		
asurement Date:			2005/02/04		
asurement Time:			01 50 PM		
asunng Systems:			Z 2/3-DIN		
outating Constants:					
5r.			0 28396508		
63.			21.5		
art Delay Time [s]:			0.455		
easurement Type:			2		
eval:			4		
rber of Data Points:			20		
e Setting:			20 Meas. Pts.		
ar chostring.			Meas. Pt. Duration 4 s		
asuning Profile:					
ear Rate			digamma)/dt = 300 5	1/s Lm, Continuous Ramp	
Meas Pts.	Stear Rate	Shear Stress	Viscosity	Mass Solids Concentration	Temporature
	(1/b)	[P.a.]	[mPa-s]	[%w]	['C]
?	247	358	1,440	76.0	25.9
2	231	343	1,480	76.0	25.9 25.9
3	216	335	1.550	76.0	25.9
4	200	524	1,620	76.0	23.9
5	185	307	1,660	78.0	25.9
6	169	299	1,760	76.0	25.9
	153	286	1,670	76.0	28.9 25.9
8	<u>938</u> 122	260	2,130	76.0	25.9
9	107	241	2,130	76.0	25.9
19	91.6	230	2,510	78.0	25.9
12	78	213	2,800	76.0	25.9
13	60.7	194	3,200	76.0	25.9
14	44.9	178	3,970	76.0	25.9
15	29.5	157	5,320	76.0	25.9
16	14	136	9,740	76.0	25.9
500					
- 000 300	¢ ¢	¢ ¢	\$ \$	\$ \$	¢ ۹

la Series Information					
entres			5034-004 1		
ample:			4		
berator:			HM		
temarics:					
lumber of intervals:			4		
upication:			US200/32 V2.30 2100	1513-33024	
levice:			MC1+ SN579534		
leasurement Date:			2005/02/04		
leasurement Time			03:09 PM		
leasuring Systems:	seaning Systems:				
aloutabing Constants;					
Car:			0.28396508		
Cas:			21.5		
Start Delay Time (s).			1.733		
Measurement Type:			2		
Merval:			4		
lumber of Data Points:			20		
ine Settina:			20 Mean, Phi.		
Sine Setting:			20 Mean, Pbl. Meas, Pt. Duration 4 s		
leasuring Profile:			Moss. Pt. Duration 4 s	5 1/s Lin, Continuous Ramp	
leasuring Profile:	Shear Rate		Moss. Pt. Duration 4 s		Тептрегацие
leasuring Profile: Shear Rate	Shear Rate		Maas. Pt. Duration 4 s digamma)/dt = 300 (5 % Lin, Continuous Ramp	Temperature (*C)
leasuring Profile: Shear Rate		Shear Stress	Meas. Pt. Duration 4 s digamma)/dt = 300 (Viscosity	5 1/s Lin, Continuous Ramp Mass Solids Concentration	
leasuring Profile: Shear Rate Meas Pts.	[1/6] 246	Shear Strass (Pa) 244	Moss. Pt. Durason 4 s digamma)/dt = 300 (Viscosity [mPa s]	5 % Lin, Continuous Ramp Mass Solids Concentration	["C]
leasuring Profile: Shear Rate Meas Pts. 1 2	[1/6] 245 231	3hear Stress (Pa) 244 232	Moss. Pt. Curation 4 s digamma)/dt = 300 (Viscosity [mPa s] 950	5 1/5 Lin, Continuous Ramp Mass Solids Concentration (%w) 74.5	[*C] 25.8
leasuring Profile: Shear Rate Meas Pts.	[1/6] 246	Shear Strass (Pa) 244	Mess. Pt. Duration 4 s digamma)/dt = 300 (<u>Viscosity</u> (mPa-s) 950 1.000	5 1/s Lin, Continuous Ramp Mass Solids Concentration (%w) 74.5 74.5	[*C] 25.8 25.8
leasuring Profile: Shear Rate <u>Hoas Pis.</u> 1 2 3	[1/8] 245 231 216	576ar Strass (Pa) 244 232 228	Mess. Pt. Curation 4 s digamma)/dt = 300 (Viscos&y (mPa s) 950 1.000 1.020	5 1/s Lin, Continuous Ramp Mass Solds Concentration (Swr) 74.5 74.5 74.5 74.5	[*C) 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate <u>Hhas Pts.</u> 1 2 3 4	[1/6] 245 231 216 200	Shear Strass (Pa) 244 232 278 217	Meas. Pt. Duration 4 s digamma)/dt = 300 (Viscossy (mPa s) 950 1.000 1.050 1.050	5 1/s Ln, Continuous Ramp Mass Solds Concentration 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	[*C] 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate: Neas Pts. 1 2 3 4 5	[1/6] 245 231 216 200 185	Shear Strass (Pa) 244 232 228 217 209	Mess. Pt. Duration 4 s digamma)/dt = 300 1 Viscosky (mPa a) 950 1.000 1.030 1.030 1.130	5 1/5 Ln, Coninuous Ramp Mass Solds Concentration (%%) 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	[*C) 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate <u>Nesis Pts.</u> <u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>5</u>	[1/4] 245 231 216 200 185 169	Shear Stross [Pa] 244 232 278 217 209 201	Aless. PL Duration 4 s (gamma)/dt = 300 (Viscosky (mPaig) 950 1.000 1.030 1.030 1.130 1.130	5 1/s Ln, Coninuous Ramp Mass Solds Concentration 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	1°C) 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate <u>Mease Pts.</u> 1 2 3 4 5 5 5 7	[1/6] 245 231 216 200 185 169 154	Shear Strass (Pa) 244 232 276 277 209 201 138	Alexes. Pt. Curation 4 s ctgamma)/dt = 300 1 Viscos/kr (mPa-s) 950 1.000 1.030 1.030 1.530 1.530 1.530 1.220	5 1/s Lin, Continuous Ramp Naisi Solds Concentration (%w) 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	10 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
Aeasuring Profile: Shear Rate Nepais Pts. 1 2 3 4 5 5 5 5 6 7 8	[1/6] 246 231 216 200 185 169 154 138	Shear Stross (Pa) 244 232 276 217 209 201 183	Aless. PL Curation 4 s d(gamma)/dt = 300 (Viscosty (mPa a) 950 1,030 1,030 1,130 1,130 1,220 1,320	5 1/s Ln, Coninuous Ramp Mass Solds Concentration 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	1°C) 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate 1 2 3 4 5 5 5 5 7 7 8 9	[1/6] 245 231 216 200 185 169 154 138 122	Shear Strass (Pa) 244 232 276 277 209 201 188 183	Alexes. Pt. Curation 4 s citgamma)/dt = 300 1 Viscosity (mPa s) 950 1.000 1.030 1.030 1.130 1.130 1.220 1.320 1.410	5 1/s Lin, Continuous Ramp Mass Solds Concentration 74.5	10 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate <u>Mease Pts.</u> 1 2 3 4 5 5 5 7 7 8 9 16	[1/6] 245 231 216 200 185 169 154 138 122 107	Shear Strass (Pa) 244 232 276 217 209 201 138 172 159	Aless, PL Curason 4 s clgamma)/dt = 300 (Viscosity (mPa a) 950 1,030 1,030 1,330 1,320 1,410 1,440	5 1/s Ln, Coninuous Ramp Mass Solds Concentration (%%%) 74.5 7	1°C) 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
leasuring Profile: Shear Rate Neas Pts. 1 2 3 4 5 5 5 5 5 5 8 8 9 10 11	[1/6] 2/46 2/31 2/00 1/85 1/69 1/54 1/38 1/62 1/67 9/1.5	Shear Stross (Pa) 244 232 276 217 209 201 136 172 151	Aless. PL Duration 4 s d(gamma)/dt = 300 / Viscosky (mPa a] 950 1.000 1.030 1.030 1.130 1.530 1.220 1.410 1.450	5 1/s Ln, Coninuous Ramp Mass Solds Concentration 74.5 75	100 25.8 2
leasuring Profile: Shear Rate <u>Nease Pts.</u> <u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u>	[16] 246 231 216 200 169 154 138 169 154 138 122 107 07,5 78,1	Shear Strass (Pa) 244 232 276 277 209 201 138 172 159 151	Alexes. Pt. Curation 4 s ctgamma)/dt = 300 1 Viscos/kr (mPa-s) 950 1,030 1,030 1,030 1,130 1,130 1,130 1,220 1,320 1,320 1,410 1,260 1,650 1,650	5 1/s Lin, Continuous Ramp Mass Solds Concentration (Swi) 74.5	1°C) 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8
Aleasuring Profile: Shear Rate Neals Pts. 1 2 3 4 5 5 5 5 7 7 8 8 9 10 11 12 13	[1/6] 2/46 2/31 2/16 2/00 1/65 1/69 1/69 1/64 1/38 1/22 1/07 9/1,5 7/8,1 60,6	Shear Strass (P3) 244 232 228 217 209 158 172 159 151 140 130	Aless, PL Curation 4 s clgamma)/dt = 300 (Viscossky (mPa a) 950 1,030 1,030 1,030 1,330 1,330 1,220 1,320 1,410 1,650 1,650 1,650 2,140	5 1/s Ln, Continuous Ramp Mass Solds Concentration (Swi) 74.5	100 25.8 2
1 2 3 4 5 5 7 9 9 11 11 12 12 13	11%] 246 231 216 200 185 169 154 122 107 91.5 78.1 60.6 44.8	Shear Strass (Pa) 244 232 278 278 279 201 188 172 151 140 130	Mess. Pt. Curation 4 s cigamma)/dt = 300 1 Viscosky (mPa s) 950 1.000 1.030 1.130 1.130 1.220 1.320 1.320 1.410 1.550 1.560 1.540 2.140	5 1/s Ln, Continuous Ramp Nass Solds Concentration 74.5 7	1 C) 28.8

1 2 2 2 4 2 5 2 6 2 7 1 9 10 11 9 12 7 13 6 14 6	#* Rate	Sreat Strata [Pa] 187 178 174 168 160	9034-005 1 5 HM 4 US200/32 V2.30 21001 MC1+ SN673534 205/02/04 04:11 PM 2.2/3-DIN 0.28396506 21.5 2.105 2 4 20 20 Mease. Pts. Mease. Pts. Mease. Pts. Mease. Pts. Mease. Pts. Mease. Pts. 20 - 763 - 763 - 763 - 763 - 842 - 867	513-33024 513 Lin, Cortinuous Ramp Mass Solids Concentration [%w] 73.2 73.2 73.2	Temperature [*C] 25.5 25.5 25.5
Sample: Demain: Remarks: Number of Intervals: Uppleation: Devoe: Heasurment Date: Weasurment: Time: Weasurment: Time: Saturt Date: Weasurment: Time: Start Date: Weasurment: Type: Interval: Wunter of Date Pointe: Time Setting: Weasurment: Type: Interval: Weasurment: Type: Weasurment: Type: Interval: Weasurment: Type: Weasurment: Type: Type: Type: Type: Type: Type: Type: Type: Type: Type: Type: Type: Type	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	5 HM 4 US200732 V2.30 21001 MC1+ SN679534 2005/02/04 04:11 PM 2 2/3-DIN 0.28396508 21:5 2.105 2 4 20 20 Mess. Pts. Ndsas. Pts. Ndsas. Ndsas. Pts. Ndsas. Pts. Ndsa	1/s Lin, Continuous Ramp Mass Solids Concentration (5km) 732 732 732	25.5 25.5 25.5 25.5
Spenials: Remarks: kemarks: kember of Intervals: uppliablow: Newse: Aessumment Date: Aessumment Date: Aessumment Date: Aessumment Systems: Islouteling Constants: Car. Car. Car. Start Delay Time [s]: Newsumment Type: Interval: Newser of Date Pointe: Time Setting: Aessumment Type: Interval: Newser of Date Pointe: Time Setting: Aessumment Type: Interval: Newser of Date Pointe: Time Setting: Aessumment Type: Interval: Newser Aessument Type: Newser Aessument Type: News	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	HM 4 US20072 V2.30 21001 MC1+ SN679534 2005/02/04 64:11 PM 2 2005/02/04 64:11 PM 2 2:005 21:5 2:105 2: 4 20 20 Msse. Pta. Mbass. Pta. Mbas	1/s Lin, Continuous Ramp Mass Solids Concentration (5km) 732 732 732	25.5 25.5 25.5 25.5
Martinis Number of Intervalis: optication: Newce: Newce: Newce: Newce: Newce: Newce: Newce: Newce: Newce: Start Delay Time [s]: Newce: Start Delay Time [s]: Newce: New	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	4 US200/32 V2.30 21001 MC1+ SN679534 2005/02/04 04:11 PM Z 2/3-DIN 0.28396506 21.5 2.105 2 4 20 20 Mass. Pts. Meass. Pts. Meass. Meass. Meass. Pts. Meass. Pts. Meass. M	1/s Lin, Continuous Ramp Mass Solids Concentration (5km) 732 732 732	25.5 25.5 25.5 25.5
kmber of Intervals: optication: wexpansed Date: besurrent Date: besurrent: Tree: leasuring Systems: later Date: besurrent: Tree: later Date: later Date:	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	US200/32 V2.30 21001 MC1+ SIN673534 2005/02/04 04:11 PM 2.2035/02/04 04:11 PM 2.2/306506 21:5 2.105	1/s Lin, Continuous Ramp Mass Solids Concentration (5km) 732 732 732	25.5 25.5 25.5 25.5
pplication: evice: beasurement: Date: beasurement: Time; teasuring Systems: alculating Constants: Cor.	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	US200/32 V2.30 21001 MC1+ SIN673534 2005/02/04 04:11 PM 2.2035/02/04 04:11 PM 2.2/306506 21:5 2.105	1/s Lin, Continuous Ramp Mass Solids Concentration (5km) 732 732 732	25.5 25.5 25.5 25.5
eves:	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	MC1+ SN879534 2005/02/04 04:11 PM Z 2/3-DIN 0.28396508 21:5 2.105 2 4 20 20 Mess. Pts. Ndoas, PL Durason 4 s d(parma)/dt = 300 5 Viacosky (mPa s) 750 760 760 842	1/s Lin, Continuous Ramp Mass Solids Concentration (5km) 732 732 732	25.5 25.5 25.5 25.5
sayument Due sayument Time: sasument Systems: alcufaling Constants: Car. Car. Car. Start Delay Time (s): start Delay Time (s): sasument Type: annaer Rate Meass Pts	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	2005/02/04 04:11 /PM 2.2/3-DIN 0.28396508 21:5 2.105 2 4 20 20 Mese. Pte. Mese. Pte. Mese. Pte. Mese. Pte. (mPa e) 760 760 760 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
basurement Time: kasuring Systems: alouising Constants: Cor. Cos. Start Delay Time [s]: Measuring Profile: shear nat: Meas Pts Strip: basuring Profile: Shear Rata Meas Pts Strip: 1 2 2 2 3 2 4 2 5 . 9 1 1 2 7 1 9 1 1 2 7 1 1 3 6 1 1 2 7 1 1 3 6 1 1 2 7 1 1 3 6 1 1 2 7 1 1 3 6 1 1 4 1 4 1 5 2 2 1 3 1 1 9 1 1 4 1 4 1 5 2 7 1 3 1 5 1 2 1 7 1 3 1 5 1 2 1 7 1 3 1 5 1 2 1 1 1 5 1 7 1 1 1 5 1 2 1 7 1 3 1 5 1 7 1 1 1 5 1 7 1 1 1 5 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	0:11 PM Z 2/3-DIN 0.28396508 21.5 2.105 2 4 20 20 Mase. Pts. Meas. Pts. Meas. Pts. Duration 4 s d(gamma)/st = 300 5 Viaces/y (mPa e) 760 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
kasuring Systemi: sloufeling Constants: Car. Car. Car. Start Delay Time [s]: Neasurement Type: Iternal: amber of Oute Points: me Setting: oasuring Profile: Shear Rate Meas Pta Sne 1 2 2 2 4 2 5 5 6 1 7 1 8 1 9 1 10 5 12 7 13 6 14 4 15 2 10 5 12 7 13 6 14 4 15 2 16 5 10 5 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	2 2/3-DIN 0.28396508 21.5 2.105 2 4 20 20 Mese, Pta. Meas, Pt. Duration 4 is d(gamma)/st = 300 5 Vaces/y (mPa.s) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
aloufaing Constants: Cur: Car: Car: Car: Car: Car: Car: Status Table Prints: Internal: In	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	0.28396506 21.5 2.105 2 4 20 20 Meae. Pta. Albass. Pta. Albass. Pta. Duration 4 is d(gamma)/dt = 300 5 Viaces/y (mPa e) 760 760 263 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Cart Cost: Start Debay Time [s]: Neasurement Type: Aervait arrivalt ar	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	21.5 2.105 2 4 20 20 Mese. Pts. Mese. Pts. Mese. Pts. Duration 4 is d(gamma)/st = 300 5 Viaces/y (mPaie) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Cart Cost: Start Debay Time [s]: Neasurement Type: Aervait arrivalt ar	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	21.5 2.105 2 4 20 20 Mese. Pts. Mese. Pts. Mese. Pts. Duration 4 is d(gamma)/st = 300 5 Viaces/y (mPaie) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Cos: Start Delay Time (s): Asseument Type: Annat amber of Oute Points; me Setting: ossunng Profile: Shaar Rata Meas Pts Sno 1 2 2 3 4 4 5, 9 1 5 9 1 1 9 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 1 9 1 1 1 9 1 1 3 6 1 1 1 9 1 1 1 9 1 1 3 6 1 1 1 9 1 1 1 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	21.5 2.105 2 4 20 20 Mese. Pts. Mese. Pts. Mese. Pts. Duration 4 is d(gamma)/st = 300 5 Viaces/y (mPaie) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Start Delay Time (s): leasurement Type: lenvak immer of Dela Pointe: me Setting: basung Profile: Shear Rate Meas Pts Sne 1 2 2 3 4 2 5 5 6 1 7 1 8 1 7 1 9 1 10 5 12 7 13 6 7 4 13 6 14 4 15 2 16 7	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	2.105 2 4 20 20 Mease. Pta. Mease. Pta. Mease. Pt. Duration 4 is d(garma)/st = 300 5 Vaccusty (mPa a) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Jeasurement Type: ternat umber of Date Pointe; me Setting: oasuring Profile; Shear Pate <u>Meas Pta</u> Shei <u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>1</u> <u>7</u> <u>8</u> <u>6</u> <u>1</u> <u>7</u> <u>8</u> <u>11</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>11</u> <u>7</u> <u>8</u> <u>11</u> <u>7</u> <u>8</u> <u>11</u> <u>7</u> <u>13</u> <u>13</u> <u>6</u> <u>11</u> <u>7</u> <u>13</u> <u>13</u> <u>6</u> <u>11</u> <u>7</u> <u>13</u> <u>13</u> <u>14</u> <u>14</u> <u>14</u> <u>14</u> <u>14</u> <u>14</u> <u>14</u> <u>15</u> <u>12</u> <u>75</u> <u>13</u> <u>13</u> <u>13</u> <u>14</u> <u>14</u> <u>14</u> <u>14</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u> <u>15</u>	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	2 4 20 20 Mese. Pta. Meas. Pta. Uardian 4 s d(parma)/st = 300 5 Viacesty (mPa a) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
ternat smber of Outa Points; me Setting: beauring Profile: hear Rate <u>Meas Pts Sne</u> 1 2 2 2 3 4 4 2 5 5 6 7 1 9 1 9 1 1 9 1 1 1 9 1 1 2 7 1 3 6 1 1 2 7 1 3 6 1 1 4 1 4 1 5 2 2 1 5 5 5 6 1 1 1 9 1 1 1 9 1 1 2 1 1 1 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	4 20 20 Mese, Pta, Mese, Pta, Mese, Pta, Durason 4 s d(parma)/st = 300 5 Viacosky (mPa s) 750 760 760 806 806 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Amper of Quite Pounte; the Setting; baskunng Profile; hear Rate 4 2 3 4 5 6 7 11 2 3 4 5 6 7 11 8 11 9 11 12 7 13 6 14 15 2	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	20 20 Mese. Pts. Mese. Pts. Location 4 s d(parma)48 € 300 5 Viaces/y (mPa e) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Amber of Dula Points; me Setting: oasuring Profile; shear Pata 1 2 3 4 5 6 7 10 9 11 8 10 11 9 12 7 13 6 14 15 2	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	20 20 Mese. Pts. Mese. Pts. Location 4 s d(parma)48 € 300 5 Viaces/y (mPa e) 760 760 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
me Setting: oasunng Profile: Shear Rate Meas Pta She 1 2 2 3 4 2 5 5 6 1 7 1 8 1 9 1 10 1 11 8 12 7 13 6 74 4 15 2 16 7	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	20 Meae. Pts. Meas. Pt. Duration 4 s d(garma)/st ∈ 300 5 Vecosity (mPa a) 760 760 803 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Aleast Pos Srea 1 2 2 2 3 4 5 5 6 1 7 1 9 1 10 1 11 1 12 7 13 6 14 4 15 2 16 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	ideas. PL Duation 4 s d(pamma)4t = 300 5 Viscosky (mPa s) 760 760 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
basung Profile: Inter Rate Meas Pts Sns. 1 2 2 3 4 4 5 5 5 7 1 9 10 11 10 11 11 9 12 17 13 6 7 13 10 11 13 6 12 17 13 13 13 13 12 15 12 17 13 13 12 17 13 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	ideas. PL Duation 4 s d(pamma)4t = 300 5 Viscosky (mPa s) 760 760 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Alease Prace Stress Stress <thstress< th=""> <thstres< th=""> Stre</thstres<></thstress<>	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	d(jamma)/dt = 300 5 Viscosity (mPais) 760 763 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Mean Pate Stres Stres 1 2 2 3 2 2 4 2 2 5 2 2 6 1 2 7 1 2 8 1 2 9 1 1 9 1 1 10 1 1 11 9 1 12 7 1 13 6 1 14 4 1 15 2 2 16 1 5	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	Viaccisky (mPa-s) 760 808 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
Meas Stras Stras 1 1 2 2 2 2 3 4 4 5 6 1 7 1 2 8 1 1 9 1 1 9 1 1 10 1 1 11 8 1 12 7 1 13 0 1 14 4 1 15 2 1 16 1 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	Viaccisky (mPa-s) 760 808 808 842	Mass Solids Concentration [Nim] 732 732 732	25.5 25.5 25.5 25.5
1 1 2 2 3 2 4 2 5 5 6 7 9 1 10 1 11 6 12 7 13 6 74 6 15 2 16 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	(mPa s) 760 763 808 842	732 732 732	25.5 25.5 25.5 25.5
1 1 2 2 3 2 4 2 5 5 6 7 9 1 10 1 11 6 12 7 13 6 74 6 15 2 16 1	1/5) 247 231 216 200 185 169	1/2 a) 187 178 174 168 160	(mPa s) 760 763 808 842	732 732 732	25.5 25.5 25.5 25.5
1 2 3 4 5 5 6 7 8 9 10 1 11 8 12 7 13 6 14 4 15 2 16 1	247 231 216 200 185 169	187 178 174 168 160	760 763 806 842	732 732 732	25.5 25.5 25.6
2 2 2 3 4 4 6 5 7 8 1 9 1 10 1 11 9 12 7 13 6 14 4 15 2 16 7	231 216 200 185 169	178 174 168 160	763 808 842	732	25.5
3 2 4 2 5 5 6 7 8 10 11 8 12 7 13 6 14 4 15 2 16 1	216 200 185 189	174 168 160	808	73.2	25.6
4 2 5 7 1 7 1 10 1 11 8 12 7 13 6 14 4 15 2 16 7	200 185 169	168	842		
5 6 7 1 8 1 9 1 10 1 11 8 12 7 13 6 14 6 15 2 16 1	185	160			
6 7 8 10 11 12 7 13 6 14 15 2 16 15	169				25.5
7 1 B 1 10 1 11 1 12 7 13 0 14 4 75 2 16 1	189			73.2	25.5 25.5
B 9 10 11 12 7 13 6 14 15 2 16 1 1 1 1 1 1 1 1 1 1 1 1 1		156	921	73.2	25.6
9 1 10 1 11 8 12 7 13 6 14 4 15 2 16 1	153	146	953	73.2	25.5
10 11 11 8 12 7 13 6 14 6 15 2 16 7	138	142	1,000	73.2	25.5
11 8 12 7 13 6 14 4 15 2 16 1	122	132	1,030	73.2	25.5
12 7 13 6 14 4 15 2 16 1	107	126	1,130	73.2	25.5
13 5 14 4 15 2 16 1	91.4	118	1,290	73.2	25.5
13 5 14 4 15 2 16 1	59	109	1,430	73.2	25.5
15 2 16 1	9.9	101	1,630	73.2	25.5
16 1	42	91.5	2.070	73.2	25.5
16 1	9.4	78.1	2,650	73.2	25.5
	4.1	66.9	4,750	73.2	25.5
			1 2000	1.1.1	4.41.9
500 - 400 -					


PATERSON & COOKE CONSULTING ENGINEERS (PTY) LTD

Shear Rale, (s²)

ø

wher of Intervale: siteston: iste: saturement Data: saturement Time: saturement Time: saturing Onstants: IT: It: It: It: It: It: It: It: It			5034-006 1 6 4 US200/32 V2.30 21001 WC1+ SN670534 2005/02/04 04:53 PM 22/3-01H 0.28306506 21.5 2.2253 2 2 4	1513-33024	
ratar: tarks: loabon: loabon: loabon: surement Data: surement Trne; surement Trne; surement Trne; suiting Constants: r; st balay Tima (s): saurement Type: val: tober of Data Ponts: e Setting suring Profile: ear Rate			HM 4 US200/32 V2:30 2100 MC1+ SN671554 2005/02/04 A/:53 PM 2/23-01H 0.28398508 21:5 2.253 2	1513-33024	
marka; marka; index on: koaton: koa			4 US200/32 V2:30 21001 MC1+ SN679534 2005/02/04 04:53 PM Z 2/2-CIN 0.28396508 21:5 2.253 2	1513-33024	
vice: asurement Data: asurement Time: asuring Systems: culating Constants: sr: se: ast Delay Time (s): escurement Type: mat: mat: mat: beaurement Type: mat: beaurement points: rear Rate			U\$200/32 V2:30 21001 MC1+ 5N678534 2005/02/04 04:53 PM 2/2/3-OIH 0.28396508 21:5 2.253 2	1513-33024	
mber of Intervale: office: inter- assumment Data: assumment Time; assuring Systema: culating Constants: IT: set: assurement Type: inval: mber of Data Points: ve Sotting assuring Profile: tear Rate			U\$200/32 V2:30 21001 MC1+ 5N678534 2005/02/04 04:53 PM 2/2/3-OIH 0.28396508 21:5 2.253 2	1513-33024	
ploaton: vioa: seurement Data: seurement Time; asuring Systema: iculating Constants: sr: sat: sat: set Data Time (s): sesamment Type: smat: mber of Data Ponts: re Sotting: asuring Profile: near Rate			U\$200/32 V2:30 21001 MC1+ 5N678534 2005/02/04 04:53 PM 2/2/3-OIH 0.28396508 21:5 2.253 2	1513-33024	
vice: lasurement Turn; lasurement Turn; lasuring Systems; foulating Constants; ar; ar; ar; ar; at Delay Time (s); lessurement Type; arval; mber of Data Points; ne Setting; lasuring Profile; hear Rate			MC1+ SN679534 20050204 04:53 PM 22/3-DIH 0.28396508 21.5 2.253 2		
assurement Data: seurement Tirre: assuring Systema: doubling Constants: se: se: tart Delay Tirne (s): lessarement Type: enal: mber of Data Points: ne Sotting ussuring Profile: hear Rate			2005/02/04 04:53 PM 22/3-CIN 0.28396508 21:5 2.253 2		
assurement Time: assuring Systems: deuteing Constants: ter: ter: ter: Delay Time (s): feasurement Type: anval: mber of Data Ponts: ne Setting basuring Profile: near Rate			04:53 PM 2 2/3-OIN 0.28396508 21.5 2 253 2		
Assuring Systems: doubling Constants: Set text text Delay Time (a): leasurement Type: envel: envel: mber of Deta Ponts: ne Setting basuring Profile: hear Rate			2 2/3-OIN 0 28396508 21.5 2 2553 2		
Iculating Constants: Ser Ser Ser Sert Delay Time (s): Resaurement Type: enval: imber of Data Points: ne Setting basuring Profile: hear Rate			0.28396508 21.5 2.253 2		
er: ea: tast Delay Time (s): leasurement Type: arval: mber of Data Points: he Setting: asuring Profile: hear Rate			21.5 2.253 2		
er: ea: tast Delay Time (s): leasurement Type: arval: mber of Data Points: he Setting: asuring Profile: hear Rate			21.5 2253 2		
ise: tart Delay Time (s): lessurement Type: erwal: mber of Data Points: ne Setting: lesuring Profile: hear Rale			21.5 2253 2		
art Delay Time (s): leasurement Type: erval: mber of Data Points: ne Setting leasuring Profile: hear Rate			2 253		
leasurement Type: arvai: mber of Data Points: ne Setting assuring Profile: hear Raie			2		
inval: mber of Data Points: ve Setting asuring Profile: hear Raile					
mber of Data Points: ne Setting aburting Profile: near Rate					
ne Setting: Issuring Profile: Incar Rate					
esuring Profile: hear Rate			20		
esuring Profile: hear Rate					
hear Raie			20 Meas. Pts.		
hear Rale			Meas. Pt. Duration 4 a		
Minas Pis			d(gern≈e)/di = 300 5	5 1/s Lin, Continuous Ramp	
	Stear Rate	Shear Stress	Viscosity	Mass Solids Concentration	Temperature
	{3/6}	(Pa)	(mPa-a)	[%w]	(°C)
1	246	148	599	72.4	25.8
	232	138	568	72.4	25.8
2					63.0
3	216	137	634	724	25.8
4	200	132	662	724	(0.0
5	185	128	680	72.4	25.8
6	189	122	722	72.4	25.8
7	154	114	739	124	25.8
8	138	110	800	72.4	25.8
9	122	104	856	72.4	25.6
10	107	99.1	922	72.4	25.6
11	91.5	92.8	1.010	72.4	25,8
12	76	85.4	1,120	72.4	25.8
13	60.6	79.7	1,320	72.4	25.8
13	44.7	72.3	1,610	72.4	25.6
15	29.1	61.7	2.120	72.4	25.8
					23.6
76	:42	\$1,5	3,630	72.4	43.0
600	-				

200 -		¢ ¢ ¢	o Ó	0 0 0	• • •	• • • •
420						
600						
	16	14.1	34,3	2.440	68.4	25.0
_	14	44.8	48.8	1,000	68.4	26.9
	12 13	75.9 60.6	\$5.4 \$2.5	730	68.4	25.9
	10	107 91.5	64.1 61.1	596	68.4	25.9
	8	138	71,7	<u>. 519</u> 541	68.4	25.9 25.9
	7	153	72.1	471	68.4	25.9
	5 6	185 169	79.6 77.7	430 460	68.4	25.9 23.0
	3 4	216 200	85 83	<u>354</u> 416	68.4 68.4	25.9
	2	231	86.7	374	68.4	25.9
	1	[1/8] 246	[Pa] 93.2	[mPas] 378	[%=] 68.4	(°C) 23.9
heer Ra		Stear Rate	Stear Stress	digemme)/dl = 300	51/s Lin, Continuous Ramp Mass Solids Concentr	
	Profile:			Meas. Pt. Duration 4	9	
ne Setty	00:			20 Meas. Pts.		
erval: mber of	Data Ponta:			4 20		
leasure	ay Time (s): ment Type:			2.227 2		
67. 55.				0.28396508		
	g Constants;			4 04044745		
asurem	systems:			05:17 PM 22/3-OIN		
	nent Oele:			MC1+ SN679634 2005/02/04		
VICE:	f Intervals:			4 U\$200/32 V2.30 210	01513-33004	
plication woe:				1.000		
marks: mber of plication vice:				5.6.0		
plication woe:				5034-007 1 7 144		

ame:					
imple:			Heame-001.1		
imple: perator:			1 015,8		
perator: Interfet:			77.618		
imber of Intervels;			4		
umper or intervels; polication;			4 US200/32 V2 30 210015	113-33034	
pproprior.			MC1+ SN679534	110-00064	
leasurement Date:			2005/02/08		
leasurement Time:			11:15 AM		
leasuring Systema:			2 2/3-DIN		
alcutating Constants:					
Con			028396508		
Ose:			21.5		
Start Delay Time [s]:			1.786		
Measurement Type:			2		
terval:			4		
amber of Data Points:			20		
me Setting:			20 Maas. Pts.		
			Neas, Pt. Duration 4 s		
Nauring Profile:					
Near Rate			d(gamma)/dt = 300 5 '	1/s Lin, Continuous Ramp	
Flags Dec T	Chase Onto	Chan-barre	1 100000	Advention of the Advent	*
Mega Pts	Shear Rate	Shear Stress	Viscosky	Mass Solds Concentration	Temperature
4	247	(Pa) 643	(mPais) 2,610	[%w] 78.3	['0]
2		639	2,590	78.3	26
3	231	635	2,760	78.3	26
4	200	622	3,110	783	28
5	185	607	3,290	783	23
6	169	594	3,510	78.3	26
7	153	577	3,770	78.3	26
6	138	562	4,070	78.3	28
9	123	537	4,370	78.3	26
10	107	\$17	4,820	78.3	26
d e	91.4	489	5.360	78.3	26
12	75.8	460	8,070	78.3	28
15	60.3	432	7.170	78.3	26
14	44.6	392	8.800	78.3	26
\$5	29.3	348	11,900	78.3	26
16	13.9	284	21,100	78.3 78.3	26
				78.3	26
18. 17	- <u>159</u> 492	284	21,100	78.3 78.5 78.5	26
16 17 000 500 500 000 000 000 000 000 000 00	- <u>159</u> 492	294 250 •	21,100 45,000 6	78.3 78.5 78.5	26 28 26
16 17 700 500 500 200 \$	- <u>159</u> 492	294 250 •	21,100 45,000 6	78.3 78.5 78.5	26 28 28

Page D.10 March 2005

ta Series Information						
me: mole.			Haame-002 1			
TD-B. N'BOF			2			
harks:			8 P-007			
mber of Intervals:			4			
vication			US200/32 V2.30 210015	13-39024		
HOE:			MC1+ \$N679534			
asurement Date: asurement Time:			2005/02/08			
asurement Time: asuring Systems:			12:05 PM 2:2/3-DIN			
A A A A A A A A A A A A A A A A A A A			1. 41 P. 6414			
cutaling Constants						
\$T.			0.28396508			
540			21.5			
art Delay Time (s): easurement Type:			2.085			
eval.			4			
mber of Data Points			20			
e Setting			20 Meas, Pis,			
asuring Profile:			Meas. Pl. Curation 4 a			
isar Rate			d(gamma)/rt = 300 \$ 1	is Lin, Contourus Rarzo		
			of Branninker and the a			
Meas. Pts.	Shear Rate	Shear Shess	Vescosity	Mass Solds Concentration		
	[1/6]	(Pa)	(mPa-s)	(SH)	('0)	
1	246	473 464	1.920	77.8 77.8	26.6	
- 2	231	459	2,010	77.8	25.4	
4	200	450	2,250	77 8	28.4	
5	:85	433	2,340	77 8	28.4	
6	109	425	2.510	77.8	26.4	
7	153	409	2,570	77.8	26.4	
8	138	394 379	2.860	77.8 77.8	26.4	
10	106	3/3/	3,100	77.8	28.4	
11	91.6	341	3,720	77.8	28.4	
12	76.1	321	4,220	77.8	28.4	
10	607	300	6,940	77.8	28.4	
16	44.7	273	6,110 8,300	77 8 77.8	26.4	
16	14	204	54 600	77.8	25.4	
17	4.98	166	33,200	77.8	26.4	
730						
600 - 500 400 3300 2233 • •	۰	• •	¢	\$ \$	÷ ° °	
100 -						

The import for the second s						
No. No. abay 3 abay 3 abay 4 bay 5 bay	ta Senes Informatos					
Hadi Tabo di Angela Sala de la conservação de l	101			Hoame-003 1		
radia: had we of investige in the investige in the investige investige investige in the investige investi						
heb of functionals 4 Material State USD02 V3 00 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 210 / 50 20 / 50 / 5				HM		
Kausen: ter en US 55057634 3505764 3505764 3019 PM 22.20.00 USON2 V2.00 200513.35024 MUT 550584 22.20.00 USON2 V2.00 200513.35024 1019 PM 22.20.00 USON2 V2.00 2005 0.19 PM 20.19 PM						
Not Mail Subgradie Subgradie 2232000 Subgradie 2232000 Subgradie 2232000 Subgradie 2232000 Subgradie 2232000 Subgradie 2232000 Subgradie 23325000 Subgradie 200 Subgradie 200 Subgradie 200 Subgradie 200 Subgradie 2000 Subi						
Bauman Date: Bauman Date: Bauman Stream The State St	Foation:			US200/32 V2.30 210015	13-33024	
Buinnest Time Buinnest Time Buinnest Time Properties and Okean Proteines Properties	VCP.			MC1+ SN679634		
skummel Time undrog Systems: 223-200 Autor Systems: 23305509 255 2340 2400 255 256 257 257 257 257 257 257 257 257	asurement Date:					
Audrig Constants: 2.23-C/N Data page 1.2335608 ard Desy Time [c] 1.848 sourcement Type 2 assumment Type 2	asurement Time.					
up 2235608 and Desp Time (2) 1068 bor Outs Points 3 a Setting 30 a Setting 30 a Rein	asuring Systems:					
μ 21.5 sourcement Type 2 vol: 3 estrong 20 e	culating Constants:			0.0000550.0		
and Despression Time (c) is a subservent Type						
segurents Type her doub Ports so Stern surge Polits ar Refs The Total Point ar Refs Total Point Total						
Note: A Box Columbia 30 a stang 30 stang Stang stang <						
ber of Data Points 20 # Setting: 30 Mais Points harry profile: control of the set Stress in the se						
Bang Bang Bang Bang Bang Bang Bang Bang						
Base RD Draiter 3 market from the second se	unde de foliete e de elle			20		
Base RD Draiter 3 market from the second se	a Setting			20 Marsa Phy		
ar Kin Mas. Pix 1 246 246 246 246 246 246 246 246	a decia (B)					
Mess. Pis. Shear face Shear face Yisodriy MassSolds Concentration Terporating 1 2464 346 1/191 772 26.8 772 26.8 2 231 335 1440 772 26.8 772 26.8 4 200 325 15.80 772 26.8 76.8 5 165 314 100 7772 26.8 772 26.8 6 169 307 15.80 772 26.8 772 26.8 6 169 307 15.0 772 26.8 772 26.8 9 152 22.9 26.00 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8 772 26.8<				dianome 107 a 300 5 1	Un Lin Continuo o Ramo	
1 246 772 764 772 765 2 231 335 1,450 772 26.8 3 216 335 1,450 772 26.8 4 200 325 1,530 772 26.8 4 200 326 1,530 772 26.8 5 165 314 100 772 26.8 6 169 307 1,520 772 26.8 6 169 312 2273 24.0 772 26.8 9 132 2273 2,440 772 26.8 13 97.8 244 2,460 772 26.8 13 97.8 244 2,460 772 26.8 13 97.8 244 2,460 772 26.8 13 64.7 26.9 3,607 772 26.7 13 64.7 1607 3,607 772		Change Dates	Chang Church			a I Tanaataa
1 246 346 1,400 77.2 26.8. 2 231 335 1,540 77.2 26.8. 3 216 335 1,540 77.2 26.8. 4 200 3265 1,550 77.2 26.8. 5 185 31.4 1100 77.2 26.8. 6 169 307 1,520 77.2 26.8. 7 133 293 1.910 77.2 26.8. 9 122 27.3 2,240 77.2 26.8. 9 122 27.3 2,240 77.2 26.8. 11 91.6 254 2.170 77.2 26.8. 12 81.8 242 2.460 77.2 26.8. 13 91.6 254 2.170 77.2 26.8. 14 44.8 1.00 4.40 77.72 26.8. 13 64.2 1.00 3.400 77.2 26.8. 14 44.8 1.00 3.400 77.2 26.7. 15 29.2 10.3 5.400 77.2 26.7. 14 44.8 1.00 77.2 26.7.	rendition, F Iab.					
2 2 231 346 1440 772 268 4 200 336 1540 772 268 5 165 314 1100 772 288 6 159 347 150 772 288 6 159 347 150 772 288 6 158 242 260 772 288 9 122 273 2740 772 288 9 122 273 2740 772 288 11 97.6 229 240 772 288 12 818 242 2,050 772 288 13 97.6 254 2.770 772 288 14 44.8 140 4772 288 13 44.8 140 772 288 14 44.8 140 772 288 15 92 772 288 13 44.8 140 772 288 13 44.8 140 772 288 14 44.8 140 772 288 15 92 772 288 14 44.8 140 772 288 15 92 772 288 16 97 280 772 772 288 17 498 121 28300 772 88 17 498 121 28300 772 88 10 972 88 10 976 98 10 977		246	24		39.0	1.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		540			
4 200 235 1543 772 265 5 155 314 1700 772 265 6 159 397 150 772 265 8 134 283 1510 772 265 8 138 282 260 772 265 9 122 273 2740 772 265 9 122 273 2740 772 265 9 122 273 2740 772 265 9 122 273 2740 772 265 11 97.6 254 2.70 770 772 265 12 818 242 2.760 772 265 13 407 200 2.513 772 265 13 448 146 440 772 265 14 448 147 10,600 772 265 15 99.2 133 147 10,600 772 26.7 14 98 121 26,300 772 26.8 00 9 138 147 10,600 772 26.8 <t< td=""><td></td><td>431</td><td>3,30</td><td></td><td>112</td><td>40.4</td></t<>		431	3,30		112	40.4
5 185 314 1700 772 26.8 6 169.0 307 17.200 772 26.8 7 153 283 1910 772 26.8 9 122 273 27.400 772 26.8 9 122 273 27.400 772 26.8 11 97.6 254 2.700 772 26.8 12 61.8 242 2.400 772 26.8 13 50.7 220 3.830 772 26.8 14 44.8 1060 4.400 772 26.8 13 26.7 270 3.830 777 26.8 14 44.8 1060 4.400 772 26.8 13 29.2 173 5.200 772 26.7 14 44.8 1060 772 26.7 15 29.2 173 5.200 772 26.7 14 44.8 1060 772 26.7 15 29.2 173 5.200 772 26.7 16 29.2 10.900 772 26.3 17 4.98 121				1,540		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					772 99 A	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	*					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
11 91.6 254 2.170 77.2 28.8 12 8116 242 2.2600 77.2 28.8 13 40.7 220 3.450 77.2 28.7 14 44.8 159 4.440 77.2 28.7 15 29.2 7.73 5.420 77.2 28.7 15 29.2 7.73 5.420 77.2 28.7 15 29.2 7.73 5.420 77.2 28.7 17 4.88 159 4.440 77.2 28.7 17 4.88 121 28.300 77.2 28.8 100 77.2 28.8 121 28.300 77.2 28.8 100				2,240		26.8
12 818 242 2,660 772 26.8 13 607 220 3,830 772 26.7 14 44.8 109 4,440 772 26.7 15 72.2 26.7 20.9 20.9 20.9 15 72.2 26.7 20.7 20.9 20.9 15 72.2 26.7 20.7 20.9 20.9 15 72.2 26.7 20.7 20.9 20.9 15 72.2 26.7 20.7 20.9 20.9 160 77.2 20.8 20.9 20.9 20.9 100 9.9 9.9 9.9 9.9 20.9 100 9.9 9.9 9.9 9.9 9.9 100 9.9 9.9 9.9 9.9 9.9 100 9.9 9.9 9.9 9.9 9.9 100 9.9 9.9 9.9 9.9 9.9 100 9.9 9.9 9.9 9.9 9.9 100 9.9 9.9 9.9 9.9 9.9 100 9.9 9.9 9.9 9.9 9.9 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
33. 60.7 270 3.830 772 26.7 34. 44.8 150 44.40 772 26.7 35. 79.2 15. 20.7 20.7 39. 13.8 147 10.600 772 26.7 77 4.88 121 24.000 772 26.7 77 4.88 121 24.000 772 26.7						
34 44.8 150 4.440 772 26.7 35 792 13.8 147 10.600 772 26.7 37 4.88 121 24.000 772 26.7					77.2	8.65
15 292 173 5/20 172 20.7 17 4/26 121 24,000 77.2 20.8						
33 13 B 147 10,600 77.2 26.7 17 4,96 121 24,000 77.2 28.3		44.5				
					77.2	
		29.2	123	5,120	97.2	28.7
	15	29.2	123	5,120 10,600	77.2 77.2	26.7
	15	29.2	123	5,120 10,600	77.2 77.2	26.7
	75	29.2	123	5,120 10,600	77.2 77.2	26.7
	76 12 700	29.2	123	5,120 10,600	77.2 77.2	26.7
	76 17 17 600 - 500 -	29.2	123	5,120 10,600	77.2 77.2	26.7
	76 17 17 600 - 500 -	29.2	123	5,120 10,600	772 772 772	200 f 200 f 200 J 200 J
	76 17 17 000 000 000	29.2	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
* *	16 17 17 100 100	29.2	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
¢ ¢	15 17 17 1 100 1 100 1	29.2 13.8 4.88	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
0 0	100 - 100 -	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
0	16 17 17 100 100 100 100 100 100	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
0	19 19 19 000 000 000 000 000 000	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
	×6 17 17 000 - 500 - 50	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
	26 12 12 000 - 000 - 000- 000 - 000 - 0000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 00	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
	76 17 17 000 - 200	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
	×6 17 17 000 - 500 - 50	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J
	76 77 77 600 600 600 600 600 600 600 600	29.2 13.8 4.98	173 147 121	\$ 120 10,600 24,000	772 772 772	200 f 200 f 200 J 200 J

npia:			Heame-004.1		
erator:			HM		
marks:					
mber of Intervals:			4	5-0 0000 -	
ol-cation:			U\$200/32 V2.30 21001 MC1+ SN579534	1513-33024	
vice: acurement Date:			2006/02/08		
asurement Time:			01:55 PM		
eauring Systems:			2 2/3-0IN		
ioulating Constants: sr:			0.28396508		
97. 55.			21.5		
tart Delay Time [s]:			1,719		
easurement Type:			2		
ervalt.			4		
mber of Oats Points:			30		
te Setting:			20 Meas. Pts.		
			Meas. Pt. Duration 4 s.		
asunng Profes:					
near Rate			digamma)/dt = 300 5	1/s Un, Continuous Ramp	
Meas Pts	Shear Rate	Shear Stress	Viscosity	Mass Solds Concentration	Temperature
I	[1/6]	(Pa)	(mPa s)	1 [%w]	[°]
1 1	247	224	909	76.1	26.9
2	231	214	923	76.1	25.9
3	216	211 206	979 1.030	76.1	26.9
5	185	198	1,070	76.1	26.9
8	160	192	1,140	76.1	26.9
7	154	182	1,130	76.1	26.9
8	138	175	1,270	76.1	26.9
9	122	168	1,370	76.1	26.9
11	95	150	1,640	76.1	26.9
12	76.2	137	1.800	76.5	26.9
13	60 7	128	2,110	76.1	26.9
14	44.8	135	2,530	76.1	26.9
75	29.3	101	3,430	76.1	28.9
10	5	71.2	14,200	76.1	26.9
790					
500 - 500 - 500 -					
600	Ç. P	۵	۰	• • • •	• • *

mpiet			Hearne-005 1 §		
erator:			HM		
marks:					
mber of intervals: piceton:			4 US200/32 V2.30 210015	13.93034	
vice:			MC1+ \$N879534	12-220(04	
asurement Date:			2005/02/08		
สรมกรกรถน โกษรา			02:34 PM		
asunng Systems:			Z 2/3-DIN		
culating Constants:					
647:			0.28396508		
48. and Dates Trace (c)			21.5 1.799		
tart Delay Time (s) easurement Type:			2		
erval;			4		
mber of Dela Points.			20		
e Setting:			20 Meas, Pts.		
			Ifeas. PL Duration 4 a		
aduring Profile:					
hear Rate			ti(gamma)/dl = 300 5 1	Is Lin, Continuous Ramp	
Meas. Pts.	Shear Rate	Shear Stress	Viscosity	Mass Solids Concentrate	n Temperature
	[1/4]	(Pa)	[mPa s]	(%w)	[°C]
1	246	162	658	75.2	26.6
2 3	231	153	665 707	75.2	26.6
4	200	147	737	75.2	26.8
5	185	141	764	75.2	26.8
8 7	169	138	819	75.2	26.8
8	153	131 126	851 914	75.2	26.8
9	122	121	992	752	28.8
10	107	112	1,050	752	26.8
11	91.6 76	106	1,160	75.2	26.8
12	60.7	99.0	1,540	752	26.8
14	44.9	85,4	1,300	75.2	26.8
5	29.2	71.5	2,450	752	26.8
16	13.8	59.3 49.9	4,310	75.2	26.8
	4.99	49.9	10.000	1 /3.4	20,5
720					
600 600 490 200					
600 500 400	, • •	۰ ۰	۰ ۰	۰ ۰ ۴	¢ ¢ 0

Gahcho Kue Ore Dressing Study: Slurry Tests Using 5034 and Hearne Ore Document DGK-571.R03 Rev 0 $\,$

Page D.14 March 2005

npie.			Heame-COS 1 6		
windor.			HM		
marks:					
mber of intervals:			4		
pication			U\$200/32 V2 30 21001	513-33024	
exice: easurement Date:			MC1+ SN679534 2005/02/08		
easurement Time:			02:56 PM		
easuring Systems:			Z 2/3-DIN		
alculating Constants.					
Dur.			0 28396503		
lea.			21.8		
Start Delay Time [s]: Assourcement Type:			1.835		
caeval:			4		
umber of Data Points:			20		
me Socing:			20 Meas. Pts.		
			Veas. Pt. Duration 4 s		
casuring Profile: Thear Rate			d(gamma)/dt = 300 5	1/s Lin, Continuous Ramp	
Maas. Pos.	Shear Rice	Shear Stress	1 Viscosity	Mass Solds Concentration	lemperature
	1/8)	Pa	[rePa-a]	[%w]	[10]
1	247	128	\$17	73.3	26.8
2	232	122	\$25 \$52	73.3	26.8
3	218 200	119	357	73.3	26.8
5	185	113	613	73.3	26.7
6	169	110	651	73.3	26.7
7	154	102	651	73.3	26.7
8	138 122	102	738	73.3	26.7
10	122	94.4	852	73.3	26.7
13	91.6	85.8	937	73.3	26.7
12	76	79	1,040	79.3	26.7
13	60.8	73.3	1.210	73.3	26.8
14	44.7	67.6 54.3	1,610	73.3	26.7
10	14.2	47.8	3,350	73.3	26.7
17	6	38.1	7,830	79.3	26.7
700 +					
933					
500 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					
	\$ \$	o • •	۰ ۵	\$ \$ \$ \$	\$ \$ \$

APPENDIX E - CLAY BEHAVIOURAL ANALYSIS

Paterson & Cooke Consulting Engineers (Pty) Ltd

Clay Behavioural Analysis of Gacho Kue Ore Samples

Report Number: DCA-GAK-8004.R01 Rev 01

11 March 2005

PO 80x 3138, Creste, 2118, Johennesburg, South Africe Tel: +27 (011) 792 1589, Fax: +27 (011) 792 1589 Email: andrew@pt-cs.co.za, Email: Tredre@pt-cs.co.zo, UR1: www.pt-cs.co.zo

SUMMARY

This report details the results of the Clay Behavioural Analysis of both the Hearne and 5034 ore bodies for the proposed Gacho Kue mine in Canada.

Both Gacho Kue ore bodies contain significant amounts of Smectite clay. The clay (-2µm) size fraction in particular, consists of mainly Smectite clay. The natural state of the Smectite clays, however appears to be highly calcium exchanged in the dry *in situ* state before contact with the process water. After contact with calcium rich simulated process waters, the clays became slightly more calcium exchanged. It is expected that colloidally unstable (settling) slurries would be generated from these ore-water combinations at the natural pH condition, through restriction of the swelling and dispersion of the Smectite clays.

Colloidal analysis of the simulated slurries confirmed that the natural state of the Gacho Kue materials fall within a favourable colloidally unstable (settling) condition extending across the entire pH range. Good slurry flocculation and settling characteristics are expected.

TERMS OF REFERENCE

This work has been conducted by Paterson & Cooke Consulting Scientists (Pty) Ltd for Paterson & Cooke Consulting Engineers (Pty) Ltd under PCCE project DGK-571. The proposal for this work was presented in PCCS Proposal DCA-GAK-8004.P01 dated 27/01/2005.

CONTENTS

SUMMARY
TERMS OF REFERENCE
CONTENTS
DOCUMENT DISTRIBUTION AND REVISION HISTORY
1. INTRODUCTION
2. MATERIALS
3. TEST WORK
4. RESULTS 3 4.1 Dry in situ Ore Characteristics 3 4.1.1 Mineral analysis 3 4.1.2 Exchangeable cation analysis 4 4.2 Wet Process Ore Characteristics 5 4.2.1 Process Water quality 5 4.2.2 Exchangeable cation analysis 5 4.2.3 Slurry colloidal analysis 6
5. DISCUSSION OF RESULTS
6. CONLCUSIONS AND RECOMMENDATIONS
Appendix A - Procedures for generation of simulated process water and slurry Al
Appendix B – Simulated process water quality data

DOCUMENT DISTRIBUTION AND REVISION HISTORY

Rev	Date	Distribution / Revisions	Prepared	Reviewed	Client Approval
1	11/03/2005	Issued to Mr. Angus Paterson of PCCE	FD	VLA	

PATERSON & COOKE CONSULTING SCIENTISTS (PTY) LTD

I. INTRODUCTION

De Beers Canada is currently conducting an ore dressing studies campaign on the Gacho Kue ore bodies as part of a pre-feasibility study of the proposed new Gacho Kue mine in Canada.

As part of the ore dressing studies campaign, Paterson & Cooke Consulting Scientists (Pty) Ltd conducted a Clay Behavioural Analysis of the Gacho Kue ore bodies, in order to provide the client with important additional information to develop a full understanding of future process behaviour.

The Clay Behavioural Analysis consists of the following two test work packages, aimed at determining the behavioural state of the clay minerals before and after contact with the process water for the prediction of future process behaviour:

- Dry in situ Ore Characteristics
- Wet Process Ore Characteristics

2. <u>MATERIALS</u>

The following samples were received:

- 1 kg of dry crushed drill core from the Hearne ore body
- 1 kg of dry crushed drill core from the 5034 ore body
- 1 litre of de-ionised water in contact with the Hearne ore

The Clay Behavioural Analysis was conducted on the crushed drill core material (-1.5 mm) from both the Hearne and 5034 ore bodies before and after contact with a simulated process water.

Since no actual raw or process water were available, a simulated process water was generated for each ore type using tap water from the Rand Water Board, according to the procedure in Appendix A.

A simulated slurry sample was generated for each ore type out of the dry ore and simulated process water samples, according to the procedure in Appendix A.

<u>TEST WORK</u>

3.1 Dry in situ Ore Characteristics

The Dry *in situ* Ore Characteristics Work Package consists of the following suite of tests designed to determine the total and clay (-2 μ m) mineral fractions within the ore and the cation exchanged nature of the clays in the dry *in situ* state before contact with the process water:

- Total mineral analysis
- Clay mineral analysis
- Exchangeable cation analysis
- Cation exchange capacity (CEC)
- pH of saturated paste extract

The total and clay mineral analyses can be described as semi-quantitative XRD mineralogical analyses on respectively the -1.5 mm + 2 μ m fraction and the -2 μ m fraction of the ore samples, and determines the relative proportions of clay and other minerals in the ore body.

The exchangeable cation analysis determines the ion exchanged nature of the clay, which in turn indicates its colloidal characteristics when in contact with the process water. The respective concentrations of the major exchangeable cations (i.e. Ca^{2+} , Mg^{2+} , Na^+ , K^+) are determined through an ammonium acetate wash of the clay particles. The CEC is defined as the total concentration of exchangeable cations on the clay surface. A high CEC indicates an increased ability of the clay to change its ion exchanged nature upon contact with the process water.

The pH of the saturated paste extract can be described as the pH of the solids when just saturated with distilled water.

3.2 Wet Process Ore Characteristics

The Wet Process Ore Characteristics Work Package consists of the following suite of tests designed to determine the process water quality, if and how the cation exchanged nature of the clays are altered after contact with the process water and the colloidal characteristics of the subsequent slurry:

- Process water analysis
- Exchangeable cation analysis
- Cation exchange capacity (CEC)
- Slurry colloidal analysis
- Particle size distribution analysis

The process water analysis can be described as a chemical analysis of the major cations and anions in solution and other associated properties such as pH and conductivity in order to determine the quality of the process water. The quality of the process water could significantly affect the colloidal characteristics of clay particles in suspension through its impact on the ion exchanged nature of the clay.

The slurry colloidal analysis provides an indication of the colloidal characteristics of the slurry across a range of pH values. The slurry colloidal analysis enables the identification of optimum clay behavioural zones for specific process applications.

The particle size distribution is determined in a Malvern Particle Size Analyzer and indicates the size of the fines fraction (-20 μ m) primarily responsible for absorbing most of the flocculant.

4. <u>RESULTS</u>

4.1 Dry in situ Ore Characteristics

4.1.1 Mineral analysis

Figure 1 and Figure 2 respectively presents the results of the total mineral analysis and clay (-2µm) mineral analysis of both the Hearne and 5034 ore bodies.

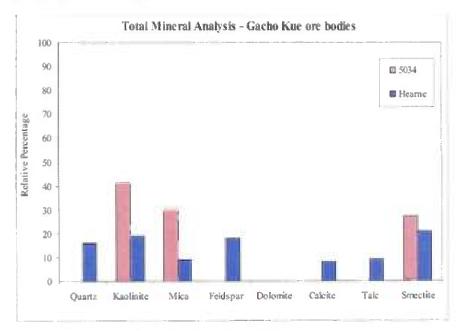


Figure 1 : Total Mineral Analysis

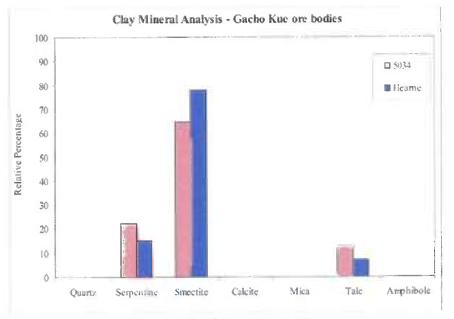


Figure 2 : Clay Mineral Analysis

4.1.2 Exchangeable cation analysis

Figure 3 and Table I present the results of the exchangeable cation analysis of both the Hearne and 5034 ore bodies in the dry *in situ* state before contact with the simulated process water.

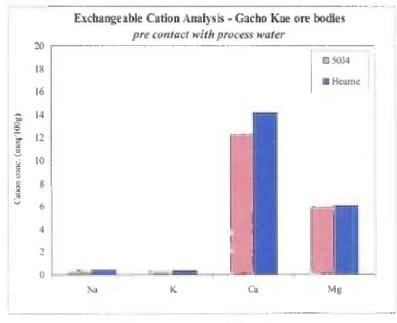


Figure 3 : Exchangeable Cation Analysis

The cation exchanged capacity (CEC) and exchangeable sodium percentage (ESP) are calculated according to Equation 1 and Equation 2.

Parameters	Pre contact with process water		
	Hearne	5034	
CEC (meg/100g)	14.8	10.8	
ESP (%)	2.8	3.7	
pH of saturated paste	7.0	7.5	

Table !	I :	CEC	and	ESP	Values
---------	-----	-----	-----	-----	--------

Equation 1 : Cation Exchange Capacity (CEC) $CEC = [Ca^{2+}] + [Mg^{2+}] + [Na^{+}] + [K^{+}]$ Equation 2 : Exchangeable Sodium Percentage (ESP)

$$ESP = \frac{[Na^+]}{CEC}$$

where the concentrations of the cations are expressed in meq/100g.

4.2 Wet Process Ore Characteristics

4.2.1 Process water quality

Table II presents a summary of the quality of the simulated process waters associated with each of the Hearne and 5034 ore bodies. A full range of simulated process water quality data is provided in Appendix B.

Parameters	Simulated process water		
	Hearne	5034	
pH	7.82	8.03	
Conductivity (mS/cm)	0.29	0.26	
SAR	0.95	1.00	

Table II : Summary of Simulated Process Water Quality Data

The SAR values in Table II refer to the Sodium Adsorption Ratio, which is the ratio of the monovalent to the divalent cations in the process water, calculated by Equation 3.

Equation 3 : Sodium Adsorption Ratio

$$SAR = \frac{[Na^{+}]}{\sqrt{[Ca^{2+}] + [Mg^{2+}]/2}}$$

where the concentrations of the cations are expressed in meq/100g.

Process waters with SAR values in excess of 15 are expected to generate sodium exchanged clays and therefore colloidally stable slurries.

4.2.2 Exchangeable cation analysis

Figure 4 and Table III present the results of the exchangeable cation analysis of both the Hearne and 5034 ore bodies in the wet state after contact with the simulated process water.

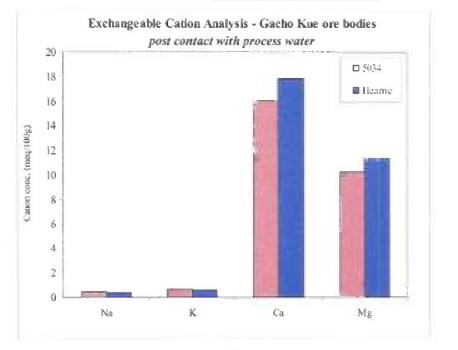


Figure 4 : Cation Exchange Analysis

Parameters	Post contact with process water		
	Hearne	5034	
CEC (meg/100g)	17.0	11.8	
ESP (%)	1.9	3.6	
pH of saturated paste	6.8	7.3	

Table	Ш	н 6	CEC	and	ESP	Value
-------	---	--------	-----	-----	-----	-------

4.2.3 Slurry colloidal analysis

Figure 5 presents the colloidal characteristics of the simulated slurries associated with each of the Hearne and 5034 ore bodies after a settling period of 10 minutes, over a range of pH values (i.e. pH 4, 6, 8, 10, 11.5).

Table IV presents the natural pH, conductivity and key particle size distribution parameters of the simulated slurries associated with each of the Hearne and 5034 ore bodies.

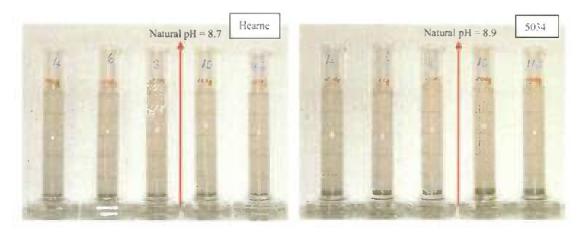


Figure 5 : Colloidal Characteristics of Simulated Slurries

Parameters	Simulated slurr	
	Hearne	5034
Natural pH	8.70	8.93
Conductivity (mS/cm)	0.33	0.35
D ₅₀ (µm)	265	377
D ₉₀ (µm)	936	1009
Vol. % passing 20 µm	17	13

Table IV : Simulated Slurry Characteristics

Figure 6 presents the particle size distributions of both the Hearne and 5034 ore bodies.

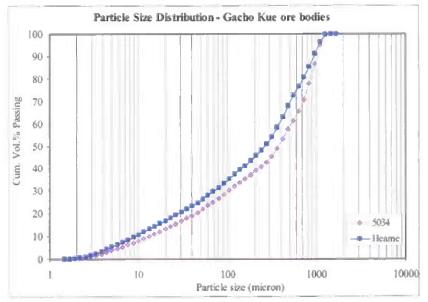


Figure 6 : Particle Size Distribution

5. DISCUSSION OF RESULTS

The mineral analyses show that both Gacho Kue ore bodies contain significant amounts of Smectite clay. The clay (-2µm) size fraction in particular, consists of mainly Smectite clay. Smectite clays are often referred to as swelling clays as a result of their ability to adsorb water molecules between the clay platelets, which therefore lead to swelling of the clay structure and may result in colloidally dispersive behaviour. The swelling and dispersive characteristics of Smectite clays are determined by the cation exchanged nature of the clay and the quality of the process water. Sodium exchanged clays or sodium rich water restricts swelling and dispersion, while calcium exchanged clays or calcium rich water restricts swelling and induce coagulation.

The low SAR values (< 15) of the respective simulated process waters indicate calcium rich waters, expected to generate colloidally unstable (settling) slurries.

The exchangeable cation analyses of the Gacho Kue ore bodies show that the Smectite clays associated with each of the Hearne and 5034 ores appear to be highly calcium exchanged in the dry *in situ* state before contact with the simulated process waters, as indicated by the low ESP values. After contact with the calcium rich simulated process waters, the concentrations of exchangeable calcium and magnesium increased slightly, which reflects the low SAR conditions of the simulated process waters. As a result the ESP values of the ores in the wet state, after contact with the simulated process waters, decreased slightly.

Figure 7 presents the predicted clay behavioural nature of the Gacho Kue ore bodies before and after contact with the simulated process water on a plot of the saturated paste pH vs. ESP. Typically, Smectite clays exhibit non-interactive (dispersive) properties in a zone between about pH 8 to 11 and at ESP values greater than about 15-20%. Outside of this non-interactive zone, clays normally occur in a coagulated state as a result of significant particle to particle interaction taking place. This occurs under low ionic concentrations (low conductivity).

The combination of the calcium exchanged clays of the Gacho Kue ore bodies and calcium rich process waters is expected to restrict swelling and dispersion of the Smectite clays and therefore generate colloidally settling slurries.

The results of the slurry colloidal analysis presented in Figure 5 confirmed that the natural state of the Gacho Kue slurries fall within a colloidally unstable (coagulated) zone extending across the entire pH range, which supports the behaviour predicted in Figure 7.

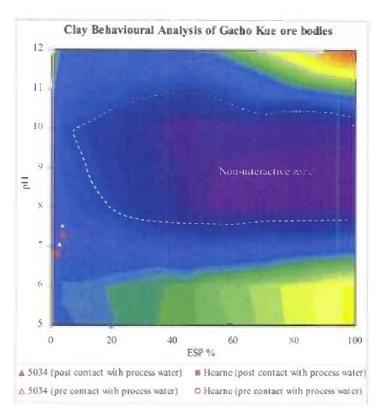


Figure 7 : Clay Behavioural Analysis

6. CONLCUSIONS AND RECOMMENDATIONS

It is concluded that both the Hearne and 5034 ore bodies from Gacho Kue are highly calcium exchanged and exhibits interactive (coagulated) behaviour at their natural pH condition. The simulated process waters appear to be calcium rich. It is expected that colloidally unstable (settling) slurries would be generated from these ore-water combinations.

It was confirmed that the natural state of the Gacho Kue slurries fall within a favourable colloidally unstable condition, based on the results of the slurry colloidal analysis. It is therefore expected that the Gacho Kue slurries would exhibit good flocculation and settling characteristics.

It is recommended to evaluate the identified raw water source for the proposed Gacho Kue mine in order to determine its potential impact on the colloidal behaviour of the slurries.

<u>F Dunn</u> Project Engineer 11 March 2005 AJ Vietti Project Scientist

APPENDIX A – PROCEDURES FOR GENERATION OF SIMULATED PROCESS WATER AND SLURRY

Simulated Process Water :

- Make up close to a 20% by mass slurry out of the dry crushed drill core sample and tap water from Rand Water Board.
- Stir the slurry for a few minutes and allow to settle.
- Pour off the supernatant water and use as simulated process water.

Simulated Slurry :

- Make up close to a 1-2% by mass slurry using the dry crushed drill core sample and the simulated process water.
- Stir the slurry for a few minutes.
- Use as simulated slurry.

APPENDIX B – SIMULATED PROCESS WATER QUALITY DATA

Determinants		PCCS	Number	
	50	5034		rne
pH	8.03		7.82	
pHs (saturated with CaCO ₂)	8.43		8.40	
SAR	1.00		0.95	
Conductivity mS/m at 25°C	26.00		29.00	
mS/cm at 25°C	0.26		0.29	
Cations	mg/l	meq/l	mg/l	meq/l
Sodium as Na	18.05	0.79	19.12	0.83
Potassium as K	10.78	0.28	8.18	0.21
Calcium as Ca	14.95	0.75	18.63	0.93
Magnesium as Mg	5.75	0.47	7.31	0.60
Boron	0.83	0.23	0.57	0.16
Subtotal	50.36	2.51	53.81	2.73
Anions	mg/l	meq/l	mg/l	meq/l
Fluoride as F	0.19	0.01	0.28	0.01
Nitrite	0.00	0.00	0.00	0.00
Nitrate as NO ₃	3.33	0.05	3.17	0.05
Chloride as Cl	38.07	1.07	55.00	1.55
Sulphate as SO ₂	9.04	0.19	10.56	0.22
Phosphate as P	0.14	0.00	0.21	0.00
Carbonate as CO3	0.00	0.00	0.00	0.00
Bicarbonate as HCO3	76.25	1.25	67.10	1.10
Subtotal	127.02	2.57	136.32	2.93
TOTAL	177.38	5.08	190.13	5.66
Alkalinity	62.50	1.25	55.00	1.10

Table B1 : Simulated Process Water Quality Data

APPENDIX D GAHCHO KUÉ TUZO SLIMES DEWATERING TEST REPORTS (2008)

DE BEERS

NOTE FOR THE RECORD

GAHCHO KUE TUZO SLIMES DEWATERING TESTS REPORT

19 May 2008

Compiled by

Phakamele Tomo

Document Number: 2240-R00219-PSS-00001-5624

Revision 1.0

Copyright © 2008 De Beers

All rights reserved. No part of this document may be reproduced, translated, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the owner.

> Note: If this copy is no longer in use, return to sender.

> > DEBTECH

APPROVAL PAGE

Supplier Client DE BEERS GROUP SERVICES (PTY) LTD **DE BEERS CANADA** DEBTECH GAHCHO KUE MINE Cnr Crownwood and Diamond Rd Physical Physical Address: Theta Ext. 4 Address: Johannesburg 2013 PO Box 82851 Postal Postal Address: Southdale Address: 2135

AUTHOR(S)

Name	Signature	Date
Tomo		
Process Engineer		19 May 2008
DebTech		

Approval

Name	Signature	Date
G Dellas		
Manager – Metallurgical Services	Muon	19 th May 2008

DISTRIBUTION LIST

COPIES:	OWNER		DIVISION / MINE
MASTER	eB		DebTech
1	lan	Pritchard	De Beers Canada
2	Р	Tomo	DebTech
3			

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 2 of 20

Table of Content

1		ITRODUCTION	
2	М	ETHODOLOGY	.4
	2.1 2.2 2.3 2.4	CHEMICAL ANALYSIS MINERALOGICAL ANALYSIS SLIMES CHARACTERISATION SAMPLE DESCRIPTION	.4 .4
3	W	ATER ANALYSIS RESULTS	.5
	3.1	CHEMICAL ANALYSIS AND SODIUM ADSORPTION RATIO	.5
4	М	INERALOGICAL ANALYSIS RESULTS	.5
	4.1 4.2 4.3	EXCHANGEABLE CATIONS AND ESP TOTAL AND CLAY MINERAL ANALYSIS PARTICLE SIZE DISTRIBUTION (<i>IN SITU</i>)	.6
5	S	LIMES CHARACTERISATION RESULTS	8
	5.1 5.2	FEED SOLIDS OPTIMISATION	8
6	G	ENERAL COMPARISON OF TUZO WITH PREVIOUS DATA	.9
7		ONCLUSIONS AND RECOMMENDATIONS	
8	R	EFERENCES AND APPLICABLE DOCUMENTS	0
A	PPEN	IDIX A: DETAILED WATER ANALYSIS RESULTS	1
		IDIX B: CATIONS & CATION EXCHANGE CAPACITY	
		IDIX C: TOTAL MINERAL ANALYSIS	
A	PPEN	IDIX D: CLAY MINERAL ANALYSIS	6
A	PPEN	IDIX E: SETTLING DATA SUMMARY	8

List of Tables

Table 1: Tuzo sample descriptions	.4
Table 2: Summarised water analysis results of Gahcho Kue raw & "typical" process water	
Table 3: Summarised slimes characterisation of Tuzo samples	

List of Figures

Figure 1: Comparison of the Tuzo ESP with that of the Hearne & 5034 material	6
Figure 2: Total Mineral Analysis for Gahcho Kue material	7
Figure 3: Clay Mineral Analysis for Gahcho Kue material	7
Figure 4: Particle size distribution of Gahcho Kue material (<i>in-situ</i>)	8

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 3 of 20
---	--------------	--------------

1 INTRODUCTION

Clay analysis and slimes characterisation were conducted on fifteen (15) drill core samples from Gahcho Kue Tuzo as part of ore dressing studies. DebTech's involvement aims to characterise the samples to establish the treatability of the slimes.

2 METHODOLOGY

2.1 Chemical Analysis

No raw water samples were submitted from Canada and thus distilled water from Consolidated Water Conditioning SA (Pty) Ltd was used for preparing slurry samples. One litre each of "typical" process water samples were dispatched to AARL for full chemical analysis.

The stability of a clay suspension is influenced by the type of ions dissolved in the water, which in turn influences the types of ions adsorbed onto the clay surfaces, thus the need to perform the chemical analysis.

2.2 Mineralogical Analysis

A sample was dispatched to Agricultural Research Council for mineralogical analysis. The analysis included the following characterisation:

- Total analysis
- Clay mineral analysis
- Exchangeable cations and cation exchange capacity
- Particle size distribution

2.3 Slimes Characterisation

Slimes characterisation was conducted on Gahcho Kue Tuzo ore samples as per test procedure highlighted in the Group Mining & Exploration Slimes Characterisation Work Instruction Manual, Document No. 5624-B00P01-PSS-00001-5624.

2.4 Sample Description

Gahcho Kue Tuzo Mine sampling programme supplied ore material in the form of drill core as presented in Table 1 below.

Description	Position	LR No	Number of Trays
	Bottom	LR-070925-001	8
MPV-07-280C	Middle	LR-070925-002	6
	Тор	LR-070925-003	10
	Bottom	LR-070925-004	8
MPV-07-294C	Middle	LR-070925-005	6
	Тор	LR-070925-006	7
	Bottom	LR-070925-007	6
MPV-07-297C	Middle	LR-070925-008	6
	Тор	LR-070925-009	6
	Bottom	LR-070925-010	7
MPV-07-298C	Middle	LR-070925-011	7
	Тор	LR-070925-012	7
	Bottom	LR-070925-013	7
MPV-07-299C	Middle	LR-070925-014	6
	Тор	LR-070925-015	8

Table 1: Tuzo sample descriptions

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 4 of 20

3 WATER ANALYSIS RESULTS

3.1 Chemical Analysis and Sodium Adsorption Ratio

Summarised chemical analysis results of the raw and 'typical' process water samples for Gahcho Kue area are presented in Table 2 and a complete analysis is presented in Appendix A. An analysis of the water in which kimberlitic clay is suspended provides information as to the colloidal nature of the suspension. The stability of a clay suspension is influenced by the type of ions dissolved in the water, which in turn influences the types of ions adsorbed onto the clay surfaces.

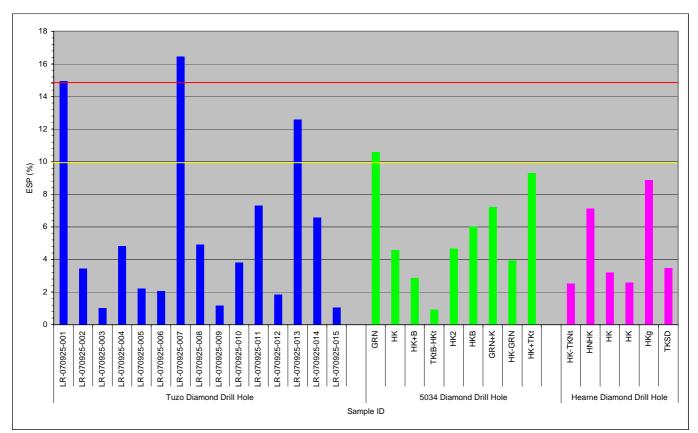
If calcium is adsorbed on the clay surface it provides a divalent link to adjacent clay layers, meaning that although the clay swells in the presence of water, the layers are bound together by the calcium ion preventing complete dissociation. Sodium is a monovalent ion and therefore cannot provide a link between clay layers. When sodium-exchanged clay comes into contact with water it completely dissociates, resulting in a stable colloidal suspension.

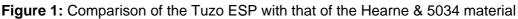
The raw and 'typical' water had a very low conductivity of less than 0.2 mS/cm. This water when in contact with any ore material whose clays are sodium-exchanged will potentially generate slurry suspension described as colloidally stable (partial to non-settling slurry). However, most of the Gahcho Kue material clays are not sodium-exchanged, thus the low water conductivity will be of little concern.

	Tuzo ODS		Phase II ODS (2004)				
SAMPLE I.D.	Tuzo Proc H ₂ O 008	Tuzo Proc H ₂ O 013	Raw H₂O	Hearne Proc H ₂ O	5034 Proc H₂O	Supernatant	
pH at 25 ⁰C	8.4	9.4	6.7	6.4	7.1	6.7	
Alkalinity as CaCO ₃	67	97	7	50	58	38.3	
Conductivity mS/m at 25 °C	20	21	2	20	20	14.0	
TDS at 180 ⁰ C	156	190	<20	92	98	95.0	
Fluoride as F	0.49	0.21	< 0.04	0.41	0.31	0.4	
Chloride as Cl	2	10	1	26	23	16.7	
Sulphate as SO ₄	31	12	1	8	5	4.7	
Calcium as Ca	20	< 2	2	11	11	8.0	
Sodium as Na	31	47	0.6	13	9	7.5	
Potassium as K	4	3	0.7	7	10	5.9	
Magnesium as Mg	4	< 2	0.6	5	4	3.2	
SAR (meq/l)			0.1	0.8	0.6		
Ionic Strength			0.0003	0.0024	0.0024		

 Table 2: Summarised water analysis results of Gahcho Kue raw & "typical" process water

4 MINERALOGICAL ANALYSIS RESULTS


4.1 Exchangeable cations and ESP


The results of exchangeable sodium percentage (ESP) are presented graphically in Figure 1. The ESP is a measure of the sodium adsorbed on the clay surface and thus together with SAR provides information as to the colloidal nature of the suspension. When sodium-exchanged clay comes into contact with water, it completely dissociates, resulting in a stable colloidal suspension. The ESP is defined as the amount of exchangeable sodium expressed as a percentage of the cation exchange capacity (i.e. the total amount of all positively charged ions adsorbed on the clay surface).

Major problem caused by excessive salts in soils, is due to the dispersive effect sodium has on soil clays. Dispersion is the reverse process to aggregation, (Ca, Mg and other di- or trivalent cations promote aggregation). Unless the soil salinity is high, dispersion will occur in soils having excess sodium and relatively low calcium and magnesium. As a general rule, within the slurry pH range of 9.0 to 11, dispersion can be expected to occur when ESP is greater than 15 percent and electrical conductivity is less than 3 mS/cm.

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report Revisio	vision 1.0	Page 5 of 20
---	------------	--------------

Most of the Tuzo samples recorded relatively low ESP values. Only two samples, LR070925-001 and 007 recorded higher ESP values and thus would be expected to generate collodially stable slurry suspension when in contact with Gahcho Kue raw water.

4.2 Total and Clay Mineral Analysis

The total and clay mineralogical analyses of the Gahcho Kue samples are presented in Figure 2 and 3 respectively, with detailed data appended in Appendix C and D. Total and clay mineral analysis indicates minerals present in the $-2 \text{ mm} + 2 \mu \text{m}$ and $-2 \mu \text{m}$ size fraction of the sample.

The results of total mineral analysis indicated that the Gahcho Kue ore is composed of a wide range of minerals which includes serpentine, smectite, talc, calcite, amphibole, kaolinite, dolomite, feldspar, mica, quartz, pyrophyllite and gibbsite.

The known problematic swelling mineral, smectite, was found in a varying proportion in all Tuzo pipe samples. Smectite has ability to absorb water molecules between the crystal layers, which cause the clay structure to expand and could lead to the dissociation of clay platelets and ultimately dispersion in slurry suspension. The average content of smectite in the Total Mineral Analysis (-2 mm + 2 μ m) for Tuzo material was 37 percent with a range of 1 to 66 percent.

In general, the mineralogical characteristic of the Tuzo pipe indicate some potential of generating difficult slurry suspension due to swelling smectite content. However, most of the Tuzo material is expected to behave similar to the Hearne and 5034 pipe material when in slurry suspension.

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 6 of 20

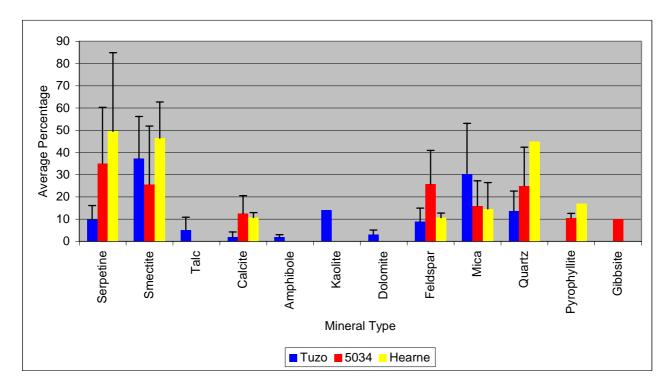


Figure 2: Total Mineral Analysis for Gahcho Kue material

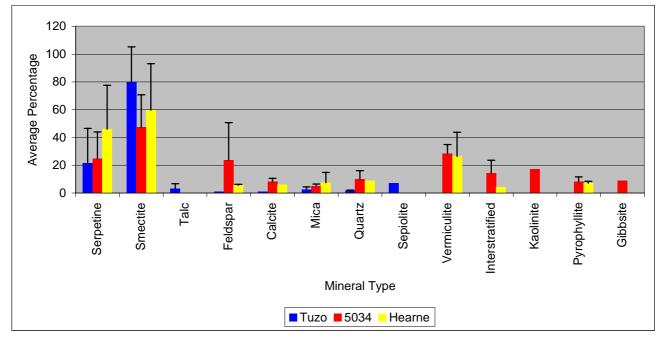


Figure 3: Clay Mineral Analysis for Gahcho Kue material

4.3 Particle Size Distribution (in situ)

Figure 4 presents the averaged PSD of the Gahcho Kue material in dry form. The results indicated a low ultra-fine content (-20 μ m size fraction) which ranges between 7 and 25 percent. However, it should be noted that when the samples are wetted, they will swell and weather, thereby generating additional ultra-fines. Thus, in a slurry form, an elevated ultra-fine content will be noticed.

Tuzo material indicated a much finer PSD compared to Hearne and 5034 material. A high ultra-fine content in excess of 40 percent increases the surface area of suspension when in contact with water and thus its colloidal stability increases.

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 7 of 20
---	--------------	--------------

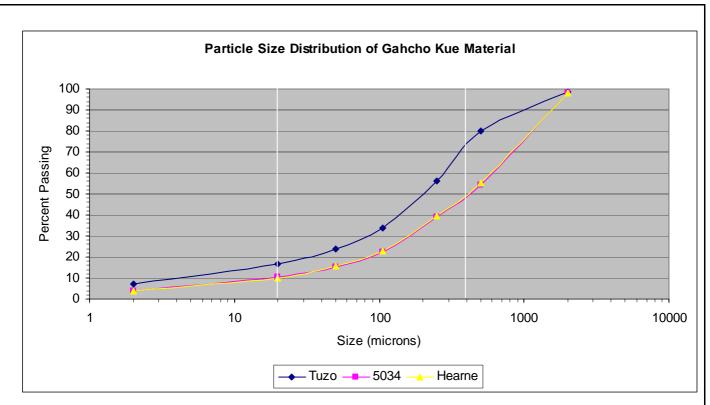


Figure 4: Particle size distribution of Gahcho Kue material (*in-situ*)

5 SLIMES CHARACTERISATION RESULTS

5.1 Feed Solids Optimisation

The process plant typically produces a thickener feed slurry at variable solids concentration based on the water usage at the various metallurgical unit processes. The internal dilution features of the thickening units are then used to adjust the thickener feed solids concentration to the optimum required for flocculation as determined through the static dewatering test work. Most modern thickeners have variable internal dilution features that are capable of adjusting the dilution ratio as the feed characteristics change.

The results indicated that the optimum settling rate and settling flux were achieved at about 7.5 percent solids concentration for the majority of Tuzo slurry samples. Characterisation of the Hearne and 5034 material was only conducted on the 5 and 10 percent slurry solids concentration.

5.2 Slimes Settling Data

The summarised settling data of Tuzo Pipe slurry are presented in Table 3 according to the geological description. Detailed results are presented in Appendix E.

The unflocculated slimes characteristics indicated the slurry pH range of 8.8 - 9.6 and conductivity of 0.65 - 2.62 mS/cm. Experience has shown that slurry samples with conductivity, in excess of 3.0 mS/cm tends to settle easily and in most cases would not require coagulation or salt/pH modification.

The optimised flocculant dosage rate for the majority of Tuzo slimes material indicated relatively low consumption rates which are similar to the previous Gahcho Kue study for the Hearne and 5034 ore materials. Flocculant consumption for the Tuzo slurry samples (excluding outliers) was ranging between 2.4 - 60.4 g/t.

An outlier in the MPV-07-280C and 297C was recorded for the bottom samples which resulted in coagulant consumption of 304 g/t and a flocculant consumption of about 200 g/t. The reasons for this

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 8 of 20
---	--------------	--------------

elevated reagent consumption can be attributed to relatively high ESP in excess of 15% and pH value of 9.6 which is in the colloidally stable pH range.

The optimised settling rate envelope for Tuzo slurries ranges from 7.2 to 18 m/h, which are relatively lower than those achieved for 5034 and Hearne slurry samples (about 10 - 35 m/h). For high rate and paste thickeners, when sizing is based on the internal rise rate, a typical rise rate in the order of 6 m/h is generally applied. The smaller difference between the optimised settling rate of the Tuzo material and the rise rate of the clarified fluid inside the thickener, would not allow for additional thickening capacity.

The slurry generated underflow slurry with moderately high solids concentration slurry ranging from 37 to 63 percent solids. These underflow slurries were generated under static gravity consolidation conditions (unraked). When a rake was employed, an improvement in the compaction and the underflow solids concentration was noticed.

Sample Description		рН	Conductivity (mS/cm)	Coag.	Floc.	Settling Rate	Clarity	% Underfl	ow Slurry
Description	511	-	(mo/cm)	g/t	g/t	m/h	NTU	Unraked	Raked
	Bottom	9.6	1.24	304	199	11.5	1794	37.2	41.3
MPV-07- 280C	Middle	9.0	0.66		10	16.2	735	52.9	53.4
2000	Тор	8.8	1.10		9.8	16.3	292	49.5	50.4
	Bottom	9.2	1.87		2.6	16.5	208	52.5	55.9
MPV-07- 294C	Middle	9.1	2.08		2.5	17.9	178	61.4	63.1
2340	Тор	8.9	0.93		7.8	18.0	1055	52.4	52.5
MPV-07-	Bottom	9.6	1.40	305	201	7.2	2000	39.8	40.4
297C	Middle	9.2	1.24		15.1	14.7	976	45.2	46.0
2310	Тор	8.8	1.31		2.6	13.4	256	52.9	53.5
	Bottom	8.8	2.62		2.4	17.7	67	56.5	57.0
MPV-07- 298C	Middle	9.4	1.13		2.6	17.3	45	63.3	64.6
2900	Тор	9.0	1.09		2.5	16.8	42	59.7	60.6
	Bottom	9.6	1.45		60	15.2	979	43.5	47.1
MPV-07- 299C	Middle	9.5	0.87		60	14.2	794	40.2	41.3
2330	Тор	9.0	0.65		10.2	16.0	306	50.8	51.2

Table 3: Summarised settling characteristics of Tuzo samples

6 GENERAL COMPARISON OF TUZO WITH PREVIOUS DATA

This section compares the findings of the previous Gahcho Kue ore dressing study with the current data. The high level comparison is as follows:

- Typical process water for the Tuzo ore body exhibited similar conductivity values with that of the Hearne and 5034 ore bodies. Conductivity values of Gahcho Kue process water are regarded as low at 0.2 mS/cm.
- Most of the Tuzo ore samples had low ESP values similar to that exhibited by the Hearne and 5034 ore samples. The outlier was only two Tuzo samples, *MPV-07-280C Bottom* and *MPV-07-297C Bottom*, which had relatively high ESP values in excess of 15 percent. Based purely on the interpretation of the ESP, these two samples are expected to generate partial or non-settling slurry suspension.
- Tuzo material showed finer slurry PSD compared to Hearne and 5034.
- Similar flocculants dosages were recorded for the Tuzo, Hearne and 5034 ore bodies, except for the two outlier samples found in Tuzo ore body.
- Tuzo ore samples had relatively lower settling rates ranging between 7.2 18 m/h compared to Hearne and 5034 samples with settling rates of 10 35 m/h.

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 9 of 20
---	--------------	--------------

7 CONCLUSIONS AND RECOMMENDATIONS

Clay Behavioural Analysis

Analysis of the dry in-situ ore characterisation with respect to ESP and cation exchange capacity indicate that two out of fifteen Tuzo samples had a potential to generate partially to non-settling slurry suspensions.

Static Settling Tests

The static slimes characterisation result for the fifteen (15) Tuzo samples can be summarised as follows:

- Optimum slurry feed solids concentration is 7.5 percent solids,
- Optimum flocculant dose range is 2.5 to 60 g/t for most of slurry samples while the outlier two samples required coagulant at a rate of 304 g/t and flocculant dose of 200 g/t,
- Settling rate envelope is 7 to 18 m/h,
- Achievable underflow solids concentration under static un-raked consolidation range from 37 to 63 percent.

Most of the Tuzo ore samples can be treated efficiently on the water reticulation circuit designed based on the Hearne and 5034 samples data.

8 **REFERENCES AND APPLICABLE DOCUMENTS**

- Tomo P, "Note for the Record Gahcho Kue Phase II ODS Slimes Characterisation", MPS Internal Report, Document No. 2240-900559-PSS-00001-5624, October 2004.
- Tomo P, "Note for the Record Gahcho Kue Slimes Characterisation", MPS Internal Report, Document No. T05-4000130-855, October 2002.

Patterson RA, "Explaining the mysteries of salinity, sodicity, SAR and ESP in On-site practice in Proceedings of On-Site '01 Conference: Advancing On-site Wastewater Systems by RA Patterson & MJ Jones (Eds), published by Lafax Laboratories, Armidale, 2001.

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 10 of 20
---	--------------	---------------

APPENDIX A: DETAILED WATER ANALYSIS RESULTS

SAMPLE NUMBER	Tuzo	ODS	Phase II ODS (2004)			
SAMPLE I.D.	Tuzo Proc H ₂ O 008 Tuzo Proc H ₂ O 013		Raw Water	Hearne Proc Water	5034 Proc Water	Supernatant
pH at 25 degrees C	8.4	9.4	6.7	6.4	7.1	6.7
Alkalinity as CaCO ₃	< 2	15				
Alkalinity as CaCO ₃	67	97	7	50	58	38.3
Conductivity mS/m at 25 ⁰ C	20	21	2	20	20	14.0
Total Dissolved Solids at 180 ⁰ C	156	190	<20	92	98	95.0
Total Suspended Solids at 105 ⁰ C	4755	9231	<10	644	441	542.5
Fluoride as F	0.49	0.21	< 0.04	0.41	0.31	0.4
Chloride as Cl	2	10	1	26	23	16.7
Nitrite as NO ₂	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Nitrate as NO ₃	< 0.5	< 0.5	<0.5	2	<0.5	2.0
Nitrate as N	< 0.5	< 0.5	<0.5	0.50	<0.5	0.5
Phosphate as PO ₄	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Sulphate as SO ₄	31	12	1	8	5	4.7
AA Calcium as Ca	20	< 2	2	11	11	8.0
AA Sodium as Na	31	47	0.6	13	9	7.5
AA Potassium as K	4	3	0.7	7	10	5.9
AA Magnesium as Mg	4	< 2	0.6	5	4	3.2
Silica as Si			<0.5	4	5	4.5
Calcium Hardness as CaCO ₃	49	3	5	27	21	17.7
Magnesium Hardness as CaCO ₃	15	7	2	21	48	23.7
Total Hardness as CaCO ₃	64	10	7	48	69	41.4
Cation / Anion Balance - % Diff.			1.1	-9.8	-15.6	-8.1

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 11 of 20
---	--------------	---------------

APPENDIX B: CATIONS & CATION EXCHANGE CAPACITY

Pipe	Description	Depth	Sample #	Na	K	Ca	Mg	S Value	CEC (T Value)	ESP
Diamond Drill Hole	MPV-07-280C	Bottom	LR-070925-001	5.27	0.54	29.34	11.14	46.29	35.29	14.9
		Middle	LR-070925-002	0.99	0.51	24.61	10.41	36.52	28.7	3.4
		Тор	LR-070925-003	0.34	0.38	28.55	12.19	41.46	33.71	1.0
	MPV-07-294C	Bottom	LR-070925-004	0.57	0.44	17	2.95	20.97	11.85	4.8
		Middle	LR-070925-005	0.08	0.33	9.33	5.29	15.03	3.61	2.2
		Тор	LR-070925-006	0.56	0.31	21.83	10.63	33.33	27.16	2.1
	MPV-07-297C	Bottom	LR-070925-007	5.17	0.54	29.3	13.28	48.25	31.42	16.5
		Middle	LR-070925-008	1.78	0.51	28.82	13.02	44.13	36.22	4.9
		Тор	LR-070925-009	0.37	0.44	27.48	12.31	40.59	31.97	1.2
D	MPV-07-298C	Bottom	LR-070925-010	0.26	0.26	14.83	7.88	23.22	6.85	3.8
Tuzo		Middle	LR-070925-011	0.34	0.63	12.19	3.85	17.01	4.65	7.3
		Тор	LR-070925-012	0.28	0.46	16.55	8.1	25.39	15.17	1.8
	MPV-07-299C	Bottom	LR-070925-013	3.9	0.47	25.58	10.09	40.04	31	12.6
		Middle	LR-070925-014	2.5	0.46	32.49	12.56	48	38.07	6.6
		Тор	LR-070925-015	0.36	0.41	29.85	11.61	42.23	34.23	1.1
5034 Diamond Drill Hole	MPV-02-076C	236	GRN	0.42	0.34	8.17	1.18	10.10	3.96	10.6
	MPV-02-079C	47	HK	0.15	0.17	12.32	5.22	17.86	3.19	4.6
	MPV-02-082C	105	HK+B	0.51	0.68	12.78	8.15	22.11	17.88	2.9
	MPV-02-087C	153	TKtB-HKt	0.42	0.21	35.26	14.25	50.13	45.70	0.9
	MPV-02-076C	284	HK2	0.08	0.13	13.63	3.04	16.87	1.67	4.7
	MPV-02-079C	112	HKB	0.43	0.40	16.00	2.29	19.12	7.15	6.0
	MPV-02-082C	189	GRN+K	0.31	0.19	16.00	1.18	17.67	4.31	7.2
	MPV-02-079C	160	HK-GRN	0.40	0.31	14.08	4.39	19.17	10.12	3.9
	MPV-02-082C	243	HK+TKt	2.07	0.17	26.68	5.81	34.72	22.23	9.3

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 12 of 20
---	--------------	---------------

Pipe	Description	Depth	Sample #	Na	K	Ca	Mg	S Value	CEC (T Value)	ESP
	MPV-02-080C	100	HK-TKNt	0.88	0.26	23.53	11.88	36.55	35.07	2.5
Hearne	MPV-02-080C	231	HNHK	0.17	0.08	9.22	10.91	20.38	2.38	7.1
Diamon	MPV-02-084C	86	HK	0.12	0.20	13.33	4.35	17.99	3.74	3.2
d Drill	MPV-02-085C	60	HK	0.07	0.12	7.65	15.10	22.95	2.67	2.6
Hole	MPV-02-085C	142	HKg	0.12	0.18	10.67	3.56	14.52	1.35	8.9
	MPV-02-085C	237	TKSD	1.33	0.21	23.89	9.12	34.55	38.40	3.5

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 13 of 20
---	--------------	---------------

APPENDIX C: TOTAL MINERAL ANALYSIS

Pip	Description	Depth	Serpeti	Smectit	Talc	Calcite	Amphibole	Kaolite	Dolomit	Feldspar	Mica	Quartz	Pyroph	Gibbsit
е		_	ne	e	-				е	_	-	1.5	yllite	е
		Bottom	2	66	3					8	9	12		
	MPV-07-280C	Middle	9	27		2			1	15	11	35		
		Тор	8	50			2		4	4	16	16		
		Bottom	10	19	3					11	32	25		
lole	MPV-07-294C	Middle	9			1				3	82	5		
III		Тор		54	18		3				18	7		
Dri		Bottom	1	51	2	1				23	18	4		
puc	MPV-07-297C	Middle	6	38		1			1	8	31	15		
amo		Тор	8	42						5	20	25		
Di		Bottom	21	19		7				1	48	4		
Tuzo Diamond Drill Hole	MPV-07-298C	Middle	14	1	1	1					77	6		
F		Тор	23	11	9	1			6		36	14		
		Bottom	8	45	3					5	30	9		
	MPV-07-299C	Middle	8	57	2					14	8	11		
		Тор		40			1	14	3	8	17	17		
	MPV-02-076C	236								50	19	31		
Ē	MPV-02-079C	47	59			9				9	23			
5034 Diamond Drill Hole	MPV-02-082C	105	29	15		21					13		12	10
e Duc	MPV-02-087C	153		70						13	5	12		
amor Hole	MPV-02-076C	284	77			10					13			
Dia	MPV-02-079C	112	38							20	42			
34	MPV-02-082C	189	5	3		4				29	6	53		
20	MPV-02-079C	160	19	13		7				34	14	13		
	MPV-02-082C	243	18	27		24					7	15	9	
Docume	nt Number: 2240-R	00219-PSS-	00001-5624	L										
	Kue Tuzo Slimes C					Rev	vision 1.0	Page 1	4 of 20					

Pipe	Description	Depth	Serpetin e	Smectite	Talc	Calcite	Amphibol e	Kaolit e	Dolomite	Feldspar	Mica	Quartz	Pyrophyl lite	Gibbsite
rill	MPV-02-080C	100	11	58							14		17	
	MPV-02-080C	231	79			10					11			
le pe	MPV-02-084C	86	66			14				13	7			
lea Nor Hc	MPV-02-085C	60	90			10								
Hearne Diamond Hole	MPV-02-085C	142	46			9				10	35			
Δ	MPV-02-085C	237	5	35						9	6	45		

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 15 of 20
---	--------------	---------------

APPENDIX D: CLAY MINERAL ANALYSIS

Pipe	Description	Depth	Serpet ine	Smectite	Talc	Feldsp ar	Calci te	Mica	Quartz	Sepiolit e	Vermic ulite	Interstr atified	Kaolini te	Pyroph yllite	Gibbsite
	MPV-07-280C	Bottom	2	97	1										[
		Middle		98	1			1							
		Тор		98	1			1							
	MPV-07-294C	Bottom	4	89	2			3	2						
ole		Middle	57	42			1								
Ĭ =		Тор	13	81	6										
Dril	MPV-07-297C	Bottom	2	97	1										
pu		Middle	1	98	1										
om		Тор	2	88	1			1	1	7					
Dia	MPV-07-298C	Bottom	49	49					2						
Tuzo Diamond Drill Hole		Middle	45	37	11			7							
F		Тор	59	32	9										
-		Bottom		97	2			1							
		Middle	2	96	1										
		Тор		97		1		1	1						
	MPV-02-076C	236	13	39		26		5				17			
.≓	MPV-02-079C	47	52				10	6	8		24				
ā	MPV-02-082C	105	39	34					7					11	9
pug	MPV-02-087C	153	6	87				3						4	
Diamond Drill Hole	MPV-02-076C	284	56				5		6		33				
Ы Н	MPV-02-079C	112	8	14		61							17		
4	MPV-02-082C	189	9	39		4		5	21			22			
5034	MPV-02-079C	160	22	56		4		7	7			4			
	MPV-02-082C	243	16	62			9	4						9	
	t Number: 2240-R Cue Tuzo Slimes C					R	evision 1	.0	Page	16 of 20					

Pipe	Description	Depth	Serpetine	Smectite	Talc	Feldspa r	Calci te	Mica	Quartz	Sepiolit e	Vermic ulite	Interst ratifie d	Kaolini te	Pyroph yllite	Gibbsit e
=	MPV-02-080C	100	15	71				2				4		8	
Dri	MPV-02-080C	231	69	22					9						
r da	MPV-02-084C	86	53			6					41				
Hear mon Hol	MPV-02-085C	60	87				6				7				
a	MPV-02-085C	142	48			5		16			31				
Ō	MPV-02-085C	237	4	86				4						6	

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 17 of 20
---	--------------	---------------

APPENDIX E: SETTLING DATA SUMMARY

Sa	mple De	escription	рН	Feed S	lurry	Conductivity (mS/cm)	Coag.	Floc.	Settling Rate	CI	arity		aked w Slurry		nderflow arry
				t/m ³	%		g/t	g/t	m/h	NTU	Wedge	%	t/m ³	%	t/m ³
	.'	Bottom	9.6	1.049	7.5	1.24	304	199	11.5	1794	11	37.2	1.302	41.3	1.346
	MPV-07- 280C	Middle	9.0	1.050	7.6	0.66		10	16.2	735	22	52.9	1.492	53.4	1.498
	MP 280	Тор	8.8	1.049	7.5	1.10		9.8	16.3	292	46	49.5	1.446	50.4	1.457
		Bottom	9.2	1.048	7.4	1.87		2.6	16.5	208	46	52.5	1.486	55.9	1.534
	MPV-07- 294C	Middle	9.1	1.051	7.8	2.08		2.5	17.9	178	46	61.4	1.619	63.1	1.647
	MP 294	Тор	8.9	1.032	5.0	0.93		7.8	18.0	1055	32	52.4	1.485	52.5	1.486
Drill Hole		Bottom	9.6	1.051	7.8	1.40	305	201	7.2	2000	12	39.8	1.330	40.4	1.336
Drill	MPV-07- 297C	Middle	9.2	1.048	7.4	1.24		15.1	14.7	976	20	45.2	1.392	46.0	1.401
Tuzo	MP 297	Тор	8.8	1.049	7.5	1.31		2.6	13.4	256	46	52.9	1.490	53.5	1.500
	.'	Bottom	8.8	1.051	7.8	2.62		2.4	17.7	67	46	56.5	1.543	57.0	1.550
	MPV-07- 298C	Middle	9.4	1.048	7.4	1.13		2.6	17.3	45	46	63.3	1.650	64.6	1.672
	MP 298	Тор	9.0	1.050	7.6	1.09		2.5	16.8	42	46	59.7	1.591	60.6	1.606
	<u>,</u>	Bottom	9.6	1.049	7.5	1.45		60	15.2	979	13	43.5	1.371	47.1	1.414
	MPV-07 299C	Middle	9.5	1.048	7.4	0.87		60	14.2	794	22	40.2	1.333	41.3	1.346
	MPV- 299C	Тор	9.0	1.049	7.4	0.65		10.2	16.0	306	46	50.8	1.463	51.2	1.468

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report

5 a	mple De	escription	рН	Feed S	lurry	Conductivity (mS/cm)	Coag.	Floc.	Settling Rate	CI	arity		aked w Slurry		Jnderflow urry
				t/m ³	%		g/t	g/t	m/h	NTU	Wedge	%	t/m ³	%	t/m ³
		GRN	8.0	1.033	5.1	1.61		4.7	32.5			30.1	1.231		
	90		8.4	1.066	9.9	1.80		5.9	23.6			42.3	1.357		
	MPV-02- 076C	HK2	8.5	1.033	5.1	2.09		4.7	31.2			30.0	1.230		
	Σ6		8.8	1.067	10.1	2.14		5.8	23.0			44.4	1.382		
-	0	НК	8.5	1.034	5.3	1.78		4.6	31.9			32.2	1.251		
5034 Diamond Drill Hole	MPV-02-079C		8.7	1.066	9.9	1.92		5.9	21.6			40.7	1.339		
Ξ	0-0	HKB	8.3	1.034	5.3	1.18		4.6	31.6			43.0	1.365		
D	-07		8.7	1.067	10.1	1.70		8.1	18.6			50.3	1.457		
р	_ ₹	HK-GRN	8.3	1.033	5.1	1.54		4.7	34.0			32.8	1.256		
ЫÖ	Σ		8.7	1.066	9.9	1.88		5.9	22.5			53.0	1.492		
Jiar	0	HK+B	8.1	1.033	5.1	1.29		9.4	20.5			40.2	1.333		
4	820		8.4	1.066	9.9	1.81		10.6	16.7			54.6	1.515		
503	0-1	GRN+K	8.2	1.034	5.3	2.09		11.4	33.5			39.0	1.320		
4)	9		8.9	1.066	9.9	2.38		11.8	18.0			51.1	1.467		
		HK+TKt	8.2	1.033	5.1	1.07		11.8	28.1			40.3	1.335		
	Σ		8.6	1.066	9.9	1.39		11.8	13.3			59.0	1.580		
	>	TKtB-	8.2	1.034	5.3	1.38		9.2	23.2			30.9	1.238		
	≥≧	HKt	8.7	1.066	9.9	2.08		11.8	10.0			52.8	1.490		
	d'	HK-	8.3	1.035	5.4	1.05		8.9	19.7			30.8	1.237		
Ф	MPV-02- 080C	TKNt	8.6	1.067	10.1	1.98		10.5	10.4			46.0	1.401		
ᅙ	N P N	HNHK	8.3	1.034	5.3	1.19		6.9	34.6			43.9	1.376		
Ē	Σö		8.7	1.066	9.9	2.08		7.1	19.7			50.7	1.461		
ā	>	НК	8.2	1.034	5.3	1.16		6.9	32.4			40.2	1.334		
Suc	≥g		8.4	1.066	9.9	1.94		9.4	23.4			52.1	1.481		
m		НК	8.2	1.034	5.3	1.13		13.7	32.8			46.2	1.403		
Ë	35C		8.7	1.066	9.9	1.71		11.8	16.8			59.1	1.582		
Hearne Diamond Drill Hole	õ-	HKg	8.1	1.033	5.1	1.11		7.1	35.8			30.8	1.237		
ear	-02		8.6	1.066	9.9	1.68		10.6	24.8			54.7	1.516		
Ť	MPV-02-085C	TKSD	8.2	1.033	5.1	1.65		9.4	22.7			31.1	1.240		
	Σ		8.8	1.066	9.9	1.98		11.8	12.2			52.2	1.481		

Document Number: 2240-R00219-PSS-00001-5624 Gahcho Kue Tuzo Slimes Characterisation Report	Revision 1.0	Page 20 of 20
---	--------------	---------------

APPENDIX E

TECHNICAL MEMORANDUM DCN-033 GAHCHO KUÉ EIS POST SUBMISSION/INTEGRATED EVALUATION OF POST CLOSURE ALTERNATIVES, PHASE 2030: TASK 20: MATERIAL CHARACTERIZATION (2011)

DATE October 14, 2011

PROJECT No. 11-1365-0001

- TO Andrew Williams De Beers Canada Inc. 250 Ferrand Drive Suite 900 Toronto, ON M3C 3G8
- **CC** Jeff Stone, John Faithful

FROM Rashid Bashir

EMAIL Rashid_Bashir@golder.com

GAHCHO KUE EIS POST-SUBMISSION\INTEGRATED EVALUATION OF POST-CLOSURE ALTERNATIVES. PHASE 2030: TASK 20: MATERIAL CHARACTERIZATION

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by De Beers Canada Inc. (De Beers) to identify modifications to the closure options for the Processed Kimberlite Facility (PKC) and mine rock stockpiles at the Gahcho Kué Project that could result in improvements to post-closure water quality. The scope of work requires close integration between several tasks, including soil atmospheric analysis; hydrogeological modelling; geochemical characterization, and iterative updates of the water quality model for the Project.

Saturated-unsaturated soil properties of potential cover materials are key inputs required for soil-atmospheric analysis and hydrogeological modeling. The current cover scenario assumes a 2m thick cover comprising of 1m thick coarse PK layer overlain by 1m of waste rock. The geotechnical and hydraulic properties of these materials, and the underlying fine PK are of great importance in carrying out the soil atmospheric analysis and hydrogeological modeling.

Geotechnical/hydrogeological testing was completed on the samples of the fine and coarse PK to estimate the relevant parameters to be used in the modeling exercise. Waste rock samples were not available for testing. The testing program consisted of the following tests:

- grain size analyses;
- specific gravity;
- standard Proctor compaction;
- soil-water characteristic curve (SWCC); and
- saturated hydraulic conductivity.

In addition to the hydrogeological parameters, coupled soil atmospheric analysis also requires thermal properties of the cover materials. Thermal conductivity and volumetric heat capacity of the fine and coarse PK were also measured in the lab. The following sections provide a summary of the testing results. Detailed results of the tests are presented in Appendix A.

2.0 LABORATORY TESTING

The following section outlines the testing that was undertaken to characterize the geotechnical, hydraulic, and thermal properties of the fine and coarse PK materials.

2.1 Grain Size Distribution

Representative samples of the fine and coarse PK were not available owing to the limited material availability from the pilot plant run by De Beers. Target grain size distributions were provided and are shown in Figure 1 as target fine and coarse PK.

A crushing, sorting and mixing effort was initiated at the Golder unsaturated soils laboratory in Saskatoon, to produce fine and coarse PK materials with grain size distributions as close as possible to the target grain size distributions. Grain size tests were conducted on all the PK material provided to Golder. Following the measurement of grain size distributions, the material was sorted out in various sizes. The sorting effort revealed that there were various size fractions missing that were necessary to generate a material close to the target grain size distributions.

Crushing was initiated to generate the various size fractions necessary. Various sizes were mixed in estimated proportions to generate grain size distributions that will be representative of the target grain size distributions. The generated grain size distributions are also shown in Figure 1.

A closer look at Figure 1 indicates that for the coarse PK, the target and generated grain size distributions are in close proximity to each other. Some of the variation between the target and generated sizes is due to the sample variance.

For the fine PK there is some discrepancy between the generated and target grain size distribution, especially at the smaller grain sizes. A part of this discrepancy is due to the sample variance. The discrepancy at the finer grain sizes can be explained as follows. The target grain size distribution was estimated by simple averaging of discrete grain size measurements from two different tailings streams. A hydrometer analysis would have provided a more representative distribution of grain sizes, especially for the finer sizes. Figure 1 also shows the sieve sizes for the #200 and #400 sieves. An observation can be made when these sieve sizes are compared to the target and generated material. The target and generated materials are in close proximity to each other for the sieve sizes up to the #400 sieve. As the #400 sieve is the finest sieve available, it is difficult to control the grain sizes below this size.

2.2 Specific Gravity

Specific gravity tests were conducted on the fine and coarse PK samples based on the procedures provided in ASTM designation D854. Specific gravity test results were used to determine void ratio and porosity used in the SWCC tests. The specific gravity of the fine and coarse PK were measured to be 2.71 and 2.79, respectively. The measured specific gravity values are similar to those reported in JDS (2010).

2.3 Standard Proctor Compaction Tests

Standard Proctor compaction tests were conducted on the fine and coarse PK samples based on the procedures provided in ASTM designation D698 Method A. The intent of this testing was to obtain values of maximum dry density and optimum water content, for use in sample preparation for hydraulic conductivity and SWCC measurements. The results of these tests are shown in Figure 2 and Figure 3. For the fine PK material, the maximum dry density was 1,763 kg/m³ with an optimum moisture content of 18.5%. For the coarse PK material, the maximum dry density was 1,950 kg/m³ with an optimum moisture content of 14.0%.

2.4 Saturated Hydraulic Conductivity Measurements

For the coarse PK sample, the Proctor test yielded a maximum dry density of 1,950 kg/m³ (1.95 t/m³) with an optimum water content of 14%. In the Gahcho Kué Project Feasibility Study Report (JDS, 2010), it is stated that the dry density of coarse PK placed above water and compacted will be 2,000 kg/m³ (2.0 t/m³), and the dewatered coarse PK moisture content to be around 18%. The values are similar to the values measured in the Proctor test. It is mentioned in JDS (2010) that compaction in the deposition area will be limited to routing of hauling and spreading equipment. Therefore, it was decided to proceed with 95% of the maximum dry density value of 1,950 kg/m³ (1.95 t/m³) for the saturated hydraulic conductivity measurement. This value of density could possibly be achieved for the deposition area as compaction limited to routing of hauling and spreading equipment. The saturated hydraulic conductivity was measured to be 1.1E-05 m/sec and the test results are shown in Figure 4.

The Proctor test for the fine PK yielded a maximum dry density of 1,763 kg/m³ (1.763 t/m³) with an optimum moisture content of 18.5%. According to JDS (2010), the dry density of the settled fine PK (no excess ice) is reported as a calculated value of 1,000 kg/m³ (1.0 t/m³). This value is substantially less than values of densities measured from the Proctor test in the laboratory.

A decision was made to slurry out a sample of fine PK in to a cell and then to consolidate it with a relatively low stress of 30 kPa. The initial dry density of the slurried sample was 1,180 kg/m³ with an initial water content of 47.5%. The sample was then consolidated at 30 kPa stress prior to the hydraulic conductivity testing. The density and water content of the consolidated sample, after testing were 1,396 kg/m³ and 35.2%, respectively. The hydraulic conductivity was measured using the fixed wall permeameter employing the falling head method. The hydraulic conductivity was measured to be 1.4E-09 m/sec and the test results are shown in Figure 5. The test was repeated by preparing another sample using the same procedure as described above. The test results are also shown in Figure 5 and the results from the two tests correlate well.

2.5 Soil-water Characteristic Curves

A SWCC test measures the relationship between the amount of water in the pores of the soil and the negative pore water pressure (or soil suction). This test is necessary in this analysis to assess the water retention and storage capacity of the soil samples. SWCC's were measured using a combined Tempe cell and desiccators with saturated salt solutions, following the selected procedures provided in ASTM designation D6836. A cross-section of a Tempe cell is shown in Figure 6.

For low suctions (up to about 10 kPa), a hanging water column was used with the Tempe cells. For suctions from 10 kPa to 400 kPa, the axis translation method was used, with the Tempe cell pressurized with air. For suctions from 4,100 kPa to 300,000 kPa, controlled relative humidity cells were prepared using various salt

solutions. The relative humidity environment can be converted to an equivalent suction value through the use of the Lord Kelvin equation.

Soil-water characteristic curves were measured for the fine and coarse PK according to the procedure described above. Samples were packed to similar densities according to the procedure as described above for the saturated hydraulic conductivity testing. The measured SWCCs for fine and coarse PK are shown in Figure 7 and Figure 8. The Fredlund and Xing (1994) fit to the measured data is also shown in these figures.

2.6 Thermal Properties

Thermal conductivity and specific heat capacity were measured for the fine and coarse PK materials using a KD2 Pro Thermal Properties Analyzer manufactured by Decagon Devices, Inc. The device uses a probe that measures the thermal conductivity according to the procedure ASTM designation D5334 – 08.

Thermal conductivity characterizes the ability of a soil medium to transmit heat by conduction, and is defined as the quantity of heat that will flow through a unit area of a soil medium of unit thickness in unit time under a unit temperature gradient. The thermal conductivity of a soil medium is a function of material type, saturation, and density.

Thermal conductivity measurements were initially made on samples during the Proctor testing and results are shown in Figure 9. The measured thermal conductivity values are plotted as a function of water content with dry density for each sample and also reported on the figure. It should be noted that the results presented in Figure 9 correlate well with the expected effects of material type, density and water content.

Additional measurements of thermal conductivity were made on the fine and coarse samples with densities representative of their state in PK facility. The sample preparation procedure was consistent with the sample procedure adopted for hydraulic conductivity and SWCC measurements. These measurements were made on completely dry and fully saturated samples. The results of these measurements are shown in Table 1.

	Coarse Pk	K, saturated	Fine PK, saturated					
	Thermal Conductivity W m ⁻¹ K ⁻¹	Temperature °C	Thermal Conductivity W m ⁻¹ K ⁻¹	Temperature °C				
1)	1.136	20.51	1.198	19.12				
2)	1.261	20.41	1.252	19.08				
3)	1.216	20.50	1.243	19.01				
	Coarse	PK, dry	Fine PK, dry					
1)	0.374	24.49	0.331	24.42				
2)	0.371	24.23	0.326	24.34				
3)	0.376	24.82	0.431	23.71				

 Table 1: Thermal Conductivity for Coarse and Fine PK in dry and saturated conditions

The heat capacity of a material is defined as the quantity of heat required to raise the temperature of the material by a unit degree. Expressed on a unit weight basis, it is referred as specific heat capacity and on volume basis as volumetric heat capacity.

Heat capacity of a soil medium is dependent on the heat capacities of its different constituents, namely, soil particles, water, ice (if present), and air. The volumetric heat capacity of the fine and coarse PK were measured

using the dual needle probe of KD2 Pro. Measurements were made on the fine and coarse samples with densities representative of their state in PK facility. The results of the measurements are shown in Table 2.

	Coarse PK	, saturated	Fine PK, saturated		
	Volumetric Specific Heat MJ m ⁻³ K ⁻¹	Temperature °C	Volumetric Specific Heat MJ m ⁻³ K ⁻¹	Temperature °C	
1)	2.387	20.51	2.730	19.12	
2)	2.542	20.41	3.085	19.08	
3)	2.758	20.50	2.997	19.01	
	Coarse	PK, dry	Fine PK, dry		
1)	N/A	24.49	2.036	24.42	
2)	1.786	24.23	2.103	24.34	
3)	1.282	24.82	2.045	23.71	

Table 2: Volumetric Specific Heat capacities of Fine and Coarse PK at dry and saturated conditions

3.0 CLOSURE

We trust that this memo meets your requirements at the present time. Please contact the undersigned if you have any questions regarding this report.

ashid Joshir

Rashid Bashir, Ph.D., P. Eng. Senior Geotechnical Engineer

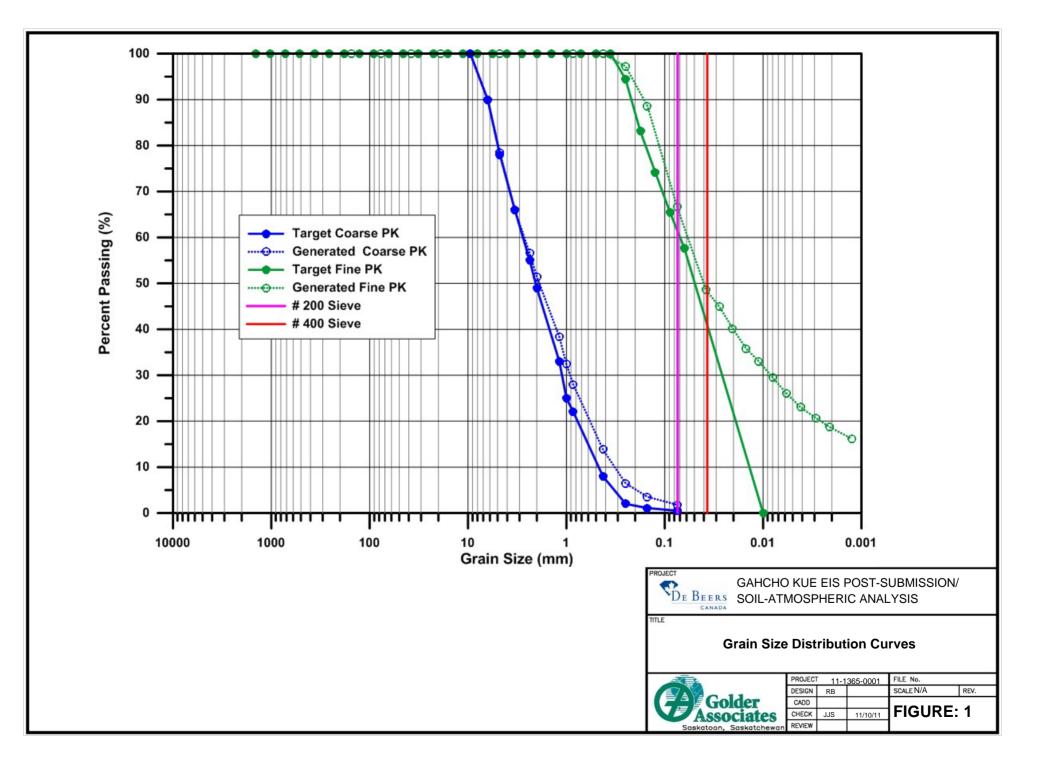
Greg Misfeldt, M.Sc., P. Eng. Principal, Senior Geotechnical Engineer

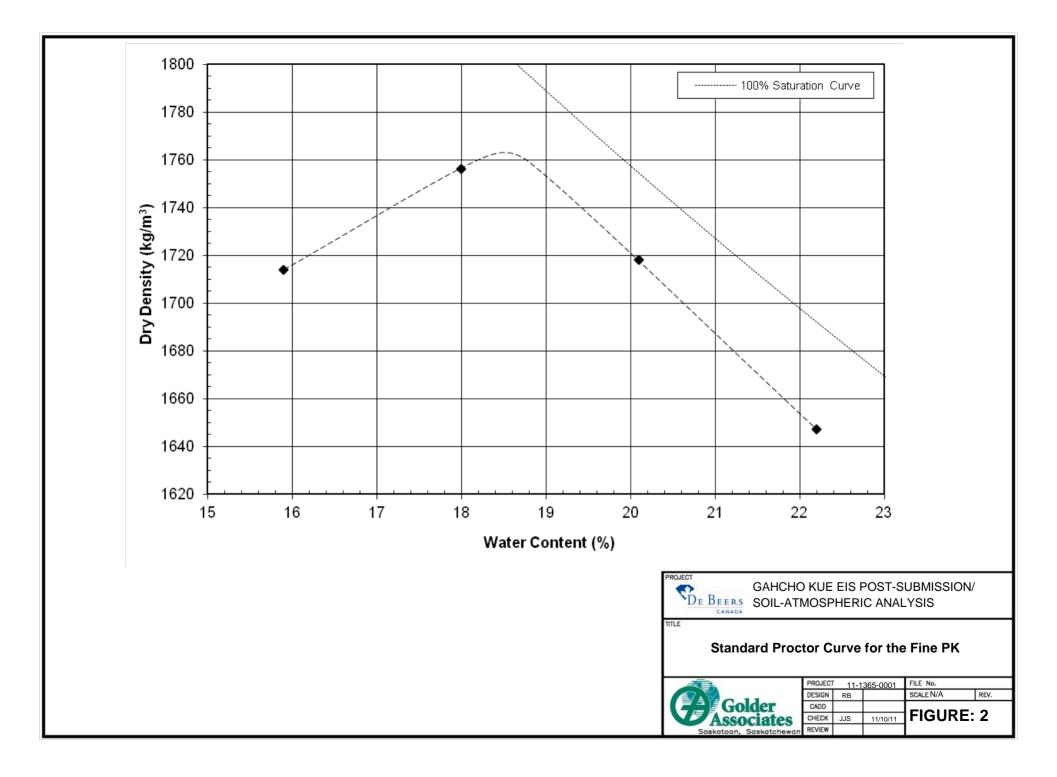
RB/GAM/pls

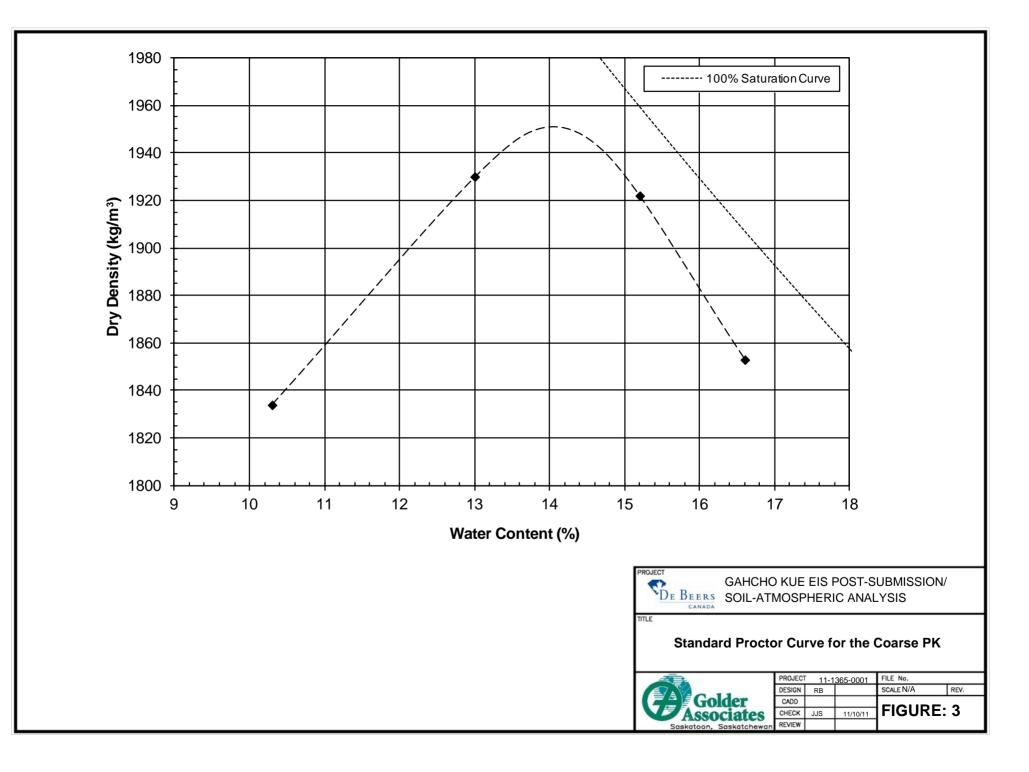
Jell Sten

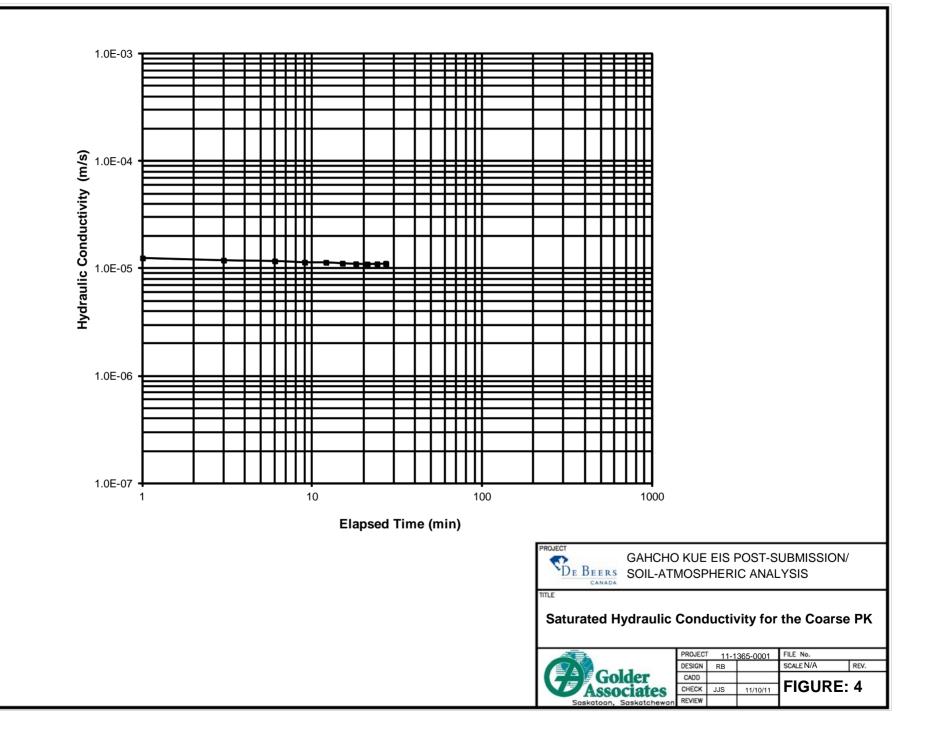
Jeff Stone, P. Eng. Geotechnical Engineer

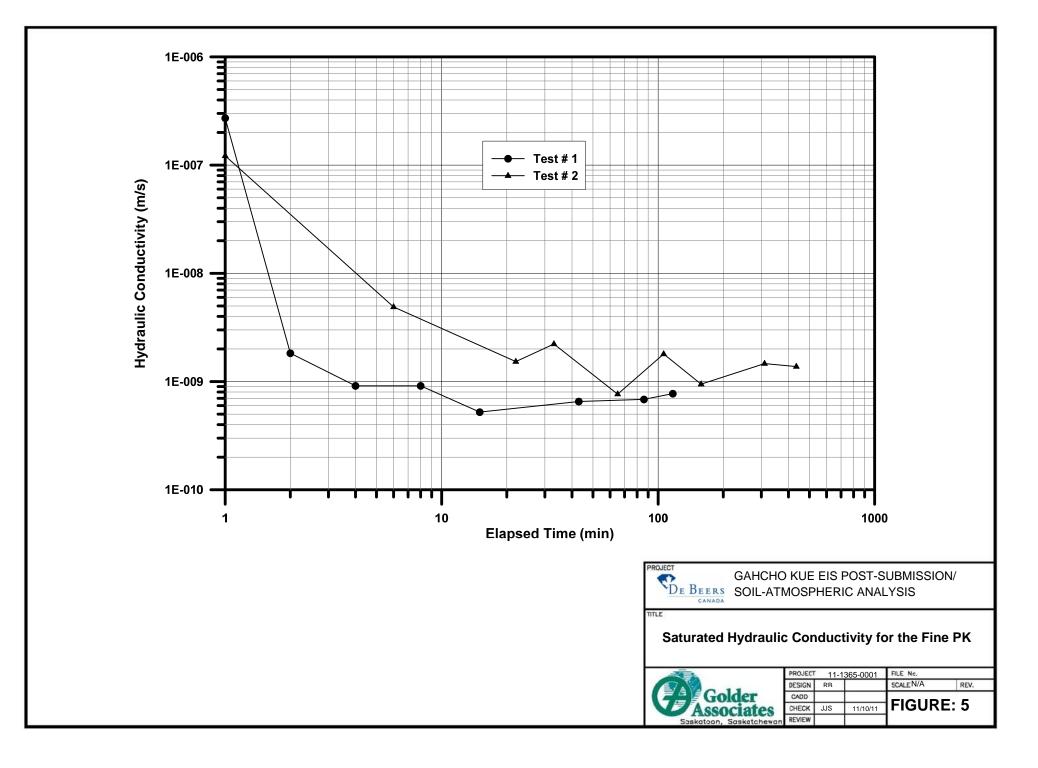
n:\active\2011\1365\11-1365-0001 gahcho kue eis post-submission\integrated evaluation of post-closure alternatives\material characterization\report\11-1365-0001 gahcho kue eis postsubmission geotechnical testing _reviewed (5june12).docx

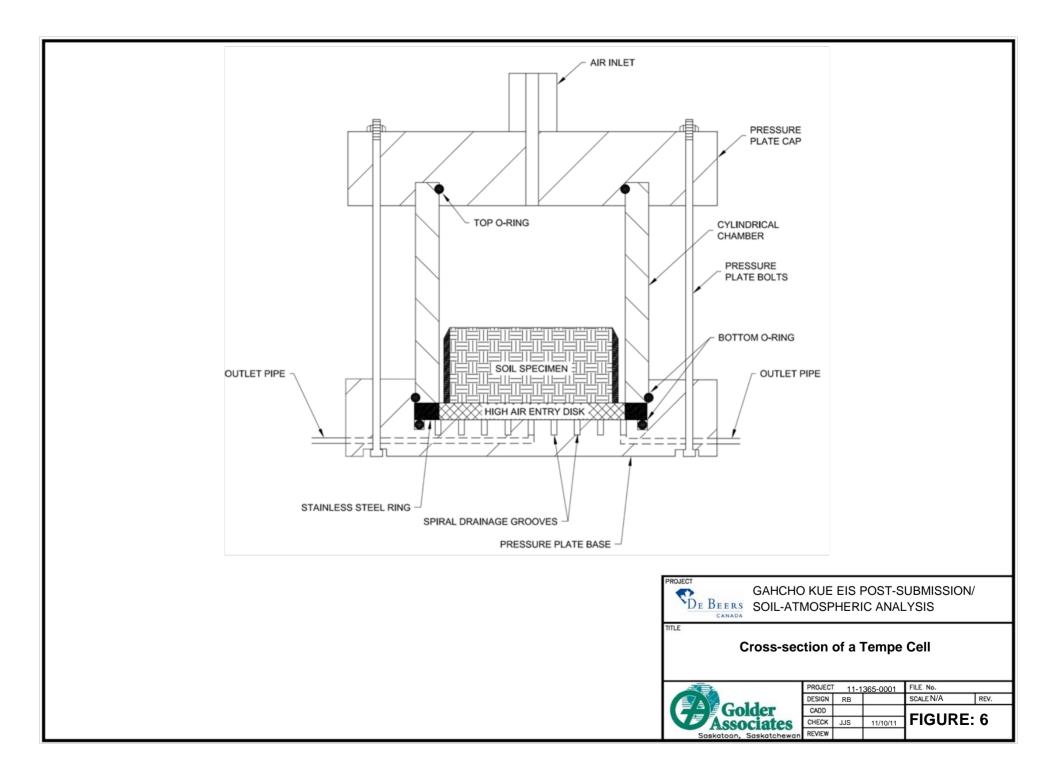


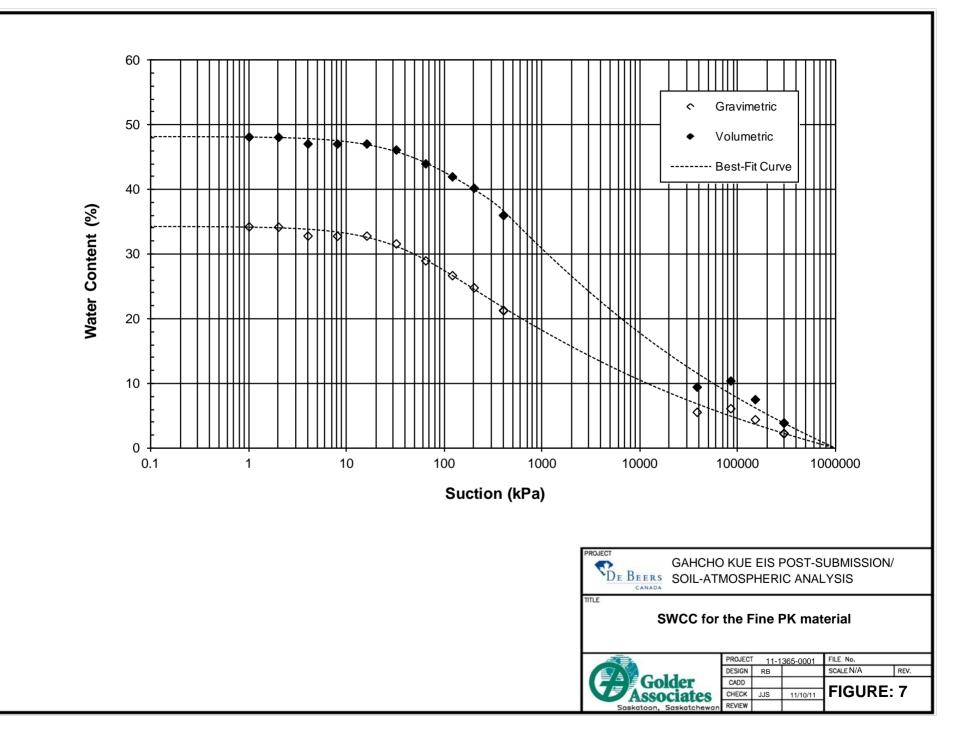

4.0 REFERENCES

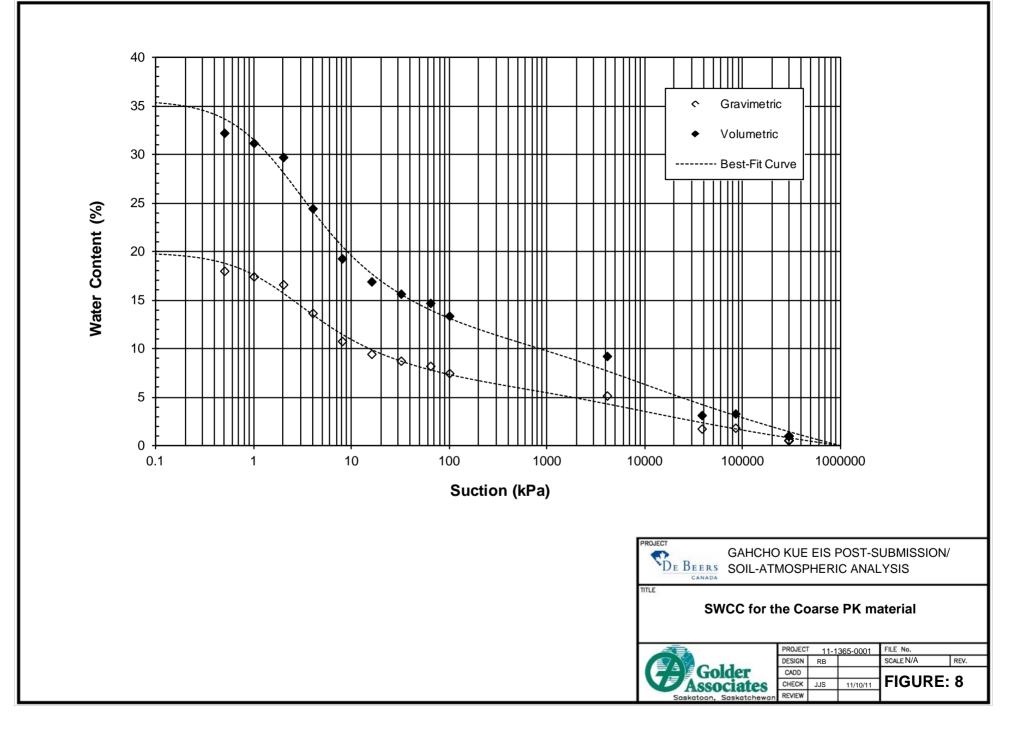

Fredlund D G, Xing A. 1994. Equations for the soil-water characteristic curve. Can. Geotech. J 31: 521-532 JDS. 2010. Gahcho Kué Project Feasibility Study Report

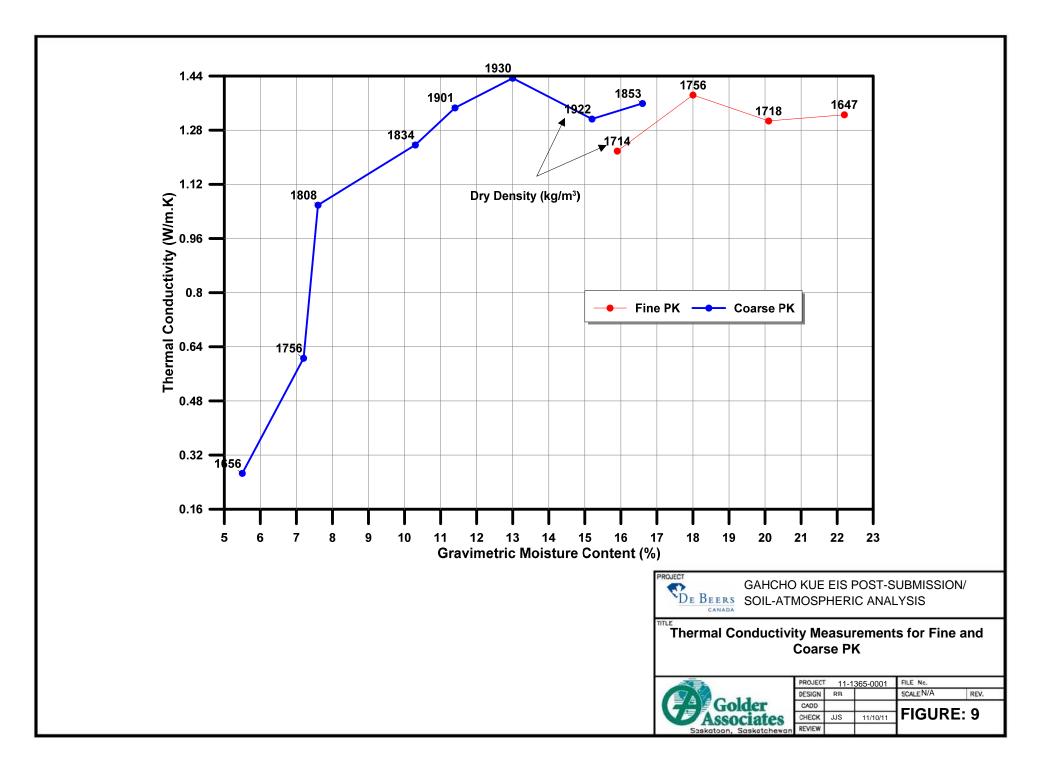



FIGURES







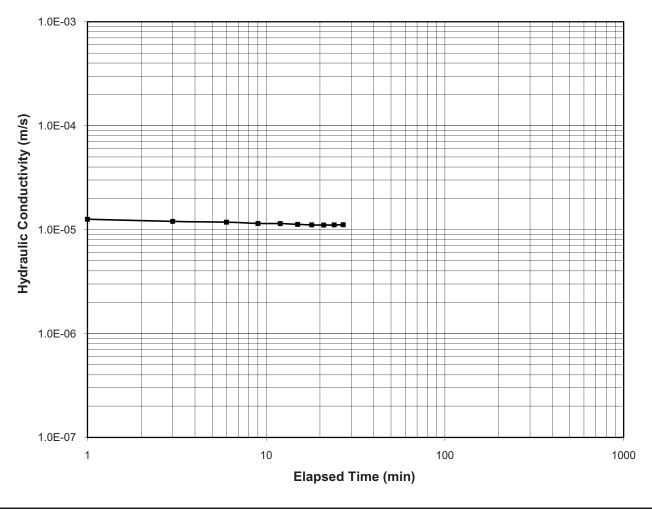


APPENDIX A

STANDARD PROCTOR - ASTM D698

Proje		11-1365-0001							Phase:	2030	/ 20	
		DeBeers / Pos	st EIS Sub	missi	on / GK							
	ed by:								Date:	July	5, 2011	
Samp		Fine PK										
Sourc												
		ription of Sam	ple:									
		le Received:										
		n Test Results	s:			Test Sum						
	ater	dry				Method us		A				
	ntent	density					sed passing:		sieve			
-	%)	(kg/m ³)				Preparation		dry				
	5.9	1714				Rammer ty	/pe:	manual				
	8.0	1756										
	0.1	1718					Correction L		olicable)	:		
2	2.2	1647				Oversize fi		N/A				
						Bulk Speci		N/A				
						Water cont	tent	N/A				
		dry density:			kg/m ³		ration Curv					
Corr	rected	for oversize n	naterial:	N/A	kg/m ³	Specific G		2.71	value:	Ca	alculated	
						Comments	5:					
-		vater content:		18.5	%							
Corr	rected	for oversize n	naterial:	N/A	%							
							tent of samp	le as receiv	ved in la	0:		
					G	raphical A	nalysis					
	1800	-										-
		-						-	100	% Satur	ation Curve	
	1780	-					· · · · · · · · · · · · · · · · · · ·					
	1700	-										
		-					*****					
	1760	-			_*		· · · · · · · · · · · · · · · · · · ·	``				-
		-						· · · · · · · · · · · · · · · · · · ·				
1 ³)	1740			///				· · · · · · · · · · · · · · · · · · ·				_
Dry Density (kg/m³)		-						```	•••			
(K)	1720		/				`\	*	· · · · · · · · · · · · · · · · · · ·			_
sity		₹								•••		
ens	1700	-								· · · · · · · · · · · · · · · · · · ·		
Ó	1700	-						\ \			*****	
D	4000	-									****	
	1680	-									· · · · ·	_
		-								\	,	`\
	1660									<u>`</u>		_
		-										
	1640	<u> </u>									•	_
		-										
	1600											
	1620	15 16		17	18	1	α γ	0	21		2	23
		10		. /	10				<u> </u>	2	£	20
						Water Co	ntent (%)					

STANDARD PROCTOR - ASTM D698

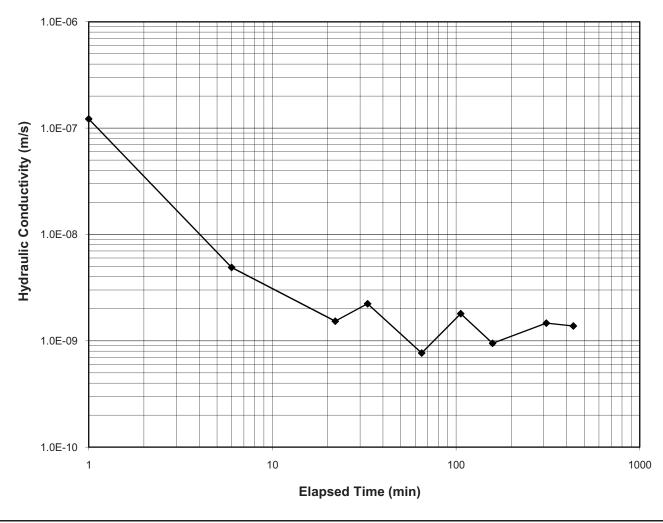

Proje Short		11-1365-00 DeBeers /		ubmissio	on / GK				Phase:	2030 / 20	
	ed by:								Date:	June 21, 2	011
Samp	-	Coarse PK								,	-
Sourc											
		ription of Sa	ample:								
		e Received	•								
		n Test Res				Test Summary					
-	ater	dry	uns.			Method used:		С			
	ntent	density				Material used pa	occina	-	aiovo		
							-		Sleve		
	%)	(kg/m ³)				Preparation me	inod:	dry .			
	0.3	1834				Rammer type:		manual			
	3.0	1930									
	5.2	1922				Oversize Corre			olicable)	:	
10	6.6	1853				Oversize fraction		N/A			
						Bulk Specific G	ravity	N/A			
						Water content		N/A			
Maxi	mum d	dry density	:	1950	kg/m ³	100% Saturatio	on Curv	e Data:			
		for oversiz			kg/m ³	Specific Gravity		2.79	value:	calculate	ed
••••					U	Comments:	-	•			•••
Ontir	miim w	vater conte	nt [.]	14.0	%	ooninnento.					
		for oversiz			%						
0011	colcu		e material.	11/17	70	Water content c	of samp	e as receiv	ved in la	h.	
					6	raphical Analys		0 00 10001		5.	
					G	rapilical Allalys	15				
	1980										
		-						· · · · · ·	100	% Saturation Cu	irve
	1960										
	1000	-									
		-					<u> </u>		、		
	1940	_					-		<u>,</u>		
		-									
3)	1920	[` `	``,		
Dry Density (kg/m³)		-				<i>i</i>				× • • • •	
kg	1900	-			/) ì	<u>,</u>		
≥	1900	-			/				`		
isi		-			/				\sim	1	
Der	1880			/						``	<u></u>
7		-									
ā	1860	-		/					`	\	
	1000	-	1	•						` •	ſ
		-									
	1840		~								
		-	•								
	1820	-									
		E									
	1000	-									
	1800	• • •	·····		40	40	+		40		
		9 1	0 1	1	12	13 1	4	15	16	17	18
						Water Content	(%)				

Golder CONSTANT HEAD FIXED WALL HYDRAULIC CONDUCTIVITY TEST

Project #:	11-1365-0001				Phase: 2030 / 20
•	DeBeers / Pos		ubmission / Ck	(
			Jumission / Gr	× ·	
Tested By:	D.B.				Date: August 25, 2011
Sample:	Coarse PK				
Hydraulic Co	nductivity			Comments:	
•	•			Comments.	
k = 1.1E-0	05 m/s				
Test Summa	ry:				
Initial Dry Der	•	1838	kg/m ³		
Initial Water C	Content:	13.9	%		
Final Dry Den	oit <i>u</i> :	1838	kg/m ³		
Final Dry Den	isity.	1050	Kg/III		
Sample Diam	eter:	101.5	mm		
Sample Heigl		119.6	mm		
Sample Heigi	π.	119.0			
Material used	passing:	9.5	mm sieve		
	. 0				

Permeant Liquid: tap water

Graph of Hydraulic Conductivity versus Time

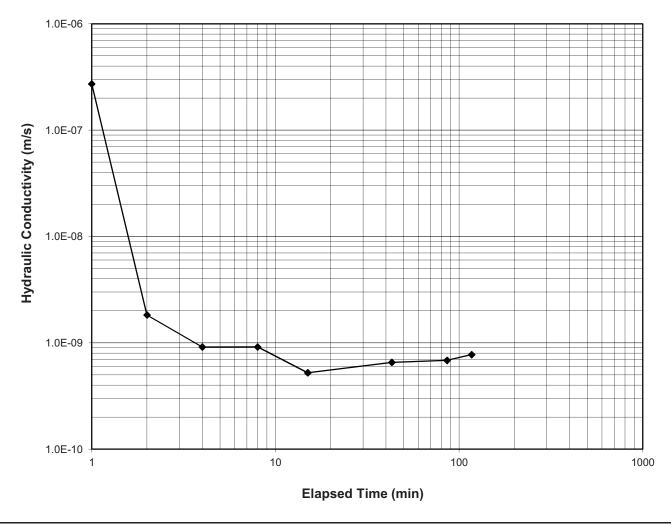


FIXED WALL FALLING HEAD HYDRAULIC CONDUCTIVITY TEST

Project #:	11-1365-0001	Phase: 2030 / 20
Short Title:	Debeers / Post EIS Submission / GK	
Tested By:	D.B.	Date: September 7, 2011
Sample:	Fine PK	

Final Hydraulic Conduct k = 1.4E-09 m/s	tivity:		Comments:
<i>Test Summary:</i> Initial Water Content: Initial Dry Density: Final Water Content: Final Dry Density:	1180 35.2	% kg/m ³ % kg/m ³	Specimen consolidated at 30 kPa stress prior to testing. Initial water content and dry density are prior to loading.
Sample Diameter: Final Sample Height:		mm mm	

Graph of Hydraulic Conductivity versus Time

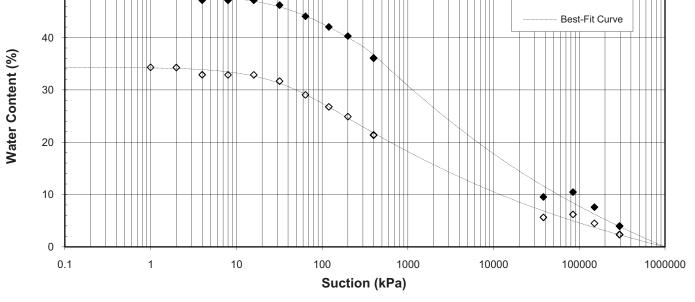


FIXED WALL FALLING HEAD HYDRAULIC CONDUCTIVITY TEST

Project #:	11-1365-0001	Phase: 2030 / 20
Short Title:	Debeers / Post EIS Submission / GK	
Tested By:	D.B.	Date: October 13, 2011
Sample:	Fine PK	

Final Hydraulic Conduc k = 7.0E-10 m/s	tivity:		Comments:
Test Summary: Initial Water Content: Initial Dry Density: Final Water Content: Final Dry Density:	43.2 1249 33.5 1427	% kg/m ³ % kg/m ³	Specimen consolidated at 30 kPa stress prior to testing. Initial water content and dry density are prior to loading.
Sample Diameter: Final Sample Height:	114.24 57.56	mm mm	

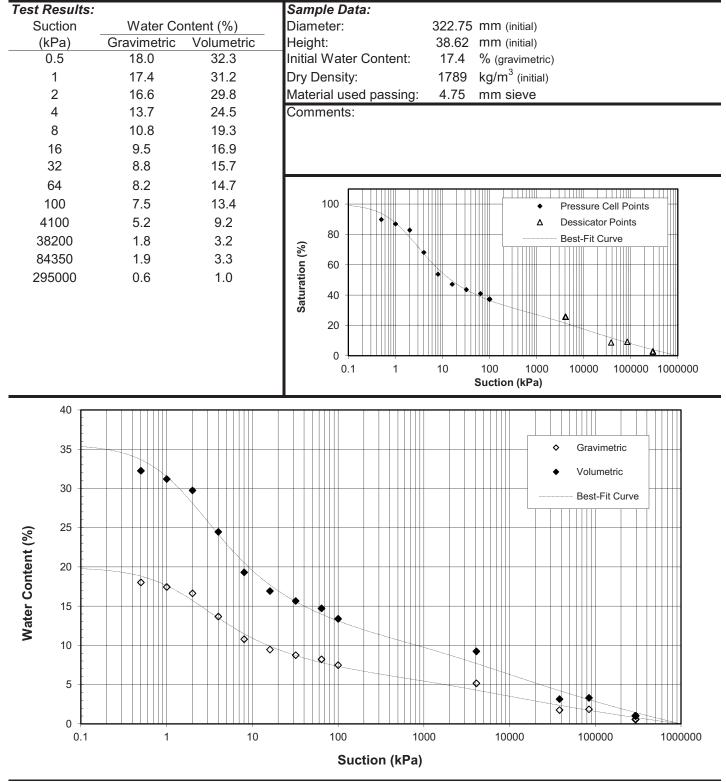
Graph of Hydraulic Conductivity versus Time



601

Short Title: DeBeers / Post EIS Surfered By: D.B./C.H.Z. Sample: Fine PK Test Results: Gravimetric Volume 1.0 34.3 48.2 2.0 34.3 48.2 4.0 32.9 47.7 8.0 32.9 47.7 16 32.9 47.7 32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	Date: September 11, 2011 Sample Data: Diameter: Diameter: 63.57 mm (initial) tric Height: 32.23 mm (initial)
Sample: Fine PK Test Results: Water Content (% (kPa) 1.0 34.3 48.2 2.0 34.3 48.2 2.0 34.3 48.2 4.0 32.9 47.2 8.0 32.9 47.2 16 32.9 47.2 32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.2 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	Sample Data: Diameter: 63.57 mm (initial) tric Height: 32.23 mm (initial)
Suction (kPa) Water Content (% Gravimetric Volume Volume 1.0 34.3 48.2 2.0 34.3 48.2 2.0 34.3 48.2 4.0 32.9 47.2 8.0 32.9 47.2 16 32.9 47.2 32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	Diameter:63.57mm (initial)tricHeight:32.23mm (initial)
(kPa) Gravimetric Volume 1.0 34.3 48.2 2.0 34.3 48.2 2.0 34.3 48.2 4.0 32.9 47.2 8.0 32.9 47.2 16 32.9 47.2 32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.2 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	tric Height: 32.23 mm (initial)
1.0 34.3 48.2 2.0 34.3 48.2 4.0 32.9 47.2 8.0 32.9 47.2 16 32.9 47.2 32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.2 400 21.4 36.2 38200 5.6 9.5 84350 6.2 10.2 150300 4.5 7.6 295000 2.3 4.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Initial Water Content: 34.7 % (gravimetric)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dry Density: 1387 kg/m ³ (initial)
16 32.9 47.7 32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.9 150300 4.5 7.6 295000 2.3 4.0	Material used passing: 4.75 mm sieve
32 31.7 46.2 64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	Comments:
64 29.1 44.0 120 26.8 42.0 200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	SWCC specimen taken from material slurried, then consolidated at
120 26.8 42.0 200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	30 kPa stress.
200 24.9 40.3 400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	
400 21.4 36.7 38200 5.6 9.5 84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	
38200 5.6 9.5 84350 6.2 10.9 150300 4.5 7.6 295000 2.3 4.0	100
84350 6.2 10.5 150300 4.5 7.6 295000 2.3 4.0	
150300 4.5 7.6 295000 2.3 4.0	
295000 2.3 4.0	(%) 60 40 Pressure Cell Points
	ين الله الله الله الله الله الله الله الل
60	δ
60	20 Δ Dessicator Points
60	Best-Fit Curve
60	0 1 1 10 100 10000 100000 100000 0.1 1 10 100 1000 100000 1000000 Suction (kPa)
60	
	Gravimetric
50	
	◆ Volumetric
40	Volumetric Best-Fit Curve

The testing services reported herein have been performed in accordance with the indicated recognized standard, or in accordance with local industry practice. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation can be provided by Golder Associates Ltd. upon request.


1721 8th Street E., Saskatoon, Saskatchewan, S7H 0T4

SOIL-WATER CHARACTERISTIC CURVE

Project #:	11-1365-0001	Phase:	2030 / 20
Short Title:	DeBeers / Post Eis Submission / GK D.B.	Date:	September 23, 2011
Tested By: Sample:	Coarse PK	Date.	September 23, 2011

THERMAL CONDUCTIVITY / SPECIFIC HEAT TEST

Project #:	11-1365-0001	Phase: 2030 / 20			
Short Title:	Debeers / Post EIS Submission / GK				
Tested By:	DB	Date: October 13, 2011			
Measurements were made using a KD2 Pro Thermal Properties Analyzer (Decagon Devices)					

Sample: Fine PK, saturated

	Thermal	Volumetric	T (
	Conductivity	Specific Heat	Temperature
_	W m ⁻¹ K ⁻¹	MJ m⁻³ K⁻¹	°C
1)	1.198	2.730	19.12
2)	1.252	3.085	19.08
3)	1.243	2.997	19.01

Measurements made on material initially slurried, then consolidated at 30 kPa stress in consolidation apparatus

Sample: Fine PK, dry

	Thermal Conductivity	Volumetric Specific Heat	Temperature
_	W m ⁻¹ K ⁻¹	MJ m⁻³ K⁻¹	°C
1)	0.331	2.036	24.42
2)	0.326	2.103	24.34
3)	0.431	2.045	23.71

Measurements made on specimen from above, after drying at 110°C and allowing to cool

Comments:

THERMAL CONDUCTIVITY / SPECIFIC HEAT TEST

Project #:	11-1365-0001	Phase: 2030 / 20	
Short Title:	Debeers / Post EIS Submission / GK		
Tested By:	DB	Date: October 13, 2011	
Measurements were made using a KD2 Pro Thermal Properties Analyzer (Decagon Devices)			

Sample: Coarse PK, saturated

	Thermal	Volumetric	
	Conductivity	Specific Heat	Temperature
	W m ⁻¹ K ⁻¹	MJ m⁻³ K⁻¹	°C
1)	1.136	2.387	20.51
2)	1.261	2.542	20.41
3)	1.216	2.758	20.50

Measurements made on material initially compacted in Proctor mould at water content = 14.6% and dry density = 1853 kg/m^3 , then saturated

Sample: Coarse PK, dry

	Thermal	Volumetric	
	Conductivity	Specific Heat	Temperature
_	W m ⁻¹ K ⁻¹	MJ m⁻³ K⁻¹	°C
1)	0.374	N/A	24.49
2)	0.371	1.786	24.23
3)	0.376	1.282	24.82

Measurements made on specimen from above, after drying at 110°C and allowing to cool

Comments:

THERMAL CONDUCTIVITY TEST

Project #: 11-1365-0001 Short Title: Debeers / Post EIS Submission / GK Tested By: DB Phase: 2030 / 20

Date: July 5, 2011

Measurements were made using a KD2 Pro Thermal Properties Analyzer (Decagon Devices)

Sample: Fine PK

	Thermal		Water	
	Conductivity	Temperature	Content	Dry Density
_	$W m^{-1} K^{-1}$	°C	%	kg/m ³
1)	1.218	21.48	15.9	1714
2)	1.384	21.54	18.0	1756
3)	1.307	21.58	20.1	1718
4)	1.326	21.36	22.2	1647

Measurements conducted on compacted specimens from standard Proctor compaction test

Comments:

THERMAL CONDUCTIVITY TEST

Project #: 11-1365-0001 Short Title: Debeers / Post EIS Submission / GK Tested By: DB Phase: 2030 / 20

Date: June 21, 2011

Measurements were made using a KD2 Pro Thermal Properties Analyzer (Decagon Devices)

Sample: Coarse PK

	Thermal		Water	
	Conductivity	Temperature	Content	Dry Density
	W m ⁻¹ K ⁻¹	°C	%	kg/m ³
1)	0.280	23.21	5.5	1656
2)	0.606	22.84	7.2	1756
3)	1.059	22.09	7.6	1808
4)	1.236	21.56	10.3	1834
5)	1.346	21.26	11.4	1901
6)	1.434	21.03	13.0	1930
7)	1.313	20.89	15.2	1922
8)	1.359	20.89	16.6	1853

Measurements conducted on compacted specimens from standard Proctor compaction test (not all points shown in Proctor test results)

Comments:

